Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Nature ; 556(7699): 113-117, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29590092

RESUMEN

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/metabolismo , Alquilación , Animales , Carboxiliasas , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biosíntesis , Citocinas/inmunología , Retroalimentación Fisiológica , Femenino , Células HEK293 , Humanos , Hidroliasas/biosíntesis , Interferón beta/inmunología , Interferón beta/farmacología , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Proteínas/metabolismo , Ratas , Ratas Wistar , Succinatos/química
2.
Int Microbiol ; 23(2): 225-232, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31410668

RESUMEN

An N2-fixing bacterium, Ensifer meliloti CGMCC 7333, has been reported to degrade the cyano-containing neonicotinoid insecticides acetamiprid and thiacloprid using a nitrile hydratase (NHase). Here, the bioconversion of indole-3-acetonitrile (IAN) by E. meliloti, Escherichia coli overexpressing the NHase, and purified recombinant NHase was studied. E. meliloti converted IAN to the product indole-3-acetamide (IAM), and no nitrilase or amidase activities, or indole-3-acetic acid formation, were detected. Whole cells of E. meliloti converted IAN from the initial content of 6.41 to 0.06 mmol/L in 48 h. Meanwhile, forming 5.99 mmol/L IAM, the molar conversion of 94.4%. E. coli Rosetta overexpressing the NHase from E. meliloti produced 4.46 mmol/L IAM in 5 min, with a conversion rate of 91.1%. The purified NHase had a Vmax for IAN conversion of 294.28 U/mg. Adding 2% and 10% (v/v) dichloromethane to 50 mmol/L sodium phosphate buffer containing 200 mg/L IAN increased the NHase activity by 26.8% and 11.5% respectively, while the addition of 20% hexane had no inhibitory effect on IAN bioconversion. E. meliloti shows high NHase activity without forming a byproduct carboxylic acid, and its tolerance of dichloromethane and hexane increases its potential for application in the green biosynthesis of high-value amide compounds.


Asunto(s)
Hidroliasas/biosíntesis , Indoles/metabolismo , Rhizobiaceae/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Contaminantes Ambientales/metabolismo , Escherichia coli/metabolismo , Hidroliasas/metabolismo , Ácidos Indolacéticos/metabolismo , Insecticidas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo
3.
J Bacteriol ; 201(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30745367

RESUMEN

Mycobacterium tuberculosis utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by Mycobacterium tuberculosis produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids. In M. smegmatis, methylcitrate synthase, methylcitrate dehydratase, and methylisocitrate lyase involved in the methylcitrate cycle are encoded by prpC, prpD, and prpB, respectively, in operon prpDBC In this study, we found that the nitrogen regulator GlnR directly binds to the promoter region of the prpDBC operon and inhibits its transcription. The binding motif of GlnR was identified by bioinformatic analysis and validated using DNase I footprinting and electrophoretic mobility shift assays. The GlnR-binding motif is separated by a 164-bp sequence from the binding site of PrpR, a pathway-specific transcriptional activator of methylcitrate cycle, but the binding affinity of GlnR to prpDBC is much stronger than that of PrpR. Deletion of glnR resulted in faster growth in propionate or cholesterol medium compared with the wild-type strain. The ΔglnR mutant strain also showed a higher survival rate in macrophages. These results illustrated that the nitrogen regulator GlnR regulates the methylcitrate cycle through direct repression of the transcription of the prpDBC operon. This finding not only suggests an unprecedented link between nitrogen metabolism and the methylcitrate pathway but also reveals a potential target for controlling the growth of pathogenic mycobacteria.IMPORTANCE The success of mycobacteria survival in macrophage depends on its ability to assimilate fatty acids and cholesterol from the host. The cholesterol and fatty acids are catabolized via ß-oxidation to generate propionyl coenzyme A (propionyl-CoA), which is then primarily metabolized via the methylcitrate cycle. Here, we found a typical GlnR binding box in the prp operon, and the affinity is much stronger than that of PrpR, a transcriptional activator of methylcitrate cycle. Furthermore, GlnR repressed the transcription of the prp operon. Deletion of glnR significantly enhanced the growth of Mycobacterium tuberculosis in propionate or cholesterol medium, as well as viability in macrophages. These findings provide new insights into the regulatory mechanisms underlying the cross talk of nitrogen and carbon metabolisms in mycobacteria.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Citratos/metabolismo , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas/genética , Mycobacterium smegmatis/enzimología , Proteínas Represoras/metabolismo , Transcripción Genética , Sitios de Unión , Liasas de Carbono-Carbono/biosíntesis , Citrato (si)-Sintasa/biosíntesis , ADN Bacteriano/metabolismo , Eliminación de Gen , Hidroliasas/biosíntesis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Operón , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-28320722

RESUMEN

This study further evaluated the in vitro and in vivo anti-Helicobacter pylori activities and potential underlying mechanism of patchouli alcohol (PA), a tricyclic sesquiterpene. In the in vitro assay, the capacities of PA to inhibit and kill H. pylori were tested on three standard strains at different pH values and on 12 clinical isolates. The effects of PA on H. pylori adhesion (and its alpA, alpB, and babA genes), motility (and its flaA and flaB genes), ultrastructure, and flagellation were investigated. Moreover, the H. pylori resistance to and postantibiotic effect (PAE) of PA were determined. Furthermore, the in vivo effects of PA on H. pylori eradication and gastritis were examined. Results showed that MICs of PA against three standard strains (pH 5.3 to 9) and 12 clinical isolates were 25 to 75 and 12.5 to 50 µg/ml, respectively. The killing kinetics of PA were time and concentration dependent, and its minimal bactericidal concentrations (MBCs) were 25 to 75 µg/ml. In addition, H. pylori adhesion, motility, ultrastructure, and flagellation were significantly suppressed. PA also remarkably inhibited the expression of adhesion genes (alpA and alpB) and motility genes (flaA and flaB). Furthermore, PA treatment caused a longer PAE and less bacterial resistance than clarithromycin and metronidazole. The in vivo study showed that PA can effectively eradicate H. pylori, inhibit gastritis, and suppress the expression of inflammatory mediators (COX-2, interleukin 1ß, tumor necrosis factor alpha, and inducible nitric oxide synthase [iNOS]). In conclusion, PA can efficiently kill H. pylori, interfere with its infection process, and attenuate gastritis with less bacterial resistance, making it a potential candidate for new drug development.


Asunto(s)
Antibacterianos/farmacología , Gastritis/tratamiento farmacológico , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Sesquiterpenos/farmacología , Adhesinas Bacterianas/biosíntesis , Adhesinas Bacterianas/genética , Animales , Adhesión Bacteriana/efectos de los fármacos , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Claritromicina/farmacología , Femenino , Flagelina/biosíntesis , Flagelina/genética , Gastritis/microbiología , Expresión Génica/efectos de los fármacos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/aislamiento & purificación , Humanos , Hidroliasas/biosíntesis , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Masculino , Metronidazol/farmacología , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Oxidorreductasas/biosíntesis , Oxidorreductasas/genética
5.
Proc Natl Acad Sci U S A ; 111(32): 11679-84, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071217

RESUMEN

Mirror-image proteins (composed of D-amino acids) are promising therapeutic agents and drug discovery tools, but as synthesis of larger D-proteins becomes feasible, a major anticipated challenge is the folding of these proteins into their active conformations. In vivo, many large and/or complex proteins require chaperones like GroEL/ES to prevent misfolding and produce functional protein. The ability of chaperones to fold D-proteins is unknown. Here we examine the ability of GroEL/ES to fold a synthetic d-protein. We report the total chemical synthesis of a 312-residue GroEL/ES-dependent protein, DapA, in both L- and D-chiralities, the longest fully synthetic proteins yet reported. Impressively, GroEL/ES folds both L- and D-DapA. This work extends the limits of chemical protein synthesis, reveals ambidextrous GroEL/ES folding activity, and provides a valuable tool to fold d-proteins for drug development and mirror-image synthetic biology applications.


Asunto(s)
Enzimas/biosíntesis , Enzimas/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Aminoácidos/química , Fenómenos Biofísicos , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Enzimas/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroliasas/biosíntesis , Hidroliasas/química , Hidroliasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Ácidos Picolínicos/metabolismo , Estructura Cuaternaria de Proteína , Estereoisomerismo
6.
J Biol Chem ; 290(20): 12664-75, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25847245

RESUMEN

Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.


Asunto(s)
Duplicación de Gen/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Hidroliasas/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/enzimología , Cianamida/metabolismo , Cianamida/farmacología , Inducción Enzimática/efectos de los fármacos , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidroliasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Urea/metabolismo
7.
J Bacteriol ; 197(24): 3797-811, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416833

RESUMEN

UNLABELLED: Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE: Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many bacteria, adaptation to starvation relies partly on the stringent response. M. tuberculosis's unique outer membrane layer, the mycomembrane, is crucial for its viability and virulence. Despite its being the target of the major antituberculosis drugs, only scattered information exists on how the genes required for biosynthesis of the mycomembrane are expressed and regulated during starvation. This work has addressed this issue as a step toward the identification of new targets in the fight against M. tuberculosis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Hidroliasas/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/fisiología , Regulación hacia Abajo , Ácido Graso Sintasas/biosíntesis , Ácido Graso Sintasas/genética , Hidroliasas/biosíntesis , Mycobacterium tuberculosis/genética , Biosíntesis de Proteínas/genética , Inanición
8.
Proteins ; 82(9): 1869-83, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24677246

RESUMEN

Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Dominio Catalítico , Hidroliasas/ultraestructura , Agrobacterium tumefaciens/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cristalografía por Rayos X , Hidroliasas/biosíntesis , Hidroliasas/genética , Tumores de Planta/microbiología , Estructura Secundaria de Proteína , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
Ann Oncol ; 25(10): 2080-2086, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25015333

RESUMEN

BACKGROUND: At diagnosis, identification of reliable biological indicators of prognosis to allow stratification of patients according to different risks is an important but still unresolved aspect in the treatment of Ewing sarcoma (EWS) patients. This study aimed to explore the role of miR-34A expression on prognosis of EWS patients. PATIENTS AND METHODS: Specimens from 109 patients with non-metastatic EWS treated at the Rizzoli Institute with neoadjuvant chemotherapy (protocols ISG/SSGIII, EW-1, EW-2, EW-REN2, EW-REN3, EW-PILOT) and 17 metastases were studied. Sixty-eight patients (62%) remained disease-free and 41 (38%) relapsed (median follow-up: 67 months, range 9-241 months). Expression of miR-34a and of some of its targets (cyclin D1, bcl-2, SIRT1 and YY1) was evaluated by qRT-PCR using TaqMan MicroRNA Assays and/or by immunohistochemistry on tissue microarrays from the same patients. RESULTS: High expression of miR-34a in localized tumors was significantly related to better event-free and overall survival (P = 0.004). Relevance of miR-34a was confirmed by using different calibrators (normal mesenchymal stem cells and different normal tissues). By multivariate Cox regression analysis, low miR-34a expression as well as nontotal necrosis and high levels of lactate dehydrogenase were all confirmed as independent risk factors associated with poor outcome. Expression of miR-34a was lower in metastases than in primary tumors. It inversely correlated with expression of cyclin D1 and Ki-67. CONCLUSIONS: By demonstrating its relationship with clinical outcome, we propose evaluation of miR-34a at diagnosis of EWS patients to allow early risk stratification. Validation of these results would nonetheless ultimately need a prospective assessment.


Asunto(s)
Ciclina D1/biosíntesis , Antígeno Ki-67/biosíntesis , MicroARNs/biosíntesis , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Adulto , Anciano de 80 o más Años , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroliasas/biosíntesis , Masculino , MicroARNs/genética , Persona de Mediana Edad , Terapia Neoadyuvante , Metástasis de la Neoplasia , Pronóstico , Sarcoma de Ewing/patología , Resultado del Tratamiento
10.
Metab Eng ; 23: 136-44, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24685653

RESUMEN

Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used.


Asunto(s)
Lavandula , Monoterpenos/metabolismo , Hojas de la Planta , Plantas Modificadas Genéticamente , Monoterpenos Acíclicos , Clarkia/enzimología , Clarkia/genética , Eritritol/análogos & derivados , Eritritol/genética , Eritritol/metabolismo , Hidroliasas/biosíntesis , Hidroliasas/genética , Lavandula/genética , Lavandula/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo , Transgenes
11.
Appl Microbiol Biotechnol ; 98(7): 2955-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24352733

RESUMEN

Shikimate and 3-dehydroshikimate are useful chemical intermediates for the synthesis of various compounds, including the antiviral drug oseltamivir. Here, we show an almost stoichiometric biotransformation of quinate to 3-dehydroshikimate by an engineered Gluconobacter oxydans strain. Even under pH control, 3-dehydroshikimate was barely detected during the growth of the wild-type G. oxydans strain NBRC3244 on the medium containing quinate, suggesting that the activity of 3-dehydroquinate dehydratase (DHQase) is the rate-limiting step. To identify the gene encoding G. oxydans DHQase, we overexpressed the gox0437 gene from the G. oxydans strain ATCC621H, which is homologous to the aroQ gene for type II DHQase, in Escherichia coli and detected high DHQase activity in cell-free extracts. We identified the aroQ gene in a draft genome sequence of G. oxydans NBRC3244 and constructed G. oxydans NBRC3244 strains harboring plasmids containing aroQ and different types of promoters. All recombinant G. oxydans strains produced a significant amount of 3-dehydroshikimate from quinate, and differences between promoters affected 3-dehydroshikimate production levels with little statistical significance. By using the recombinant NBRC3244 strain harboring aroQ driven by the lac promoter, a sequential pH adjustment for each step of the biotransformation was determined to be crucial because 3-dehydroshikimate production was enhanced. Under optimal conditions with a shift in pH, the strain could efficiently produce a nearly equimolar amount of 3-dehydroshikimate from quinate. In the present study, one of the important steps to convert quinate to shikimate by fermenting G. oxydans cells was investigated.


Asunto(s)
Expresión Génica , Gluconobacter oxydans/enzimología , Gluconobacter oxydans/metabolismo , Hidroliasas/biosíntesis , Ingeniería Metabólica/métodos , Ácido Quínico/metabolismo , Ácido Shikímico/análogos & derivados , Biotransformación , Medios de Cultivo/química , Dosificación de Gen , Gluconobacter oxydans/genética , Hidroliasas/genética , Concentración de Iones de Hidrógeno , Plásmidos , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Ácido Shikímico/metabolismo
12.
Biotechnol Lett ; 35(9): 1419-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23609234

RESUMEN

A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans, cloned and expressed in Escherichia coli, gave an enzyme that efficiently hydrated 3-cyanopyridine to nicotinamide with high thermal stability. We have now found that adding Co(2+) at 0.1 mM to LB medium was essential for production of an active enzyme. However, ≥0.3 mM Co(2+) inhibited the growth of host cells in LB medium and decreased the production of the recombinant NHase. Furthermore, ß-mercaptoethanol promoted regeneration of the Co(2+)-defective apoenzyme in vitro possibly by breaking a key disulfide bond thereby promoting the incorporation of Co(2+) into the apoenzyme.


Asunto(s)
Cationes Bivalentes/metabolismo , Cobalto/metabolismo , Medios de Cultivo/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Hidroliasas/biosíntesis , Alphaproteobacteria/enzimología , Alphaproteobacteria/genética , Clonación Molecular , Escherichia coli/crecimiento & desarrollo , Expresión Génica/efectos de los fármacos , Niacinamida/metabolismo , Piridinas/metabolismo , Proteínas Recombinantes/biosíntesis
13.
Biotechnol Lett ; 35(9): 1487-93, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23690042

RESUMEN

Recombinant Escherichia coli, expressing the oleate hydratase gene of Stenotrophomonas maltophilia, was permeabilized by sequential treatments with 0.125 M NaCl and 2 mM EDTA. The optimal conditions for the production of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid from α-linolenic acid by permeabilized cells were 35 °C and pH 7.0 with 0.1 % (v/v) Tween 40, 50 g permeabilized cells l(-1), and 17.5 g α-linolenic acid l(-1). Under these conditions, permeabilized cells produced 14.3 g 10-hydroxy-12,15(Z,Z)-octadecadienoic acid l(-1) after 18 h, with a conversion yield of 82 % (g/g) and a volumetric productivity of 0.79 g l(-1) h(-1). These values were 17 and 168 % higher than those obtained by nonpermeabilized cells, respectively. The concentration, yield, and productivity of 10-hydroxy-12,15(Z,Z)-octadecadienoic acid obtained by permeabilized cells are the highest reported thus far.


Asunto(s)
Escherichia coli/metabolismo , Ácidos Grasos Insaturados/metabolismo , Hidroliasas/biosíntesis , Stenotrophomonas maltophilia/enzimología , Ácido alfa-Linolénico/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Hidroliasas/genética , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Stenotrophomonas maltophilia/genética , Temperatura
14.
Bioprocess Biosyst Eng ; 36(5): 613-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22945851

RESUMEN

Alcaligenes sp. MTCC 10674 was isolated as acetone cyanohydrin hydrolyzing bacterium from soil of orchid gardens of Himachal Pradesh. Acetone cyanohydrin hydrolyzing activity of this organism comprised nitrile hydratase and amidase activities. It exhibited higher substrate specificity towards aliphatic hydroxynitrile (acetone cyanohydrin) in comparison to arylaliphatic hydroxynitrile. Isobutyronitrile (40 mM) acted as a carbon source as well as inducer for growth of Alcaligenes sp. MTCC 10674 and expression of acetone cyanohydrin hydrolyzing activity. Optimization of culture condition using response surface methodology increased acetone cyanohydrin hydrolyzing activity by 1.3-fold, while inducer mediation approach increased the activity by 1.2-fold. The half life of this enzyme was 25 h at 15 °C. V max and K m value for acetone cyanohydrin hydrolyzing enzyme was 0.71 µmol mg(-1) min(-1) and 14.3 mM, when acetone cyanohydrin was used as substrate. Acetone cyanohydrin hydrolyzing enzyme encountered product inhibition and IC50 and K i value were calculated to be 28 and 10.2 mM, respectively, when product α-hydroxyisobutyric acid was added in the reaction. Under optimized reaction conditions at 40 ml fed batch scale, 3 mg dcw ml (-) resting cells of Alcaligenes sp. MTCC 10674 fully converted 0.33 M acetone cyanohydrin into α-hydroxyisobutyric acid (1.02 g) in 6 h 40 min. The characterization of acetone cyanohydrins hydrolyzing activity revealed that it comprises bienzymatic nitrile hydrolyzing system, i.e. nitrile hydratase and amidase for the production of α-hydroxyisobutyric acid from acetone cyanohydrin and maximum 70 % yield is being reported for the first time.


Asunto(s)
Alcaligenes/enzimología , Amidohidrolasas/biosíntesis , Proteínas Bacterianas/biosíntesis , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hidroliasas/biosíntesis , Hidroxibutiratos/metabolismo , Nitrilos/farmacología , Alcaligenes/crecimiento & desarrollo , Alcaligenes/aislamiento & purificación , Microbiología del Suelo
15.
Bioprocess Biosyst Eng ; 36(6): 749-56, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23404100

RESUMEN

Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.


Asunto(s)
Carbohidrato Epimerasas , Corynebacterium glutamicum , Proteínas de Escherichia coli , Escherichia coli , Glucosa/metabolismo , Guanosina Difosfato Fucosa/biosíntesis , Hidroliasas , Cetona Oxidorreductasas , Manosa/metabolismo , Complejos Multienzimáticos , Carbohidrato Epimerasas/biosíntesis , Carbohidrato Epimerasas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Expresión Génica , Glucosa/farmacología , Guanosina Difosfato Fucosa/genética , Hidroliasas/biosíntesis , Hidroliasas/genética , Cetona Oxidorreductasas/biosíntesis , Cetona Oxidorreductasas/genética , Manosa/farmacología , Ingeniería Metabólica/métodos , Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Edulcorantes/metabolismo , Edulcorantes/farmacología
16.
Biochem Biophys Res Commun ; 424(3): 365-70, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22713452

RESUMEN

We report herein the functional expression of an Fe-type nitrile hydratase (NHase) without the co-expression of an activator protein or the Escherichia coli chaperone proteins GroES/EL. Soluble protein was obtained when the α- and ß-subunit genes of the Fe-type NHase Comamonas testosteroni Ni1 (CtNHase) were synthesized with optimized E. coli codon usage and co-expressed. As a control, the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase) was expressed with (ReNHase(+Act)) and without (ReNHase(-Act)) its activator protein, establishing that expression of a fully functional, metallated ReNHase enzyme requires the co-expression of its activator protein, similar to all other Fe-type NHase enzymes reported to date, whereas the CtNHase does not. The X-ray crystal structure of CtNHase was determined to 2.4Å resolution revealing an αß heterodimer, similar to other Fe-type NHase enzymes, except for two important differences. First, two His residues reside in the CtNHase active site that are not observed in other Fe-type NHase enzymes and second, the active site Fe(III) ion resides at the bottom of a wide solvent exposed channel. The solvent exposed active site, along with the two active site histidine residues, are hypothesized to play a role in iron incorporation in the absence of an activator protein.


Asunto(s)
Comamonas testosteroni/enzimología , Hidroliasas/biosíntesis , Proteínas Recombinantes/biosíntesis , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Histidina/química , Hidroliasas/química , Hidroliasas/genética , Hierro/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodococcus equi/enzimología
17.
Electrophoresis ; 33(15): 2365-73, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22887157

RESUMEN

Nutritional quality of human and animal foodstuffs is determined by the content of essential amino acids. Barley is the fourth most important cereal of the world and the second most important cereal grown in the Czech Republic. Cereal grains such as barley contain insufficient levels of some essential amino acids, especially lysine. Dihydrodipicolinate synthase is the key enzyme involved in the regulatory step for lysine biosynthesis. Two constructs pBract214::sTPdapA and pBract214::mdapA containing the dapA gene from Escherichia coli coding for the bacterial dihydrodipicolinate synthase were used for transformation of barley. An Agrobacterium-mediated technique was used for transformation of immature embryos of spring barley cv. Golden Promise. Transgenic barley plants of the T0 and T1 generations were evaluated by PCR, real-time PCR, gel electrophoresis, and Western blot. Amino acid content was analyzed by HPLC after HCl hydrolysis. The lysine content in leaves of the T1 generation plant no. 5/5 was 50% higher than in wild-type plants; the lysine content in seeds of T2 generation plant no. 5/16 was 30% higher than in wild-type seeds of spring barley cv. Golden Promise.


Asunto(s)
Hordeum/enzimología , Hordeum/genética , Hidroliasas/biosíntesis , Hidroliasas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Aminoácidos/análisis , Aminoácidos/metabolismo , Western Blotting , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hordeum/química , Hidroliasas/metabolismo , Hidrólisis , Lisina/análisis , Lisina/metabolismo , Hojas de la Planta/química , Plantas Modificadas Genéticamente/química , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Ind Microbiol Biotechnol ; 39(3): 409-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21892773

RESUMEN

In this work, a mild, efficient bioconversion of 2,2-dimethylcyclopropanecarbonitrile (DMCPCN) to 2,2-dimethylcyclopropanecarboxamide (DMCPCA) in distilled water system was developed. The isolate FW815 was screened using the enrichment culture technique, displaying strong DMCPCN hydratase activity, and was identified as Rhodococcus boritolerans based on morphological, physiological, biochemical tests and 16S rRNA gene sequencing. Cultivation outcomes indicated that R. boritolerans FW815 was a neutrophile, with a growth optimum of 28-32°C; its DMCPCN hydratase belonged to the Fe-type family, and was most active at 38-42°C, pH 7.0, with maximal activity of 4.51 × 10(4) U g(-1) DCW. R. boritolerans FW815 was found to be DMCPCA amidase-negative, eliminating the contamination of dimethylcyclopropanecarboxylic acid. Moreover, it displayed high activity and acceptable reusability in the non-buffered distilled water system, comparable to those in pH 7.0 phosphate buffer (50.0 mmol l(-1)).


Asunto(s)
Proteínas Bacterianas/biosíntesis , Hidroliasas/biosíntesis , Rhodococcus/fisiología , Amidohidrolasas , Biocatálisis , Carbono/metabolismo , Técnicas de Cultivo de Célula , Fermentación , Concentración de Iones de Hidrógeno , Nitrógeno/metabolismo , ARN Ribosómico 16S , Rhodococcus/genética , Rhodococcus/crecimiento & desarrollo , Rhodococcus/metabolismo
19.
Bioprocess Biosyst Eng ; 35(9): 1467-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22543927

RESUMEN

Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Butanoles/metabolismo , Carboxiliasas/biosíntesis , Ingeniería Metabólica , Saccharomyces cerevisiae/enzimología , Valina/biosíntesis , 2-Acetolactato Mutasa/biosíntesis , 2-Acetolactato Mutasa/genética , Acetolactato Sintasa/biosíntesis , Acetolactato Sintasa/genética , Proteínas Bacterianas/genética , Carboxiliasas/genética , Hidroliasas/biosíntesis , Hidroliasas/genética , Lactococcus lactis/enzimología , Lactococcus lactis/genética , Saccharomyces cerevisiae/genética , Valina/genética
20.
Front Cell Infect Microbiol ; 12: 862582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586249

RESUMEN

Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.


Asunto(s)
Hidroliasas , Macrófagos , Proteínas de la Membrana , Mycobacterium tuberculosis , Receptor de Interferón alfa y beta , Receptor Toll-Like 2 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Inducción Enzimática , Hidroliasas/biosíntesis , Hidroliasas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Ratones , Mycobacterium tuberculosis/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Fagocitosis , Receptor de Interferón alfa y beta/metabolismo , Receptor Toll-Like 2/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA