Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Bioorg Med Chem Lett ; 103: 129701, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484804

RESUMEN

Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 µM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.


Asunto(s)
Antimaláricos , Hidantoínas , Malaria , Embarazo , Niño , Femenino , Humanos , Preescolar , Plasmodium falciparum , Cloroquina/farmacología , Malaria/tratamiento farmacológico , Hidantoínas/farmacología
2.
Bioorg Chem ; 151: 107668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079393

RESUMEN

An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.


Asunto(s)
Receptores de Serotonina , Receptores de Serotonina/metabolismo , Humanos , Ligandos , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Piperazinas/química , Piperazinas/síntesis química , Piperazinas/farmacología , Hidantoínas/química , Hidantoínas/síntesis química , Hidantoínas/farmacología
3.
Bioorg Chem ; 146: 107284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493640

RESUMEN

Based on the well-established pharmacophoric features required for histone deacetylase (HDAC) inhibition, a novel series of easy-to-synthesize benzimidazole-linked (thio)hydantoin derivatives was designed and synthesized as HDAC6 inhibitors. All target compounds potently inhibited HDAC6 at nanomolar levels with compounds 2c, 2d, 4b and 4c (IC50s = 51.84-74.36 nM) being more potent than SAHA reference drug (IC50 = 91.73 nM). Additionally, the most potent derivatives were further assessed for their in vitro cytotoxic activity against two human leukemia cells. Hydantoin derivative 4c was equipotent/superior to SAHA against MOLT-4/CCRF-CEM leukemia cells, respectively and demonstrated safety profile better than that of SAHA against non-cancerous human cells. 4c was also screened against different HDAC isoforms. 4c was superior to SAHA against HDAC1. Cell-based assessment of 4c revealed a significant cell cycle arrest and apoptosis induction. Moreover, western blotting analysis showed increased levels of acetylated histone H3, histone H4 and α-tubulin in CCRF-CEM cells. Furthermore, docking study exposed the ability of title compounds to chelate Zn2+ located within HDAC6 active site. As well, in-silico evaluation of physicochemical properties showed that target compounds are promising candidates in terms of pharmacokinetic aspects.


Asunto(s)
Antineoplásicos , Hidantoínas , Leucemia , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Hidantoínas/farmacología , Leucemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Zinc/metabolismo , Bencimidazoles/química , Bencimidazoles/farmacología
4.
Phytopathology ; 114(4): 770-779, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598410

RESUMEN

Gray mold caused by Botrytis cinerea is among the 10 most serious fungal diseases worldwide. Fludioxonil is widely used to prevent and control gray mold due to its low toxicity and high efficiency; however, resistance caused by long-term use has become increasingly prominent. Therefore, exploring the resistance mechanism of fungicides provides a theoretical basis for delaying the occurrence of diseases and controlling gray mold. In this study, fludioxonil-resistant strains were obtained through indoor drug domestication, and the mutation sites were determined by sequencing. Strains obtained by site-directed mutagenesis were subjected to biological analysis, and the binding modes of fludioxonil and iprodione to Botrytis cinerea Bos1 BcBos1 were predicted by molecular docking. The results showed that F127S, I365S/N, F127S + I365N, and I376M mutations on the Bos1 protein led to a decrease in the binding energy between the drug and BcBos1. The A1259T mutation did not lead to a decrease in the binding energy, which was not the cause of drug resistance. The biological fitness of the fludioxonil- and point mutation-resistant strains decreased, and their growth rate, sporulation rate, and pathogenicity decreased significantly. The glycerol content of the sensitive strains was significantly lower than that of the resistant strains and increased significantly after treatment with 0.1 µg/ml of fludioxonil, whereas that of the resistant strains decreased. The osmotic sensitivity of the resistant strains was significantly lower than that of the sensitive strains. Positive cross-resistance was observed between fludioxonil and iprodione. These results will help to understand the resistance mechanism of fludioxonil in Botrytis cinerea more deeply.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Botrytis , Dioxoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Fungicidas Industriales , Histidina Quinasa , Hidantoínas , Pirroles , Botrytis/genética , Botrytis/efectos de los fármacos , Botrytis/enzimología , Dioxoles/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidantoínas/farmacología , Pirroles/farmacología , Pirroles/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Enfermedades de las Plantas/microbiología , Simulación del Acoplamiento Molecular , Mutación , Mutagénesis Sitio-Dirigida
5.
J Enzyme Inhib Med Chem ; 39(1): 2335927, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38606915

RESUMEN

A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a panel of human (h) carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms hCA I, hCA II, and hCA VII, secreted isoform hCA VI, and the transmembrane hCA IX, by a stopped-flow CO2 hydrase assay. Although all newly developed compounds were totally inactive on hCA I and mainly ineffective towards hCA II, they generally exhibited moderate repressing effects on hCA VI, VII, and IX with KIs values in the submicromolar to micromolar ranges. The salts 3a and 3b, followed by derivative 5, displayed the best inhibitory activity of all the evaluated compounds and their binding mode was proposed in silico. These compounds can also be considered interesting starting points for the development of novel pharmacophores for this class of enzyme inhibitors.


Asunto(s)
Anhidrasas Carbónicas , Hidantoínas , Humanos , Anhidrasas Carbónicas/metabolismo , Anhidrasa Carbónica IX , Relación Estructura-Actividad , Anhidrasa Carbónica I , Anhidrasa Carbónica II , Isoformas de Proteínas/metabolismo , Ftalimidas/farmacología , Hidantoínas/farmacología , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular
6.
Pestic Biochem Physiol ; 203: 106006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084801

RESUMEN

Peach is one of the popular and economically important fruit crops in China. Peach cultivation is hampered due to attacks of anthracnose disease, causing significant economic losses. Colletotrichum fructicola and Colletotrichum siamense belong to the Colletotrichum gloeosporioides species complex and are considered major pathogens of peach anthracnose. Application of different groups of fungicides is a routine approach for controlling this disease. However, fungicide resistance is a significant drawback in managing peach anthracnose nowadays. In this study, 39 isolates of C. fructicola and 41 isolates of C. siamense were collected from different locations in various provinces in China. The sensitivity of C. fructicola and C. siamense to some commonly used fungicides, i.e., carbendazim, iprodione, fluopyram, and propiconazole, was determined. All the isolates of C. fructicola collected from Guangdong province showed high resistance to carbendazim, whereas isolates collected from Guizhou province were sensitive. In C. siamense, isolates collected from Hebei province showed moderate resistance, while those from Shandong province were sensitive to carbendazim. On the other hand, all the isolates of C. fructicola and C. siamense showed high resistance to the dicarboximide (DCF) fungicide iprodione and succinate dehydrogenase inhibitor (SDHI) fungicide fluopyram. However, they are all sensitive to the demethylation inhibitor (DMI) fungicide propiconazole. Positive cross-resistance was observed between carbendazim and benomyl as they are members of the same methyl benzimidazole carbamate (MBC) group. While no correlation of sensitivity was observed between different groups of fungicides. No significant differences were found in each fitness parameter between carbendazim-resistant and sensitive isolates in both species. Molecular characterization of the ß-tubulin 2 (TUB2) gene revealed that in C. fructicola, the E198A point mutation was the determinant for the high resistance to carbendazim, while the F200Y point mutation was linked with the moderate resistance to carbendazim in C. siamense. Based on the results of this study, DMI fungicides, e.g., propiconazole or prochloraz could be used to control peach anthracnose, especially at locations where the pathogens have already developed the resistance to carbendazim and other fungicides.


Asunto(s)
Carbamatos , Colletotrichum , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Prunus persica , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Fungicidas Industriales/farmacología , Prunus persica/microbiología , Enfermedades de las Plantas/microbiología , Carbamatos/farmacología , China , Bencimidazoles/farmacología , Hidantoínas/farmacología , Triazoles/farmacología , Aminoimidazol Carboxamida/análogos & derivados
7.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998932

RESUMEN

Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.


Asunto(s)
Cloro , Escherichia coli , Membranas Artificiales , Staphylococcus aureus , Cloro/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Halogenación , Polímeros/química , Poliestirenos/química , Hidantoínas/química , Hidantoínas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aminas
8.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677661

RESUMEN

Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.


Asunto(s)
Hidantoínas , Indoles , Indoles/farmacología , Indoles/química , Anticonvulsivantes , Hidantoínas/farmacología , Ácidos Indolacéticos
9.
Bioorg Chem ; 121: 105643, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35150958

RESUMEN

As a member of Bcl-2 protein family, myeloid cell leukemia-1 (Mcl-1) plays a critical role in cell apoptosis and has become a promising anti-cancer drug target. Herein, we designed and synthesized a series of hydantoin derivatives as novel Mcl-1 inhibitors based on our previously developed lead compound. Among them, compound M23 and M24 exhibited good binding affinities against Mcl-1 with Ki values of 0.49 µM and 0.33 µM respectively. Especially, compound M23 exhibited good selectivity over Bcl-xL, whereas compound M24 possessed good selectivity over both Bcl-2 and Bcl-xL. Furthermore, we also investigated the effects of these new Mcl-1 inhibitors on cell proliferation, apoptosis and mitochondrial membrane potential, as well as the stability in plasma.


Asunto(s)
Antineoplásicos , Hidantoínas , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Diseño de Fármacos , Hidantoínas/farmacología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
10.
Bioorg Chem ; 129: 106108, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36063781

RESUMEN

Diabetic nephropathy is one of the most dreadful diabetic complications (DCs). The polyol pathway and unified mechanism are two important pathways implicated in the progression of DCs. In this regard, targeting the key enzymes i.e., aldose reductase (ALR2) and poly (ADP-ribose) polymerase-1 (PARP-1), of these pathways can be a relevant strategy. Thus, in this study, the pharmacophoric requirements necessary for the dual inhibition of these two enzymes i.e., ALR2 and PARP-1 were identified and consequently, some hydantoin based molecules were designed. The designed molecules were subjected to structure-based molecular modelling analysis including molecular docking analysis and molecular dynamic simulations. The promising molecules were duly synthesized and examined for their ALR2 and PARP-1 dual inhibitory activities and selectivity over aldehyde reductase (ALR1) using in vitro enzymatic assays. Based on the results of in silico analysis and in vitro assays, the best three molecules were evaluated in vivo for their nephroprotective effect and antioxidant potential in the high-fat diet-streptozotocin induced diabetic rat model. The results showed that the compounds FM6B, FM7B and FM9B were having low micromolar inhibitory potential against ALR2 (IC50; 1.02, 1.14 and 1.08 µM, respectively) and PARP-1 (IC50; 0.95, 0.81 and 1.42 µM, respectively) with selectivity over ALR1 (selectivity index; 43.63, 37.03 and 45.14, respectively).


Asunto(s)
Complicaciones de la Diabetes , Hidantoínas , Animales , Ratas , Aldehído Reductasa , Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Hidantoínas/farmacología , Hidantoínas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores Enzimáticos , Simulación de Dinámica Molecular , Complicaciones de la Diabetes/tratamiento farmacológico , Relación Estructura-Actividad
11.
Bioorg Chem ; 119: 105517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34861626

RESUMEN

Sulfahydantoins are five-membered rings found in the structure of chemicals that exhibit antibacterial, anti-inflammatory, and anticonvulsant properties. They also activate serine protease enzymes that catalyze the hydrolysis of peptide bonds. Five 3-imino sulfahydantoin compounds were synthesized by using Strecker synthesis reaction with minor modifications. We used reflux of various aldehydes with excess sulfamide in 85% methanol in the presence of sodium cyanide. The spectroscopic properties of these compounds were studied in detail. Antibacterial activities of all synthesized new compounds against four Gram-positive (Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Streptococcus mutans) and four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella Enteritidis) bacteria were investigated by disc diffusion and microdilution method. pBR322 plasmid DNA binding abilities of compounds were investigated in vitro by agarose gel electrophoresis. In addition, the cytotoxic activities of the compounds against the human malignant pleural mesothelioma (SPC212) cell line were determined by the MTT method. The remarkable result in this study is that the synthesized compounds, especially 4b, 4d, and 4e, have significant biological activities. It has been demonstrated that these compounds, which cause DNA damage, also have an important antibacterial effect on both Gram-negative and Gram-positive bacteria when results compared with the control group antibiotics. Compound 4e exhibited the highest antibacterial potency against Streptococcus mutans (24.33 ± 0.57) from Gram-positive bacteria and Pseudomonas aeruginosa (24.66 ± 1.15) from Gram-negative bacteria. At the same time, MTT results determined that compounds 4b, 4d, and 4e showed cytotoxic activity against the SPC212 cells. In particular, compound 4b had a high cytotoxic effect, and the IC50 value was determined as 6.25 µM.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , ADN/química , Hidantoínas/farmacología , Iminas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Hidantoínas/síntesis química , Hidantoínas/química , Iminas/síntesis química , Iminas/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Plásmidos , Relación Estructura-Actividad
12.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430592

RESUMEN

A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two ß-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Hidantoínas , Sulfonamidas , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Hidantoínas/química , Hidantoínas/farmacología , Relación Estructura-Actividad , Derivados del Benceno/química , Derivados del Benceno/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Células Eucariotas/enzimología , Células Eucariotas/metabolismo , Bencenosulfonamidas
13.
Molecules ; 27(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335215

RESUMEN

This study aimed to assess two novel 5-arylideneimidazolidine-2,4-dione (hydantoin) derivatives (JH3 and JH10) demonstrating photoprotective activity using the reconstructed human skin model EpiskinTM. The skin permeability, irritation, and phototoxicity of the compounds was evaluated in vitro. Moreover, the in vitro genotoxicity and human metabolism of both compounds was studied. For skin permeation and irritation experiments, the test compounds were incorporated into a formulation. It was shown that JH3 and JH10 display no skin irritation and no phototoxicity. Both compounds did not markedly enhance the frequency of micronuclei in CHO-K1 cells in the micronucleus assay. Preliminary in vitro studies with liver microsomes demonstrated that hydrolysis appears to constitute their important metabolic pathway. EpiskinTM permeability experiments showed that JH3 permeability was lower than or close to currently used UV filters, whereas JH10 had the potential to permeate the skin. Therefore, a restriction of this compound permeability should be obtained by choosing the right vehicle or by optimizing it, which should be addressed in future studies.


Asunto(s)
Hidantoínas , Protectores Solares , Humanos , Hidantoínas/farmacología , Permeabilidad , Piel/metabolismo , Pruebas de Irritación de la Piel , Protectores Solares/metabolismo , Protectores Solares/farmacología
14.
Molecules ; 27(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144603

RESUMEN

Hydroxymethylthiohydantoin, hydroxymethylthiohydantoin, and hydantoin, containing a pyridine group, were synthesized to study their androgen receptor antagonistic activities. Among them, compounds 6a/6c/7g/19a/19b exhibited excellent androgen receptor antagonistic activity, which was consistent with or even superior to enzalutamide. In addition, compounds 19a and 19b exhibited better antiproliferative activity than enzalutamide in prostate cancer cells. The results show that compound 19a has great potential as a new AR antagonist.


Asunto(s)
Hidantoínas , Neoplasias de la Próstata , Antagonistas de Receptores Androgénicos/farmacología , Benzamidas , Línea Celular Tumoral , Proliferación Celular , Humanos , Hidantoínas/farmacología , Masculino , Nitrilos/farmacología , Feniltiohidantoína , Neoplasias de la Próstata/tratamiento farmacológico , Piridinas/farmacología , Receptores Androgénicos
15.
Cell Mol Neurobiol ; 41(3): 431-448, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32399753

RESUMEN

Amyloid beta (Aß) peptides represent one of the most studied etiological factors of Alzheimer's disease. Nevertheless, the effects elicited by different molecular forms of amyloid beta peptides widely vary between the studies, mostly depending on experimental conditions. Despite the enormous amount of accumulated evidences concerning the pathological effects of amyloid beta peptides, the exact identity of the amyloid beta species is still controversial, and even less is clear as regards to the downstream effectors that mediate the devastating impact of these peptides on synapses in the central nervous system. Recent publications indicate that some of the neurotoxic effects of amyloid beta peptides may be mediated via the activation of proteins belonging to the Abelson non-receptor tyrosine kinase (Abl) family, that are known to regulate actin cytoskeleton structure as well as phosphorylate microtubule-associated tau protein, a hallmark of Alzheimer's disease. By performing series of miniature excitatory postsynaptic currents (mEPSC) recordings in cultured hippocampal cells, we demonstrate that activation of Abl kinases by acute application of 42 amino acid-length monomeric amyloid beta (Aß1-42) peptides reduces spontaneous synaptic release, while this effect can be rescued by pharmacologic inhibition of Abl kinase activity, or by reduction of Abl expression with small interfering RNAs. Our electrophysiological data are further reinforced by a subsequent biochemical analysis, showing enhanced phosphorylation of Abl kinase substrate CT10 Regulator of Kinase-homolog-Like (Crkl) upon treatment of hippocampal neurons with Aß peptides. Thus, we conclude that Abl kinase activation may be involved in Aß-induced weakening of synaptic transmission.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Fragmentos de Péptidos/toxicidad , Proteínas Proto-Oncogénicas c-abl/metabolismo , Sinapsis/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hidantoínas/farmacología , Mesilato de Imatinib/farmacología , Neurotransmisores/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Pirimidinas/farmacología , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
16.
Bioorg Med Chem Lett ; 39: 127854, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33631370

RESUMEN

p300 and CREB-binding protein (CBP) are essential for a multitude of cellular processes. Dysregulation of p300/CBP histone acetyltransferase activity is linked to a broad spectrum of human diseases including cancers. A novel drug-like spirohydantoin (21) has been discovered as a selective orally bioavailable inhibitor of p300/CBP histone acetyltransferase. Lead compound 21 is more potent than the first-in-class lead A-485 in both enzymatic and cellular assays and lacks the off-target inhibition of dopamine and serotonin transporters, that was observed with A-485.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Descubrimiento de Drogas , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hidantoínas/farmacología , Compuestos de Espiro/farmacología , Administración Oral , Disponibilidad Biológica , Proteína de Unión a CREB/metabolismo , Relación Dosis-Respuesta a Droga , Proteína p300 Asociada a E1A/metabolismo , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/metabolismo , Humanos , Hidantoínas/administración & dosificación , Hidantoínas/metabolismo , Estructura Molecular , Compuestos de Espiro/administración & dosificación , Compuestos de Espiro/metabolismo , Relación Estructura-Actividad
17.
J Neurosci ; 39(24): 4797-4813, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30936239

RESUMEN

Fragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in vivo in mice lacking the gene (Fmr1-/y ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in Fmr1-/y animals, but only at high sound levels. In contrast, wave IV, which represents the activity of auditory brainstem nuclei is enhanced at all sound levels, suggesting that loss of FMRP alters the central processing of auditory signals. Current-clamp recordings of neurons in the medial nucleus of the trapezoid body in the auditory brainstem revealed that, in contrast to neurons from wild-type animals, sustained depolarization triggers repetitive firing rather than a single action potential. In voltage-clamp recordings, K+ currents that activate at positive potentials ("high-threshold" K+ currents), which are required for high-frequency firing and are carried primarily by Kv3.1 channels, are elevated in Fmr1-/y mice, while K+ currents that activate near the resting potential and inhibit repetitive firing are reduced. We therefore tested the effects of AUT2 [((4-({5-[(4R)-4-ethyl-2,5-dioxo-1-imidazolidinyl]-2-pyridinyl}oxy)-2-(1-methylethyl) benzonitrile], a compound that modulates Kv3.1 channels. AUT2 reduced the high-threshold K+ current and increased the low-threshold K+ currents in neurons from Fmr1-/y animals by shifting the activation of the high-threshold current to more negative potentials. This reduced the firing rate and, in vivo, restored wave IV of the ABR. Our results from animals of both sexes suggest that the modulation of the Kv3.1 channel may have potential for the treatment of sensory hypersensitivity in patients with FXS.SIGNIFICANCE STATEMENT mRNA encoding the Kv3.1 potassium channel was one of the first described targets of the fragile X mental retardation protein (FMRP). Fragile X syndrome is caused by loss of FMRP and, in humans and mice, causes hypersensitivity to auditory stimuli. We found that components of the auditory brain response (ABR) corresponding to auditory brainstem activity are enhanced in mice lacking FMRP. This is accompanied by hyperexcitability and altered potassium currents in auditory brainstem neurons. Treatment with a drug that alters the voltage dependence of Kv3.1 channels normalizes the imbalance of potassium currents, as well as ABR responses in vivo, suggesting that such compounds may be effective in treating some symptoms of fragile X syndrome.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Canales de Potasio Shaw/metabolismo , Animales , Vías Auditivas , Percepción Auditiva , Tronco Encefálico/efectos de los fármacos , Núcleo Coclear/fisiología , Fenómenos Electrofisiológicos , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Hidantoínas/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Piridinas/farmacología
18.
Biochemistry ; 59(18): 1728-1736, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32302101

RESUMEN

The interplay between nucleotide excision repair (NER) and base excision repair (BER) of nonbulky, oxidatively generated DNA lesions has long been a subject of significant interest. The hydantoin oxidation products of 8-oxoguanine, spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh), are substrates of both BER and NER in HeLa cell extracts and human cells [Shafirovich, V., et al. (2019) Chem. Res. Toxicol. 32, 753-761]. The primary factor that recognizes DNA lesions is the DNA damage-sensing factor XPC-RAD23B (XPC), while the glycosylase NEIL1 is known to remove Gh and Sp lesions from double-stranded DNA. It is shown here that in aqueous solutions containing nanomolar concentrations of proteins, XPC and NEIL1 compete for binding to 147-mer oligonucleotide duplexes that contain single Gh or Sp lesions under conditions of [protein] ≫ [DNA], thus inhibiting the rate of BER catalyzed by NEIL1. The non-covalently bound NEIL1 molecules can be displaced by XPC at concentration ratios R = [XPC]/[NEIL1] > 0.2, while full displacement of NEIL1 is observed at R ≥ 0.5. In the absence of XPC and under single-turnover conditions, only the burst phase is observable. However, with a progressive increase in the XPC concentration, the amplitude of the burst phase decreases gradually, and a slower time-dependent phase of incision product formation manifests itself with rate constants of 3.0 × 10-3 s-1 (Gh) and 0.90 × 10-3 s-1 (Sp). These slow kinetics are attributed to the dissociation of XPC-DNA complexes that allow for the rebinding of NEIL1 to the temporarily exposed Gh or Sp lesions, and the incisions observed under these steady-state conditions.


Asunto(s)
ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Hidantoínas/metabolismo , Unión Competitiva , ADN/efectos de los fármacos , Reparación del ADN , Humanos , Hidantoínas/farmacología , Conformación Molecular , Oxidación-Reducción
19.
J Org Chem ; 85(5): 3160-3173, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31944122

RESUMEN

An attractive strategy for C-Se bond formation by Ullmann-type copper(I)-promoted cross-coupling is developed. A wide range of aryliodides reacts with various disubstituted 2-selenohydantoins under mild conditions and provides Se-arylated imidazolines in moderate to high yields. Computational mechanistic studies show the oxidative addition/intramolecular reductive elimination likely to be the lowest-energy pathway. Cytotoxic activity of all 43 reaction products has been tested in vitro against MCF7 and A549 cancer cell lines with VA13 and MCF10a control cells.


Asunto(s)
Hidantoínas , Imidazolinas , Catálisis , Cobre , Hidantoínas/farmacología
20.
Bioorg Med Chem Lett ; 30(16): 127356, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631553

RESUMEN

Misfolding and aggregation of immunoglobulin light chains (LCs) leads to the degeneration of post-mitotic tissue in the disease immunoglobulin LC amyloidosis (AL). We previously reported the discovery of small molecule kinetic stabilizers of the native dimeric structure of full-length LCs, which slow or stop the LC aggregation cascade at the outset. A predominant structural category of kinetic stabilizers emerging from the high-throughput screen are coumarins substituted at the 7-position, which bind at the interface between the two variable domains of the light chain dimer. Here, we report the binding mode of another, more polar, LC kinetic stabilizer chemotype, 3,5-substituted hydantoins. Computational docking, solution nuclear magnetic resonance experiments, and x-ray crystallography show that the aromatic substructure emerging from the hydantoin 3-position occupies the same LC binding site as the coumarin ring. Notably, the hydantoin ring extends beyond the binding site mapped out by the coumarin hits. The hydantoin ring makes hydrogen bonds with both LC monomers simultaneously. The alkyl substructure at the hydantoin 5-position partially occupies a novel binding pocket proximal to the pocket occupied by the coumarin substructure. Overall, the hydantoin structural data suggest that a larger area of the LC variable-domain-variable-domain dimer interface is amenable to small molecule binding than previously demonstrated, which should facilitate development of more potent full-length LC kinetic stabilizers.


Asunto(s)
Hidantoínas/farmacología , Cadenas Ligeras de Inmunoglobulina/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Hidantoínas/química , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Estructura Molecular , Estabilidad Proteica/efectos de los fármacos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA