Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.252
Filtrar
1.
FASEB J ; 37(1): e22708, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562544

RESUMEN

Inflammatory bowel disease (IBD) is a chronic persistent intestinal disorder, with ulcerative colitis and Crohn's disease being the most common. However, the physio-pathological development of IBD is still unknown. Therefore, research on the etiology and treatment of IBD has been conducted using a variety of approaches. Short-chain fatty acids such as 3-hydroxybutyrate (3-HB) are known to have various physiological activities. In particular, the production of 3-HB by the intestinal microflora is associated with the suppression of various inflammatory diseases. In this study, we investigated whether poly-D-3-hydroxybutyric acid (PHB), a polyester of 3-HB, is degraded by intestinal microbiota and works as a slow-release agent of 3-HB. Further, we examined whether PHB suppresses the pathogenesis of IBD models. As long as a PHB diet increased 3-HB concentrations in the feces and blood, PHB suppressed weight loss and histological inflammation in a dextran sulfate sodium-induced IBD model. Furthermore, PHB increased the accumulation of regulatory T cells in the rectum without affecting T cells in the spleen. These results indicate that PHB has potential applications in treating diseases related to the intestinal microbiota as a sustained 3-HB donor. We show for the first time that biodegradable polyester exhibits intestinal bacteria-mediated bioactivity toward IBD. The use of bioplastics, which are essential materials for sustainable social development, represents a novel approach to diseases related to dysbiosis, including IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Linfocitos T Reguladores , Humanos , Ácido 3-Hidroxibutírico/farmacología , Ácido 3-Hidroxibutírico/metabolismo , Linfocitos T Reguladores/metabolismo , Regulación hacia Arriba , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Hidroxibutiratos/farmacología , Poliésteres
2.
Mol Biol Rep ; 51(1): 572, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722394

RESUMEN

BACKGROUND: Alzheimer's disease is a leading neurological disorder that gradually impairs memory and cognitive abilities, ultimately leading to the inability to perform even basic daily tasks. Teriflunomide is known to preserve neuronal activity and protect mitochondria in the brain slices exposed to oxidative stress. The current research was undertaken to investigate the teriflunomide's cognitive rescuing abilities against scopolamine-induced comorbid cognitive impairment and its influence on phosphatidylinositol-3-kinase (PI3K) inhibition-mediated behavior alteration in mice. METHODS: Swiss albino mice were divided into 7 groups; vehicle control, scopolamine, donepezil + scopolamine, teriflunomide (10 mg/kg) + scopolamine; teriflunomide (20 mg/kg) + scopolamine, LY294002 and LY294002 + teriflunomide (20 mg/kg). Mice underwent a nine-day protocol, receiving scopolamine injections (2 mg/kg) for the final three days to induce cognitive impairment. Donepezil, teriflunomide, and LY294002 treatments were given continuously for 9 days. MWM, Y-maze, OFT and rota-rod tests were conducted on days 7 and 9. On the last day, blood samples were collected for serum TNF-α analysis, after which the mice were sacrificed, and brain samples were harvested for oxidative stress analysis. RESULTS: Scopolamine administration for three consecutive days increased the time required to reach the platform in the MWM test, whereas, reduced the percentage of spontaneous alternations in the Y-maze, number of square crossing in OFT and retention time in the rota-rod test. In biochemical analysis, scopolamine downregulated the brain GSH level, whereas it upregulated the brain TBARS and serum TNF-α levels. Teriflunomide treatment effectively mitigated all the behavioral and biochemical alterations induced by scopolamine. Furthermore, LY294002 administration reduced the memory function and GSH level, whereas, uplifted the serum TNF-α levels. Teriflunomide abrogated the memory-impairing, GSH-lowering, and TNF-α-increasing effects of LY294002. CONCLUSION: Our results delineate that the improvement in memory, locomotion, and motor coordination might be attributed to the oxidative and inflammatory stress inhibitory potential of teriflunomide. Moreover, PI3K inhibition-induced memory impairment might be attributed to reduced GSH levels and increased TNF-α levels.


Asunto(s)
Disfunción Cognitiva , Crotonatos , Hidroxibutiratos , Nitrilos , Estrés Oxidativo , Toluidinas , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Cromonas/farmacología , Cognición/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Crotonatos/farmacología , Modelos Animales de Enfermedad , Donepezilo/farmacología , Hidroxibutiratos/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Morfolinas/farmacología , Nitrilos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Escopolamina/farmacología , Toluidinas/farmacología
3.
Biophys J ; 122(3): 460-469, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36617191

RESUMEN

Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.


Asunto(s)
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Poliésteres/química , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Temperatura , Calor , Saccharomyces cerevisiae
4.
J Neuroinflammation ; 20(1): 7, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611185

RESUMEN

BACKGROUND: Promotion of myelin repair in the context of demyelinating diseases such as multiple sclerosis (MS) still represents a clinical unmet need, given that this disease is not only characterized by autoimmune activities but also by impaired regeneration processes. Hence, this relates to replacement of lost oligodendrocytes and myelin sheaths-the primary targets of autoimmune attacks. Endogenous remyelination is mainly mediated via activation and differentiation of resident oligodendroglial precursor cells (OPCs), whereas its efficiency remains limited and declines with disease progression and aging. Teriflunomide has been approved as a first-line treatment for relapsing remitting MS. Beyond its role in acting via inhibition of de novo pyrimidine synthesis leading to a cytostatic effect on proliferating lymphocyte subsets, this study aims to uncover its potential to foster myelin repair. METHODS: Within the cuprizone mediated de-/remyelination model teriflunomide dependent effects on oligodendroglial homeostasis and maturation, related to cellular processes important for myelin repair were analyzed in vivo. Teriflunomide administration was performed either as pulse or continuously and markers specific for oligodendroglial maturation and mitochondrial integrity were examined by means of gene expression and immunohistochemical analyses. In addition, axon myelination was determined using electron microscopy. RESULTS: Both pulse and constant teriflunomide treatment efficiently boosted myelin repair activities in this model, leading to accelerated generation of oligodendrocytes and restoration of myelin sheaths. Moreover, teriflunomide restored mitochondrial integrity within oligodendroglial cells. CONCLUSIONS: The link between de novo pyrimidine synthesis inhibition, oligodendroglial rescue, and maintenance of mitochondrial homeostasis appears as a key for successful myelin repair and hence for protection of axons from degeneration.


Asunto(s)
Vaina de Mielina , Oligodendroglía , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Crotonatos/farmacología , Crotonatos/uso terapéutico , Hidroxibutiratos/metabolismo , Hidroxibutiratos/farmacología , Diferenciación Celular
5.
J Virol ; 96(7): e0217321, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35266805

RESUMEN

The Bunyavirales contain many important human pathogens that lack an antiviral therapy. The cap-snatching endonuclease (EN) of segmented negative-strand RNA viruses is an attractive target for broad-spectrum antivirals due to its essential role in initiating viral transcription. L-742,001, a previously reported diketo acid inhibitor against influenza virus EN, demonstrated potent EN inhibition and antiviral activity on various bunyaviruses. However, the precise inhibitory mechanism of the compound is still poorly understood. We recently characterized a highly active EN from Ebinur Lake virus (EBIV), a newly identified member of the Orthobunyavirus genus, and obtained its high-resolution structures, paving the way for structure-guided inhibitor development. Here, nine L-742,001 derivatives were designed and synthesized de novo, and their structure-activity relationship with EBIV EN was studied. In vitro biochemical data showed that the compounds inhibited the EBIV EN activity with different levels and could be divided into three categories. Five representative compounds were selected for further cell-based antiviral assay, and the results largely agreed with those of the EN assays. Furthermore, the precise binding modes of L-742,001 and its derivatives in EN were revealed by determining the high-resolution crystal structures of EN-inhibitor complexes, which suggested that the p-chlorobenzene is essential for the inhibitory activity and the flexible phenyl has the greatest exploration potential. This study provides an important basis for the structure-based design and optimization of inhibitors targeting EN of segmented negative-strand RNA viruses. IMPORTANCE The Bunyavirales contain many important human pathogens such as Crimean-Congo hemorrhagic fever virus and Lassa virus that pose serious threats to public health; however, currently there are no specific antiviral drugs against these viruses. The diketo acid inhibitor L-742,001 is a potential drug as it inactivates the cap-snatching endonuclease (EN) encoded by bunyaviruses. Here, we designed and synthesized nine L-742,001 derivatives and assessed the structure-activity relationship using EN of the newly identified Ebinur Lake virus (EBIV) as a research model. Our results revealed that the p-chlorobenzene of this broad-spectrum EN inhibitor is crucial for the inhibitory activity and the flexible phenyl "arm" has the best potential for further optimization. As cap-snatching ENs are present not only in bunyaviruses but also in influenza viruses, our data provide important guidelines for the development of novel and more potent diketo acid-based antiviral drugs against those viruses.


Asunto(s)
Antivirales , Bunyaviridae , Endonucleasas , Proteínas Virales , Antivirales/síntesis química , Antivirales/farmacología , Antivirales/uso terapéutico , Bunyaviridae/enzimología , Infecciones por Bunyaviridae/tratamiento farmacológico , Infecciones por Bunyaviridae/virología , Endonucleasas/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Hidroxibutiratos/uso terapéutico , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Relación Estructura-Actividad , Proteínas Virales/metabolismo
6.
Fish Shellfish Immunol ; 132: 108444, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436688

RESUMEN

The bacterial storage compound poly-ß-hydroxybutyrate (PHB) is a potential bio-control agent in aquaculture. It has been reported that PHB benefit to the survival and growth, and improve their immunity of aquatic animals. However, the cellular and molecular regulation mechanisms of PHB in immunity process remain unclear. This study investigated the immune mechanism of hemocytes regulated by Halomonas-PHB (PHB-HM) and PHB monomer 3-HB. Red claw crayfish Cherax quadricarinatus was used as the experimental animal in cytological study. Fluorescence microscopy and flow cytometry (FCM) analysis indicated that PHB-HM labeled with fluorescein isothiocyanate (FITC) could be engulfed by granulocytes (Gs) and semi-granulocytes (SGs) upon in vitro incubation. Transmission electron microscopy (TEM) further showed the ongoing degradation of PHB granules inside Gs and SGs after the injection of PHB-HM into crayfish sinus, but phagocytosis of PHB-HM by hyalinocyte (H) was not observed. Therefore, Gs and SGs are considered the main effector cells of cellular immunity induced by PHB-HM, and SGs likely played a particular important role in this process. To study the biosafety and molecular mechanism of PHB monomer 3-HB, hemocyte viability and expression of the related genes were determined after being exposed to 0-1 mg/mL of 3-HB, and Vibrio parahaemolyticus (VP) was used as the pathogenic bacterium. The results confirmed that 3-HB had no toxic effect on hemocytes by means of cell viability assay, and supplementation with 1 mg/mL of 3-HB suppressed the growth rate of VP in TSB medium. Moreover, injection of 3-HB into the blood sinus of crayfish remarkably improved the phagocytic rate of Gs and SGs on VP. Furthermore, transcriptome assay was designed to illuminate the molecular mechanism of 3-HB regulation using red swamp crayfish Procambarus clarkii as experimental animals. RNA-seq analysis and qRT-PCR verification revealed that the microtubule and cytoskeleton-related genes were high expressed 3 h after 3-HB injection, indicating both genes might involve in building up the innate immunity. In summary, bacterial storage PHB could be phagocytosed by main effector blood cells and likely to be degraded within the cells. 3-HB helped the crayfish resistant to pathogens through improving phagocytosis, suppressing the growth of pathogenic bacteria, and increasing the expression of microtubule-related genes. The findings in this work provide cytological and molecular evidence which will facilitate the application of PHB and 3-HB as immune-control agents in farming of aquatic animals.


Asunto(s)
Enfermedades Intestinales , Vibriosis , Vibrio parahaemolyticus , Animales , Ácido 3-Hidroxibutírico , Astacoidea , Inmunidad Innata/genética , Hidroxibutiratos/farmacología , Poliésteres
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163469

RESUMEN

Teriflunomide (TFN) limits relapses in relapsing-remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.


Asunto(s)
Crotonatos/farmacología , Hipocampo/fisiología , Peróxido de Hidrógeno/efectos adversos , Hidroxibutiratos/farmacología , Mitocondrias/metabolismo , Nitrilos/farmacología , Estrés Oxidativo/efectos de los fármacos , Toluidinas/farmacología , Animales , Metabolismo Energético , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Consumo de Oxígeno
8.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234738

RESUMEN

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Asunto(s)
Polihidroxialcanoatos , Antioxidantes/farmacología , Hidroxibutiratos/farmacología , Metaloproteinasa 9 de la Matriz , Olea , Ácidos Pentanoicos , Fosfatos , Extractos Vegetales , Poliésteres/química , Polihidroxialcanoatos/química , Polifenoles , Estudios Prospectivos , Ingeniería de Tejidos , Andamios del Tejido/química , Cicatrización de Heridas
9.
J Gen Virol ; 102(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33416466

RESUMEN

Canine distemper virus (CDV) is the aetiological agent that causes canine distemper (CD). Currently, no antiviral drugs have been approved for CD treatment. A77 1726 is the active metabolite of the anti-rheumatoid arthritis (RA) drug leflunomide. It inhibits the activity of Janus kinases (JAKs) and dihydroorotate dehydrogenase (DHO-DHase), a rate-limiting enzyme in de novo pyrimidine nucleotide synthesis. A77 1726 also inhibits the activity of p70 S6 kinase (S6K1), a serine/threonine kinase that phosphorylates and activates carbamoyl-phosphate synthetase (CAD), a second rate-limiting enzyme in the de novo pathway of pyrimidine nucleotide synthesis. Our present study focuses on the ability of A77 1726 to inhibit CDV replication and its underlying mechanisms. Here we report that A77 1726 decreased the levels of the N and M proteins of CDV and lowered the virus titres in the conditioned media of CDV-infected Vero cells. CDV replication was not inhibited by Ruxolitinib (Rux), a JAK-specific inhibitor, but by brequinar sodium (BQR), a DHO-DHase-specific inhibitor, and PF-4708671, an S6K1-specific inhibitor. Addition of exogenous uridine, which restores intracellular pyrimidine nucleotide levels, blocked the antiviral activity of A77 1726, BQR and PF-4708671. A77 1726 and PF-4708671 inhibited the activity of S6K1 in CDV-infected Vero cells, as evidenced by the decreased levels of CAD and S6 phosphorylation. S6K1 knockdown suppressed CDV replication and enhanced the antiviral activity of A77 1726. These observations collectively suggest that the antiviral activity of A77 1726 against CDV is mediated by targeting pyrimidine nucleotide synthesis via inhibiting DHO-DHase activity and S6K1-mediated CAD activation.


Asunto(s)
Antivirales/farmacología , Crotonatos/farmacología , Virus del Moquillo Canino/efectos de los fármacos , Hidroxibutiratos/farmacología , Nitrilos/farmacología , Nucleótidos de Pirimidina/biosíntesis , Toluidinas/farmacología , Animales , Compuestos de Bifenilo/farmacología , Chlorocebus aethiops , Crotonatos/antagonistas & inhibidores , Medios de Cultivo Condicionados , Dihidroorotato Deshidrogenasa , Virus del Moquillo Canino/fisiología , Hidroxibutiratos/antagonistas & inhibidores , Imidazoles/farmacología , Quinasas Janus/antagonistas & inhibidores , Leflunamida/metabolismo , Nitrilos/antagonistas & inhibidores , Proteínas de la Nucleocápside/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Fosforilación , Piperazinas/farmacología , ARN Interferente Pequeño/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Toluidinas/antagonistas & inhibidores , Uridina/farmacología , Células Vero , Proteínas de la Matriz Viral/metabolismo , Replicación Viral/efectos de los fármacos
10.
Cell Physiol Biochem ; 55(1): 91-116, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33543862

RESUMEN

BACKGROUND/AIMS: Signaling and metabolic perturbations contribute to dysregulated skeletal muscle protein homeostasis and secondary sarcopenia in response to a number of cellular stressors including ethanol exposure. Using an innovative multiomics-based curating of unbiased data, we identified molecular and metabolic therapeutic targets and experimentally validated restoration of protein homeostasis in an ethanol-fed mouse model of liver disease. METHODS: Studies were performed in ethanol-treated differentiated C2C12 myotubes and physiological relevance established in an ethanol-fed mouse model of alcohol-related liver disease (mALD) or pair-fed control C57BL/6 mice. Transcriptome and proteome from ethanol treated-myotubes and gastrocnemius muscle from mALD and pair-fed mice were analyzed to identify target pathways and molecules. Readouts including signaling responses and autophagy markers by immunoblots, mitochondrial oxidative function and free radical generation, and metabolic studies by gas chromatography-mass spectrometry and sarcopenic phenotype by imaging. RESULTS: Multiomics analyses showed that ethanol impaired skeletal muscle mTORC1 signaling, mitochondrial oxidative pathways, including intermediary metabolite regulatory genes, interleukin-6, and amino acid degradation pathways are ß-hydroxymethyl-butyrate targets. Ethanol decreased mTORC1 signaling, increased autophagy flux, impaired mitochondrial oxidative function with decreased tricarboxylic acid cycle intermediary metabolites, ATP synthesis, protein synthesis and myotube diameter that were reversed by HMB. Consistently, skeletal muscle from mALD had decreased mTORC1 signaling, reduced fractional and total muscle protein synthesis rates, increased autophagy markers, lower intermediary metabolite concentrations, and lower muscle mass and fiber diameter that were reversed by ß-hydroxymethyl-butyrate treatment. CONCLUSION: An innovative multiomics approach followed by experimental validation showed that ß-hydroxymethyl-butyrate restores muscle protein homeostasis in liver disease.


Asunto(s)
Etanol/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Hidroxibutiratos/farmacología , Hepatopatías Alcohólicas , Deficiencias en la Proteostasis , Sarcopenia , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Etanol/farmacología , Femenino , Genómica , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Deficiencias en la Proteostasis/dietoterapia , Deficiencias en la Proteostasis/etiología , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Sarcopenia/tratamiento farmacológico , Sarcopenia/etiología , Sarcopenia/metabolismo , Sarcopenia/patología
11.
FASEB J ; 34(8): 10132-10145, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32598086

RESUMEN

The newly reassorted IAV subtypes from zoonotic reservoirs respond poorly to current vaccines and antiviral therapy. There is an unmet need in developing novel antiviral drugs for better control of IAV infection. The cellular factors that are crucial for virus replication have been sought as novel molecular targets for antiviral therapy. Recent studies have shown that Janus kinases (JAK), JAK1, and JAK2, play an important role in IAV replication. Leflunomide is an anti-inflammatory drug primarily used for treating rheumatoid arthritis (RA). Prior studies suggest that A77 1726, the active metabolite of leflunomide, inhibits the activity of JAK1 and JAK3. Our current study aims to determine if A77 1726 can function as a JAK inhibitor to control IAV infection. Here, we report that A77 1726 inhibited the replication of three IAV subtypes(H5N1, H1N1, H9N2)in three cell types (chicken embryonic fibroblasts, A549, and MDCK). A77 1726 inhibited JAK1, JAK2, and STAT3 tyrosine phosphorylation. Similar observations were made with Ruxolitinib (Rux), a JAK-specific inhibitor. JAK2 overexpression enhanced H5N1 virus replication and compromised the antiviral activity of A77 1726. Leflunomide inhibited virus replication in the lungs of IAV-infected mice, alleviated their body weight loss, and prolonged their survival. Our study demonstrates for the first time the ability of A77 1726 to inhibit JAK2 activity and suggests that inhibition of JAK activity contributes to its antiviral activity.


Asunto(s)
Compuestos de Anilina/farmacología , Antirreumáticos/farmacología , Hidroxibutiratos/farmacología , Virus de la Influenza A/efectos de los fármacos , Quinasas Janus/antagonistas & inhibidores , Leflunamida/farmacología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Células A549 , Animales , Artritis Reumatoide/tratamiento farmacológico , Línea Celular , Línea Celular Tumoral , Crotonatos , Perros , Femenino , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Nitrilos , Infecciones por Orthomyxoviridae/metabolismo , Toluidinas
12.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575975

RESUMEN

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Asunto(s)
Crotonatos/farmacología , Virus ADN/efectos de los fármacos , Hidroxibutiratos/farmacología , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Nitrilos/farmacología , Toluidinas/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/virología , Línea Celular , Plexo Coroideo/efectos de los fármacos , Plexo Coroideo/virología , Virus ADN/patogenicidad , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/virología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/virología , Humanos , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Virus JC/efectos de los fármacos , Virus JC/patogenicidad , Leucoencefalopatía Multifocal Progresiva/inducido químicamente , Leucoencefalopatía Multifocal Progresiva/patología , Leucoencefalopatía Multifocal Progresiva/virología , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/virología , Neuroglía/virología , Virosis/tratamiento farmacológico , Virosis/genética , Virosis/virología
13.
Fish Shellfish Immunol ; 107(Pt B): 444-451, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33160021

RESUMEN

Poly-ß-hydroxybutyrate (PHB) can be hydrolyzed to ß-hydroxybutyrate (ß-HB) in the intestinal tract of animals, and dietary PHB supplementation could enhance the immunity and disease resistance of aquatic animals. Antioxidant system is responsive to PHB stimuli via MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. However, the precise immunopotentiation mechanism needs further study. In this study, macrophages from spleen in Liza haematocheila was used to study the effect of ß-HB on cell viability and antioxidant function to illustrate the immunopotentiation mechanism of PHB. The results showed that ß-HB (100 µg/mL) promoted the viability of macrophages and balanced the production of reactive oxygen species, but inhibited the excessive production of intracellular nitric oxide. In order to further explore the immunopotentiation mechanism of ß-HB, LPS (100 µg/mL) was used to induce the inflammation and investigated the inhibitory effect of ß-HB on inflammation. The results showed that LPS could induce inflammation successfully, and ß-HB exerted anti-inflammatory and antioxidant effects in LPS-stimulated macrophages. Compared with LPS stimuli alone, the expression of anti-inflammatory genes NF-κBIA, MAP3K8 and TLR5 in ß-HB pretreatment group was up-regulated, and the expression of pro-inflammatory genes TNFSF6, TNF-α, PI3K, NF-κB and TLR1 down-regulated. It suggested that ß-HB inhibited the inflammatory response by up-regulation of anti-inflammatory genes such as NF-κBIA, thereby enhancing the immunity of the body.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hidroxibutiratos/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/inmunología , Poliésteres/farmacología , Smegmamorpha/inmunología , Adyuvantes Inmunológicos/farmacología , Animales , Supervivencia Celular , Lipopolisacáridos/administración & dosificación , Macrófagos/efectos de los fármacos
14.
Molecules ; 25(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375327

RESUMEN

Harzianic acid is a secondary metabolite of Trichoderma, structurally belonging to the dienyltetramic acid subgroup of the tetramic acids. Biological activities of harzianic acid are of great interest for its antimicrobial and plant growth-promoting activities, which might be related to its chelating properties. In the present work harzianic acid, isolated from cultures of a strain of Trichoderma pleuroticola associated to the gastropod Melarhaphe neritoides, was studied as a complexant agent of a number of biologically relevant transition metals (i.e., Zn2+, Fe2+, Cu2+, and Mn2+), using UV-VIS, potentiometry, MS and NMR techniques. Our findings show the coordination capacity of harzianic acid toward the above cations through the formation of neutral or charged complexes in a variable ratio depending on the metal and pH conditions.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Quelantes/química , Quelantes/farmacología , Hypocreales/química , Animales , Cationes/química , Cromatografía Liquida , Gastrópodos/microbiología , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metales/química , Estructura Molecular , Protones , Pirroles/química , Pirroles/farmacología
15.
Metabolomics ; 15(4): 58, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30941522

RESUMEN

INTRODUCTION: Recently, illegal abuse of γ-hydroxybutyric acid (GHB) has increased in drug-facilitated crimes, but the determination of GHB exposure and intoxication is difficult due to rapid metabolism of GHB. Its biochemical mechanism has not been completely investigated. And a metabolomic study by polyamine profile and pattern analyses was not performed in rat urine following intraperitoneal injection with GHB. OBJECTIVES: Urinary polyamine (PA) profiling by gas chromatography-tandem mass spectrometry was performed to monitor an altered PA according to GHB administration. METHODS: Polyamine profiling analysis by gas chromatography-mass spectrometry combined with star pattern recognition analysis was performed in this study. The multivariate statistical analysis was used to evaluate discrimination among control and GHB administration groups. RESULTS: Six polyamines were determined in control, single and multiple GHB administration groups. Star pattern showed distorted hexagonal shapes with characteristic and readily distinguishable patterns for each group. N1-Acetylspermine (p < 0.001), putrescine (p < 0.006), N1-acetylspermidine (p < 0.009), and spermine (p < 0.027) were significantly increased in single administration group but were significantly lower in the multiple administration group than in the control group. N1-Acetylspermine was the main polyamine for discrimination among control, single and multiple administration groups. Spermine showed similar levels in single and multiple administration groups. CONCLUSIONS: The polyamine metabolic pattern was monitored in GHB administration groups. N1-Acetylspermine and spermine were evaluated as potential biomarkers of GHB exposure and addiction.


Asunto(s)
Hidroxibutiratos/metabolismo , Poliaminas/análisis , Ratas Sprague-Dawley/metabolismo , Animales , Biomarcadores/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidroxibutiratos/farmacología , Inyecciones Intraperitoneales , Masculino , Metabolómica/métodos , Poliaminas/orina , Ratas , Ratas Sprague-Dawley/orina
16.
Int J Neuropsychopharmacol ; 22(10): 631-639, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504554

RESUMEN

BACKGROUND: Gamma-hydroxybutyrate (GHB; or sodium oxybate) is an endogenous GHB-/gamma-aminobutyric acid B receptor agonist. It is approved for application in narcolepsy and has been proposed for the potential treatment of Alzheimer's disease, Parkinson's disease, fibromyalgia, and depression, all of which involve neuro-immunological processes. Tryptophan catabolites (TRYCATs), the cortisol-awakening response (CAR), and brain-derived neurotrophic factor (BDNF) have been suggested as peripheral biomarkers of neuropsychiatric disorders. GHB has been shown to induce a delayed reduction of T helper and natural killer cell counts and alter basal cortisol levels, but GHB's effects on TRYCATs, CAR, and BDNF are unknown. METHODS: Therefore, TRYCAT and BDNF serum levels, as well as CAR and the affective state (Positive and Negative Affect Schedule [PANAS]) were measured in the morning after a single nocturnal dose of GHB (50 mg/kg body weight) in 20 healthy male volunteers in a placebo-controlled, balanced, randomized, double-blind, cross-over design. RESULTS: In the morning after nocturnal GHB administration, the TRYCATs indolelactic acid, kynurenine, kynurenic acid, 3-hydroxykynurenine, and quinolinic acid; the 3-hydroxykynurenine to kynurenic acid ratio; and the CAR were significantly reduced (P < 0.05-0.001, Benjamini-Hochberg corrected). The quinolinic acid to kynurenic acid ratio was reduced by trend. Serotonin, tryptophan, and BDNF levels, as well as PANAS scores in the morning, remained unchanged after a nocturnal GHB challenge. CONCLUSIONS: GHB has post-acute effects on peripheral biomarkers of neuropsychiatric disorders, which might be a model to explain some of its therapeutic effects in disorders involving neuro-immunological pathologies. This study was registered at ClinicalTrials.gov as NCT02342366.


Asunto(s)
Oscuridad , Hidrocortisona/sangre , Hidroxibutiratos/farmacología , Quinurenina/sangre , Quinurenina/metabolismo , Vigilia/efectos de los fármacos , Adolescente , Adulto , Afecto/efectos de los fármacos , Biomarcadores/sangre , Factor Neurotrófico Derivado del Encéfalo/sangre , Estudios Cruzados , Método Doble Ciego , Voluntarios Sanos , Humanos , Hidroxibutiratos/administración & dosificación , Masculino , Serotonina/sangre , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Triptófano/análogos & derivados , Triptófano/sangre , Adulto Joven
17.
Fish Shellfish Immunol ; 84: 196-203, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30266603

RESUMEN

Marine invertebrates rely mainly on innate immune mechanisms that include both humoral and cellular responses. Antimicrobial peptides (AMPs), lysozyme and phenoloxidase activity, are important components of the innate immune defense system in marine invertebrates. They provide an immediate and rapid response to invading microorganisms. The impact of amorphous poly-ß-hydroxybutyrate (PHB-A) (1 mg PHB-A L-1) on gene expression of the AMPs mytimycin, mytilinB, defensin and the hydrolytic enzyme lysozyme in infected blue mussel larvae was investigated during "in vivo" challenge tests with Vibrio coralliilyticus (105 CFU mL-1). RNAs were isolated from mussel larvae tissue, and AMPs were quantified by q-PCR using the 18srRNA gene as a housekeeping gene. Our data demonstrated that AMPs genes had a tendency to be upregulated in challenged mussel larvae, and the strongest expression was observed from 24 h post-exposure onwards. The presence of both PHB-A and the pathogen stimulated the APMs gene expression, however no significant differences were noticed between treatments or between exposure time to the pathogen V. coralliilyticus. Looking at the phenoloxidase activity in the infected mussels, it was observed that the addition of PHB-A significantly increased the activity.


Asunto(s)
Cupriavidus necator/química , Regulación de la Expresión Génica/inmunología , Hidroxibutiratos/farmacología , Inmunidad Innata/genética , Mytilus edulis/genética , Mytilus edulis/inmunología , Poliésteres/farmacología , Vibrio/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Defensinas/genética , Perfilación de la Expresión Génica , Larva/genética , Larva/inmunología , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Muramidasa/genética , Mytilus edulis/crecimiento & desarrollo
18.
Bioorg Med Chem ; 27(3): 560-567, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30606673

RESUMEN

Two new sesquiterpene-based analogues, namely harzianoic acids A (1) and B (2), were isolated from a sponge-associated fungus Trichoderma harzianum. Their structures were determined on the basis of the extensive spectroscopic analyses in association with the ECD data for the configurational assignment. Harzianoic acids A and B were structurally characterized as a sesquiterpene and a norsesquiterpene with a cyclobutane nucleus, which is uncommonly found from nature. Both compounds exhibited the inhibitory activity to reduce the HCV RNA levels with low cytotoxicity. The preliminary investigation of the mode of action revealed that the compounds blocked the entry step in the HCV life cycle, while the viral E1/E2 and the host cell CD81 were the potential target proteins.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , Hepacivirus/efectos de los fármacos , Trichoderma/química , Antivirales/química , Antivirales/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/aislamiento & purificación , Hidroxibutiratos/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Pirroles/química , Pirroles/aislamiento & purificación , Pirroles/farmacología , ARN Viral/efectos de los fármacos , Relación Estructura-Actividad
19.
Mar Drugs ; 17(4)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934741

RESUMEN

Vibrio diabolicus A1SM3 strain was isolated from a sediment sample from Manaure Solar Saltern in La Guajira and the produced crude extracts have shown antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human lung cell line. Thus, the aim of this research was to identify the main compound responsible for the biological activity observed and to systematically study how each carbon and nitrogen source in the growth media, and variation of the salinity, affect its production. For the characterization of the bioactive metabolites, 15 fractions obtained from Vibrio diabolicus A1SM3 crude extract were analyzed by HPLC-MS/MS and their activity was established. The bioactive fractions were dereplicated with Antibase and Marinlit databases, which combined with nuclear magnetic resonance (NMR) spectra and fragmentation by MS/MS, led to the identification of 2,2-di(3-indolyl)-3-indolone (isotrisindoline), an indole-derivative antibiotic, previously isolated from marine organisms. The influence of the variations of the culture media in isotrisindoline production was established by molecular network and MZmine showing that the media containing starch and peptone at 7% NaCl was the best culture media to produce it. Also, polyhydroxybutyrates (PHB) identification was established by MS/MS mainly in casamino acids media, contributing to the first report on PHB production by this strain.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Técnicas Bacteriológicas/métodos , Vibrio/química , Vibrio/metabolismo , Alcaloides/biosíntesis , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Organismos Acuáticos/microbiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mezclas Complejas/química , Mezclas Complejas/aislamiento & purificación , Medios de Cultivo , Humanos , Hidroxibutiratos/química , Hidroxibutiratos/farmacología , Isoindoles/aislamiento & purificación , Isoindoles/metabolismo , Modelos Moleculares , Poliésteres/química , Poliésteres/farmacología , Polihidroxialcanoatos/química , Polihidroxialcanoatos/farmacología , Prohibitinas , Salinidad
20.
Proc Natl Acad Sci U S A ; 113(13): 3669-74, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976575

RESUMEN

The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.


Asunto(s)
Endonucleasas/antagonistas & inhibidores , Endonucleasas/genética , Inhibidores Enzimáticos/farmacología , Hidroxibutiratos/farmacología , Virus de la Influenza A/efectos de los fármacos , Piperidinas/farmacología , Animales , Dominio Catalítico/genética , Cristalografía por Rayos X , Perros , Farmacorresistencia Viral/genética , Endonucleasas/metabolismo , Variación Genética , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Cinética , Células de Riñón Canino Madin Darby , Modelos Moleculares , Mutagénesis , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA