Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Chem Biodivers ; 21(5): e202400300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430215

RESUMEN

Sea buckthorn, a traditional medicinal plant, has been used for several years in China for the prevention and treatment of various diseases, a practice closely associated with its significant antioxidant activity. The aim of this study was to investigate the protective effects of sea buckthorn flavonoids on vascular endothelial cells in an oxidative stress environment. We isolated and extracted active compounds from sea buckthorn and investigated their impact on endothelial nitric oxide synthase (eNOS) activity through the PI3K/AKT-eNOS signaling pathway through a combination of network pharmacology and cellular experiments, elucidating the regulatory effects of these compounds on endothelial cell functions. Three flavonoids, named Fr.4-2-1, Fr.4-2-2 and Fr.4-2-3, were obtained from sea buckthorn. The results of network pharmacology indicated that they might exert their effects by regulating the PI3K-AKT signaling pathway. In vitro results showed that all three flavonoids were effective in alleviating the degree of oxidative stress in cells, among which Fr.4-2-1 exerted its antioxidant effects by modulating the PI3K/AKT-eNOS pathway. Flavonoids in sea buckthorn can effectively inhibit oxidative stress-induced cellular damage, preserving the integrity and functionality of endothelial cells, which is crucial for maintaining vascular health and function.


Asunto(s)
Flavonoides , Hippophae , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Hippophae/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Supervivencia Celular/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
2.
J Sci Food Agric ; 104(9): 5553-5564, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38358042

RESUMEN

BACKGROUND: Sea buckthorn (Hippophae rhamnoides L.) was introduced into Canada in the early 2000s. This plant bears fruits with high commercial value in other countries due to its premium oil. Nevertheless, sea buckthorn berries are also a rich source of bioactives with nutraceutical potential, especially the variety grown in Newfoundland (Canada), which has not previously been characterized. As such, this study evaluated the composition of polyphenols in sea buckthorn pomace and seeds, as well as their prospective health-promoting effects. RESULTS: Polyphenolic identification by high-performance liquid chromatography-ultraviolet-mass spectrometry-time of flight revealed the presence of 24 compounds in the seeds and 16 compounds in the pomace, including phenolic acids, flavonoids, and tannins, with ellagic acid derivative IV (pomace, 52.13 µg g-1) and (+)-catechin (seeds, 690.8 µg g-1) being the most dominant. Sea buckthorn extracts displayed in vitro antidiabetic and anti-obesity potential by inhibiting α-glucosidase (71.52-99.31%) and pancreatic lipase (15.80-35.61%) enzymes, respectively. The extracts also protected low-density-lipoprotein cholesterol (50.97-89.67%) and supercoiled DNA (35.11-79.84%) from oxidative damage. CONCLUSION: Sea buckthorn berries grown in Canada showed promising health benefits induced by their rich and diverse polyphenolic profile and need to be considered for further commercial expansion as a bioactive-loaded superfruit. © 2024 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Frutas , Hippophae , Fenoles , Extractos Vegetales , Semillas , Hippophae/química , Frutas/química , Antioxidantes/química , Semillas/química , Extractos Vegetales/química , Fenoles/química , Fenoles/análisis , Humanos , Polifenoles/química , Polifenoles/análisis , Hipoglucemiantes/química , Flavonoides/análisis , Flavonoides/química , América del Norte , Fármacos Antiobesidad/química , Fármacos Antiobesidad/análisis , Cromatografía Líquida de Alta Presión
3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068938

RESUMEN

The limited availability of antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred the search for novel antiviral drugs. Here, we investigated the potential antiviral properties of plants adapted to high-salt environments collected in the north of France. Twenty-five crude methanolic extracts obtained from twenty-two plant species were evaluated for their cytotoxicity and antiviral effectiveness against coronaviruses HCoV-229E and SARS-CoV-2. Then, a bioguided fractionation approach was employed. The most active crude methanolic extracts were partitioned into three different sub-extracts. Notably, the dichloromethane sub-extract of the whole plant Hippophae rhamnoides L. demonstrated the highest antiviral activity against both viruses. Its chemical composition was evaluated by ultra-high performance liquid chromatography (UHPLC) coupled with mass spectrometry (MS) and then it was fractionated by centrifugal partition chromatography (CPC). Six cinnamoyl triterpenoid compounds were isolated from the three most active fractions by preparative high-performance liquid chromatography (HPLC) and identified by high resolution MS (HR-MS) and mono- and bi-dimensional nuclear magnetic resonance (NMR). Specifically, these compounds were identified as 2-O-trans-p-coumaroyl-maslinic acid, 3ß-hydroxy-2α-trans-p-coumaryloxy-urs-12-en-28-oic acid, 3ß-hydroxy-2α-cis-p-coumaryloxy-urs-12-en-28-oic acid, 3-O-trans-caffeoyl oleanolic acid, a mixture of 3-O-trans-caffeoyl oleanolic acid/3-O-cis-caffeoyl oleanolic acid (70/30), and 3-O-trans-p-coumaroyl oleanolic acid. Infection tests demonstrated a dose-dependent inhibition of these triterpenes against HCoV-229E and SARS-CoV-2. Notably, cinnamoyl oleanolic acids displayed activity against both SARS-CoV-2 and HCoV-229E. Our findings suggest that Hippophae rhamnoides could represent a source of potential antiviral agents against coronaviruses.


Asunto(s)
Coronavirus Humano 229E , Hippophae , Ácido Oleanólico , Triterpenos , Triterpenos/química , Hippophae/química , Plantas Tolerantes a la Sal , Mar del Norte , SARS-CoV-2 , Antivirales/farmacología , Antivirales/análisis
4.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298962

RESUMEN

In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.


Asunto(s)
Hippophae , Neoplasias , Humanos , Antioxidantes/química , Carotenoides/química , Hippophae/química , Células MCF-7 , Frutas/química , Extractos Vegetales/química
5.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985418

RESUMEN

When the total phenolic content (TPC) and antioxidant activity of sea buckthorn juice were assayed by spectrophotometry, the reaction solutions were not clarified, so centrifugation or membrane treatment was needed before determination. In order to find a suitable method for determining TPC and antioxidant activity, the effects of centrifugation and nylon membrane treatment on the determination of TPC and antioxidant activity in sea buckthorn juice were studied. TPC was determined by the Folin-Ciocalteau method, and antioxidant activity was determined by DPPH, ABTS, and FRAP assays. For Treatment Method (C): the sample was centrifuged for 10 min at 10,000 rpm and the supernatant was taken for analysis. Method (CF): The sample was centrifuged for 10 min at 4000 rpm, filtered by Nylon 66 filtration membranes with pore size of 0.22 µm, and taken for analysis. Method (F): the sample was filtered by Nylon 66 filtration membranes with pore size of 0.22 µm and taken for analysis. Method (N): after the sample of ultrasonic extract solution reacted completely with the assay system, the reaction solution was filtered by Nylon 66 filtration membranes with pore size of 0.22 µm and colorimetric determination was performed. The results showed that centrifugation or transmembrane treatment could affect the determination of TPC and antioxidant activity of sea buckthorn juice. There was no significant difference (p > 0.05) between methods (CF) and (F), while there was a significant difference (p < 0.05) between methods (C) (F) (N) or (C) (CF) (N). The TPC and antioxidant activity of sea buckthorn juice determined by the four treatment methods showed the same trend with fermentation time, and the TPC and antioxidant activity showed a significant positive correlation (p < 0.05). The highest TPC or antioxidant activity measured by method (N) indicates that method (N) has the least loss of TPC or antioxidant activity, and it is recommended for sample assays.


Asunto(s)
Antioxidantes , Hippophae , Antioxidantes/farmacología , Antioxidantes/análisis , Polifenoles/farmacología , Polifenoles/análisis , Hippophae/química , Nylons , Fenoles/análisis , Frutas/química , Centrifugación
6.
J Sci Food Agric ; 103(12): 6005-6016, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37132070

RESUMEN

BACKGROUND: The therapeutic properties of Hippophae rhamnoides L. were known in Ancient Greece and in Tibetan and Mongolian medicine, which commonly used it for the treatment of heart ailments, rheumatism, and brain disorders. Modern studies have indicated that Hippophae rhamnoides L. polysaccharide (HRP) can improve cognitive impairment in mice with Alzheimer's disease (AD) but the specific mechanisms of the protective effect of HRP have not been elucidated fully. RESULTS: Our results showed that Hippophae rhamnoides L. polysaccharide I (HRPI) improved pathological behaviors related to memory and cognition, and reduced 1 Beta-amyloid (Aß) peptide deposition and neuronal cell necrosis. Pretreatment with Hippophae rhamnoides L. polysaccharide I (HRPI) also decreased the level of Toll-like receptor 4 (TLR4) and Myeloid differentiation factor 88 (MyD88), and reduced the release of inflammatory factors Tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) in the brains of mice with AD. Treatment with HRPI also suppressed the expression level of Recombinant Kelch Like ECH Associated Protein 1 (KEAP1), and increased the levels of Nuclear factor erythroid 2-Related Factor 2 (Nrf2), antioxidant enzymes Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-Px) in the brains of AD mice. CONCLUSIONS: On the whole, these findings revealed that HRPI could improve the learning and memory ability and attenuate pathologic impairment in AD mice, and the underlying mechanisms may involve mediating oxidative stress and inflammation, possibly through the regulation of the Keap1/Nrf2 and TLR4/MyD88 signaling pathways. © 2023 Society of Chemical Industry.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Hippophae , Ratones , Animales , Hippophae/química , Enfermedad de Alzheimer/tratamiento farmacológico , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/análisis , Receptor Toll-Like 4/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Frutas/química , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/análisis , Factor 88 de Diferenciación Mieloide/metabolismo , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Polisacáridos/análisis , Disfunción Cognitiva/tratamiento farmacológico
7.
Plant Foods Hum Nutr ; 78(1): 186-192, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534234

RESUMEN

Plants growing in unfavorable environments, such as sea buckthorn, can have a high serotonin content. The potential of using different parts of sea buckthorn (Hippophae rhamnoides L.) as a natural source of serotonin was investigated. The feasibility of extracting serotonin hormone from the non-fruit parts of sea buckthorn is demonstrated. One- and two-year-old woody shoots were the best material for obtaining serotonin-containing raw product. Serotonin content in shoots of different sea buckthorn varieties growing in different regions and its dynamics during the vegetation period were determined by high-performance liquid chromatography. Serotonin is a water-soluble substance prone to microbial degradation, so proper preparation of raw materials plays a very important role in preserving serotonin in plant samples. A method for serotonin extraction using preliminary mechanochemical treatment is presented: it consists in pre-grinding, followed by mechanical treatment of raw materials with 5% adipic acid in a semi-industrial centrifugal mill. The highest degree of serotonin extraction was achieved when using air circulation at a drying temperature of 60-80 °C; serotonin concentration decreased when temperature was further increased. Serotonin content depended on the place and time of harvesting, the method used for drying the branches, and the characteristics of the plant variety. The minimum serotonin concentration (29 mg/g dry basis) was observed during summer; the maximum concentration was observed during winter; the annual changes in concentration can be as significant as 10-fold. The possibility of industrial cultivation and harvesting of different sea buckthorn varieties was also considered.


Asunto(s)
Hippophae , Hippophae/química , Estaciones del Año , Serotonina , Temperatura , Cromatografía Líquida de Alta Presión
8.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5487-5497, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114141

RESUMEN

The leaves of sea buckthorn(Hippophae rhamnoides), considered as common food raw materials, have records of medicinal use and diverse pharmacological activities, showing a potential medicinal value. However, the active substances in the sea buckthorn leaves and their mechanisms of action remain unclear. In addition, due to the extensive source and large variety variations, the quality evaluation criteria of sea buckthorn leaves remain to be developed. To solve the problems, this study predicted the main active components, core targets, key pathways, and potential pharmacological effects of sea buckthorn leaves by network pharmacology and molecular docking. Furthermore, ultra-performance liquid chromatography with diode-array detection(UPLC-DAD) was employed to determine the content of active components and establish the chemical fingerprint, on the basis of which the quality markers of sea buckthorn leaves were predicted and then verified by the enzyme activity inhibition method. The results indicated that sea buckthorn leaves had potential therapeutic effects on a variety of digestive tract diseases, metabolic diseases, tumors, and autoimmune diseases, which were consistent with the ancient records and the results of modern pharmacological studies. The core targets of sea buckthorn leaves included PTPN11, AKT1, PIK3R1, ESR1, and SRC, which were mainly involved in the PI3K-AKT, MAPK, and HIF-1 signaling pathways. In conclusion, the active components of sea buckthorn leaves are associated with the rich flavonoids and tannins, among which quercitrin, narcissoside, and ellagic acid can be used as the quality markers of sea buckthorn leaves. The findings provide a reference for the quality control and further development and utilization of sea buckthorn leaves as medicinal materials.


Asunto(s)
Hippophae , Hippophae/química , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Flavonoides/análisis , Frutas/química
9.
Crit Rev Food Sci Nutr ; 62(24): 6761-6782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33783272

RESUMEN

Sea buckthorn (Hippophae rhamnoides L.), which has been categorized as a "medicine food homology" fruit by China's National Health Commission for both nutritional and medicinal purposes, has nearly 200 kinds of nutritive and bioactive compounds such as polyunsaturated fatty acids, carotenoids, sugar alcohols, superoxide dismutase and phytosterols. Significant bioactivity, including cardiovascular improvement, antidiabetic and anti-obesity activity, have highlighted the application of sea buckthorn. This review compiled a database of the phytochemical compounds in sea buckthorn, which contains the contents of 106 nutrients and 74 bioactive compounds. The health benefits of sea buckthorn and its extracts were summarized and the mechanism of anti-oxidation and anti-inflammation were introduced in detail. Seventeen common marketed products of sea buckthorn from 8 countries were collected. A future scope is really needed to explore the mechanism of sea buckthorn bioactive compounds along with the incorporation cost-effective functional food products.


Asunto(s)
Hippophae , Fitosteroles , Carotenoides/análisis , Frutas/química , Alimentos Funcionales , Hippophae/química , Fitosteroles/análisis
10.
Crit Rev Food Sci Nutr ; 62(14): 3798-3816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33412908

RESUMEN

Sea buckthorn (Hippophaë rhamnoides L., SB), as a multi-functional plant, is widely grown in Asia, Europe and Canada. The berries and leaves of SB contain a diverse array of health-supporting phytochemicals, which are also related to the sensory qualities of berry and berry products. This review summarizes the biologically active key-compounds of the berries and leaves of SB, their health-promoting effects, as well as the contributions to the sensory quality of the berries. The target compounds consist of sugars, sugar derivatives, organic acids, phenolic compounds and lipophilic compounds (mainly carotenoids and tocopherols), which play an important role in anti-inflammatory and antioxidant functions, as well as in metabolic health. In addition, these compounds contribute to the orosensory qualities of SB berries, which are closely related to consumer acceptance and preference of the products. Studies regarding the bioavailability of the compounds and the influence of the processing conditions are also part of this review. Finally, the role of the sensory properties is emphasized in the development of SB products to increase utilization of the berry as a common meal component and to obtain value-added products to support human health.


Asunto(s)
Hippophae , Cromatografía Líquida de Alta Presión , Frutas/química , Promoción de la Salud , Hippophae/química , Humanos , Fitoquímicos/análisis , Hojas de la Planta/química
11.
Mol Biol Rep ; 49(6): 5229-5240, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34387804

RESUMEN

BACKGROUND: Sea buckthorn (Hippophae) is in the focus of interest mainly for its positive effects on health of both human and animal organisms. Due to the similarities in vegetative morphology, Hippophae species are often misidentified. Therefore, current study was focused on ITS based sequence characterization of sea buckthorn species and comparative biochemical evaluation for its antioxidant properties. METHODS AND RESULTS: DNA was extracted from leaf samples. Primer pairs K-Lab-SeaBukRhm-ITS1F1- K-Lab-SeaBukRhm-ITS1R1 and K-LabSeaBukTib- ITSF1- K-LabSeaBukTib-ITSR1 were used for PCR amplification. The purified PCR products were outsourced for sequencing. Phylogenetic tree was constructed based on neighbor-joining (NJ) method. Moreover, comparison of antioxidant potential of leaves of two sea buckthorn species (Hippophae rhamnoides and Hippophae tibetana) collected from different regions of Ladakh viz., Stakna, Nubra, DRDO Leh and Zanskar was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis (3- ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and Total antioxidant capacity (TAC) by phosphomolybdenum assays. The present investigation led to the differentiation of two sea buckthorn species viz., H. rhamnoides and H. tibetana based on Internal Transcribed Spacer (ITS) region. Moreover, significant variation was observed in antioxidant potential of leaf extracts collected from different regions. CONCLUSIONS: Primary ITS sequence analysis was found to be powerful tool for identification and genetic diversity studies in sea buckthorn. Leaves of sea buckthorn have pronounced antioxidant properties and can be used in food, neutraceuticals and pharmaceutical industries etc. The current study will pave the way to discover small bioactive molecules responsible for antioxidant and anticancer properties in sea buckthorn.


Asunto(s)
Hippophae , Animales , Antioxidantes/análisis , Frutas/química , Variación Genética , Hippophae/química , Hippophae/genética , Filogenia , Extractos Vegetales/química
12.
J Clin Lab Anal ; 36(1): e24157, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34859918

RESUMEN

OBJECTIVE: This study aimed to explore the mechanisms of Hippophae fructus oil (HFO) in the treatment of tympanic membrane (TM) perforation through network pharmacology-based identification. METHODS: The compounds and related targets of HFO were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to show the common targets of HFO and TM, and GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using the STRING database and Cytoscape software. A molecular docking analysis was also conducted to simulate the combination of compounds and gene proteins. RESULTS: A total of 33 compounds and their related targets were obtained from the TCMSP database. After screening the 393 TM-related targets, 21 compounds and 22 gene proteins were selected to establish the network diagram. GO and KEGG enrichment analyses revealed that HFO may promote TM healing by influencing cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained by analyzing the PPI network with nine core genes: CASP3, MMP2, IL1B, TP53, EGFR, CXCL8, ESR1, PTGS2, and IL6. In addition, a molecular docking analysis revealed that quercetin strongly binds the core proteins. CONCLUSION: According to the analysis, HFO can be utilized to repair perforations by influencing cellular oxidative stress. Quercetin is one of the active compounds that potentially plays an important role in TM regeneration by influencing 17 gene proteins.


Asunto(s)
Hippophae/química , Simulación del Acoplamiento Molecular , Farmacología en Red , Aceites de Plantas/farmacología , Perforación de la Membrana Timpánica/metabolismo , Humanos , Mapas de Interacción de Proteínas/efectos de los fármacos , Membrana Timpánica/metabolismo
13.
Phytochem Anal ; 33(2): 214-225, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34278612

RESUMEN

INTRODUCTION: Seabuckthorn (Hippophae rhamnoides L.) is a high-altitude plant with immense medicinal, nutritional, and therapeutic value. Earlier studies have documented the presence of various useful bioactive substances in this species; however, comprehensive metabolome profiling of seabuckthorn berries originating from different regions of the Indian Himalayas has not been undertaken. OBJECTIVE: Metabolomic profiling of seabuckthorn berries originating from different geographical sites in the Himachal Pradesh and Jammu & Kashmir regions of the Indian Himalayas was performed by using gas chromatography-mass spectrometry. MATERIALS AND METHODS: The GC-MS metabolome profiles of seabuckthorn berries collected from different sites (altitude 1,400-4,270 m; average temperature 8°C-27°C) were subjected to multivariate analysis following principal component analysis and hierarchical clustering analysis. RESULTS: The GC-MS results showed substantial variability for berry metabolites, including fatty acids, alkyl ethers, and alkyl esters. Fatty acids and their esters were mainly responsible for the variation in the berry metabolome. The metabolite expression profile heat map revealed two distinct groups of seabuckthorn berries originating from Himachal Pradesh (Lahaul and Spiti) and Jammu & Kashmir (Leh, Nubra, and Kargil), the former showing higher expression of metabolites. Interestingly, a strong negative association existed between altitude and the amounts of metabolites such as amides, alkyl esters, alcohols, sugars, and sugar esters. In contrast, temperature showed a strong positive association with ketone and alkyl ether levels. CONCLUSION: GC-MS profiling provides important phytochemical indicators to distinguish between seabuckthorn berries from different geographical sites. Our metabolome profiling analysis generated valuable information that will be useful in the formulation of various seabuckthorn products, benefiting farmers and industries.


Asunto(s)
Hippophae , Frutas/química , Cromatografía de Gases y Espectrometría de Masas , Hippophae/química , Metaboloma , Metabolómica
14.
Molecules ; 27(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35745039

RESUMEN

Juice made from sea-buckthorn berries (Hippophae rhamnoides L.) is a valuable source of bioactive compounds, vitamins, as well as micro- and macronutrients. By applying defatted sea-buckthorn juice, it is possible to enhance wheat beer and change its sensory properties and the contents of bioactive compounds in the finished product. A sensory assessment showed that wheat beers with a 5% v/v addition of sea-buckthorn juice were characterised by a balanced taste and aroma (overall impression). Physicochemical analyses showed that, compared to the control samples, wheat beers enhanced with defatted sea-buckthorn juice at a rate of 5% v/v or 10% v/v had high total acidity with respective mean values of 5.30 and 6.88 (0.1 M NaOH/100 mL), energy values lower on average by 4.04% and 8.35%, respective polyphenol contents of 274.1 mg GAE/L and 249.7 mg GAE/L, as well as higher antioxidant activity (measured using DPPH, FRAP, and ABTS assays). The findings show that the samples of wheat beer enhanced with sea-buckthorn juice had average ascorbic acid contents of 2.5 and 4.5 mg/100 mL (in samples with 5% v/v and 10% v/v additions, respectively) and contained flavone glycosides, e.g., kaempferol-3-O-glucuronide-7-O-hexoside. Based on the current findings, it can be concluded that wheat beer enhanced with sea-buckthorn juice could emerge as a new trend in the brewing industry.


Asunto(s)
Hippophae , Cerveza , Estudios de Factibilidad , Frutas/química , Hippophae/química , Triticum
15.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889302

RESUMEN

Blood platelets play a crucial role in hemostasis, the process responsible for keeping blood flowing in the circulatory system. However, unnecessary platelet activation can lead to aggregation at the site of atherosclerotic plaque rapture and the formation of a thrombus, which promotes atherothrombotic diseases. Various dietary components, such as phenolic compounds, are known to demonstrate antiplatelet and anticoagulant properties, and it is possible that these could form an important element in the prophylaxis and therapy of cardiovascular diseases. Our present study examined the biological activity of isorhamnetin (1) and two isorhamnetin derivatives, (2): 3-O-beta-glucoside-7-O-alpha-rhamnoside and (3): 3-O-beta-glucoside-7-O-alpha-(3″'-isovaleryl)-rhamnoside, isolated from the phenolic fraction of sea buckthorn fruit, against human washed blood platelets and human whole blood in vitro. The anti-platelet and anticoagulant potential was determined using (A) flow cytometry, (B) the thrombus-formation analysis system (T-TAS) and (C) colorimetry. The results of the T-TAS test indicate that the AUC10 (Area Under the Curve) of the tested phenolic compounds (compounds 1, 2 and 3; 50 µg/mL) was markedly reduced compared to the control values. Moreover, flavonol demonstrated anti-platelet potential, including anti-adhesive activity, with these effects being more intense in compound 2 than isorhamnetin. Different actions of flavonol on platelet activation may depend on their binding ability to various receptors on blood platelets. However, the mechanism of their anti-platelet potential requires further additional studies, including in vitro and in vivo experiments.


Asunto(s)
Hippophae , Anticoagulantes/análisis , Anticoagulantes/farmacología , Flavonoles/análisis , Frutas/química , Glucósidos/análisis , Hippophae/química , Humanos , Fenoles/química , Quercetina/análogos & derivados
16.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615436

RESUMEN

Plant extracts are a source of valuable ingredients that can be used in many industries. This paper presents research on the content of selected bioactive compounds in extracts obtained from various plant materials. Raw materials have a documented use in traditional medicine not only in Poland. The tested plants were: bitter melon (fruit), elderberry (flowers, fruit, leaves), wild rose (fruit, flesh, seeds), mountain ash (fruit), guelder rose (fruit), and sea buckthorn (fruit, leaves, pomace). The main goal of these tests is to indicate the potential raw materials that may constitute an alternative source of bioactive compounds with antimicrobial activity. The plant material was tested for the content of bioactive antioxidant compounds and possible antimicrobial activity. The content of polyphenols (phenolic acids and flavonoids) was analyzed using UPLC/PDA, sterols, organic acids, and other bioactive compounds. The minimum inhibitory concentration (MIC) was determined. The total free phenolic acids (TPC) and total free flavonoids (TFC) of all plant raw materials was varied and ranged from 0.21 (mg RUTE/1 g of extract) to 38.30 mg RUTE/1 g of extract) for TFC. The concentration of sterols was, on average, about 10 mg/1 g of extract. The value of approx. 20 mg/1 g of the extract was recorded for bitter melon and beach rose. The content of organic acids was about 1.5 mg/1 g of the extract to even 13 mg/1 g of the extract for sea buckthorn berries. The most sensitive to the extracts' activity were the following bacteria: M. luteus, P. mirabilis, P. fragii, S. enteritidis, and E. coli. The tested plant materials can be used in various industries as a source of bioactive compounds of an antibacterial nature.


Asunto(s)
Hippophae , Fenoles , Fenoles/química , Escherichia coli , Antioxidantes/química , Flavonoides/química , Extractos Vegetales/química , Frutas/química , Antibacterianos/farmacología , Antibacterianos/análisis , Hippophae/química , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/análisis , Esteroles/análisis
17.
J Sci Food Agric ; 102(3): 931-939, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34265087

RESUMEN

BACKGROUND: Reducing anti-nutritional factors like phytates in seed protein products requires an ongoing effort. This study was the first to investigate the phytic acid content in seabuckthorn seed protein (SSP) and its reduction by an exogenous phytase during protein isolation from seabuckthorn seed meal through the common alkaline solubilization-isoelectric precipitation process. RESULTS: The additional phytase treatment could reduce the content of phytic acid from 22.46 to 13.27 g kg-1 , leading to SSP products with lighter color (lower ΔE* ), higher protein solubility, higher in vitro digestibility, but lower phenolic antioxidant content (including flavonoids and procyanidins) and some beneficial ions like Ca, Fe, Mg, and Zn. The Fourier transform infrared (FTIR) results indicated that the secondary structure of protein changed under the treatment with phytase. Correlation analysis showed that L* was significantly negatively correlated with TP, TPC and TF (P < 0.001), while a* and b* were significantly positively correlated with them (P < 0.001). CONCLUSIONS: There may be a trade-off between protein functionalities and other health-promoting components when a phytase treatment is included in SSP isolation. © 2021 Society of Chemical Industry.


Asunto(s)
6-Fitasa/química , Manipulación de Alimentos/métodos , Hippophae/química , Proteínas de Plantas/química , Álcalis/química , Biocatálisis , Precipitación Química , Color , Ácido Fítico/química , Semillas/química , Solubilidad
18.
J Sci Food Agric ; 102(1): 185-197, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34061348

RESUMEN

BACKGROUND: Juices are currently a fast-growing segment in the fruit and vegetable industry sector. However, there are still no reports on the diversity of the phytochemical profile and health-promoting properties of commercial sea buckthorn (Hippophaë rhamnoides) juices. This study aimed to identify and quantify phytoprostanes, phytofurans by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), tocopherols, tocotrienols by ultra-performance liquid chromatography coupled with a fluorescence detector (UPLC-FL), carotenoids, and free amino acids by ultra-performance liquid chromatography coupled with a photodiode detector-quadrupole and tandem time-of-flight mass spectrometry (UPLC-PDA-Q/TOF-MS), and assess their anti-cholinergic, anti-diabetic, anti-obesity, anti-inflammatory, and antioxidant potential by in vitro assays of commercial sea buckthorn juices. RESULTS: Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in sea buckthorn juices were identified for the first time. Juices contained eight F1 -, D1 -, B1 - and L1 -phytoprostanes and one phytofuran (32.31-1523.51 ng and up to 101.47 µg/100 g dry weight (DW)), four tocopherol congeners (22.23-94.08 mg 100 g-1 DW) and three tocotrienols (5.93-25.34 mg 100 g-1 DW). Eighteen carotenoids were identified, including ten xanthophylls, seven carotenes and phytofluene, at a concentration of 133.65 to 839.89 mg 100 g-1 DW. Among the 20 amino acids (175.92-1822.60 mg 100 g-1 DW), asparagine was dominant, and essential and conditionally essential amino acids constituted 11 to 41% of the total. The anti-enzyme and antioxidant potential of juices correlated selectively with the composition. CONCLUSION: Sea buckthorn juice can be a valuable dietary source of vitamins E and A, oxylipins and amino acids, used in the prevention of metabolic syndrome, inflammation, and neurodegenerative processes. The differentiation of the composition and the bioactive potential of commercial juices indicate that, for the consumer, it should be important to choose juices from the declared berry cultivars and crops. © 2021 Society of Chemical Industry.


Asunto(s)
Carotenoides/química , Jugos de Frutas y Vegetales/análisis , Hippophae/química , Extractos Vegetales/química , Tocoferoles/química , Tocotrienoles/química , Aminoácidos/química , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Frutas/química , Espectrometría de Masas en Tándem
19.
Mol Biol Rep ; 48(2): 1409-1422, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33608810

RESUMEN

Staphylococcus aureus causes a wide range of skin diseases such as bacterial keratitis, follicles, psoriasis, cellulitis and atopic dermatitis. This study aims to investigate the S. aureus mediated molecular modulation, and the effect of HR in reversing the deleterious impact of S. aureus in keratinocytes. Human keratinocyte (HaCaT) cells were cultured in DMEM, supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Subcultures were divided into three flasks: control with no S. aureus and extract (C), S. aureus infected (SA) and S. aureus infected cells and extract (SE). RNA was isolated and microarray analysis was performed. The data was annotated using GO functional analysis and DAVID functional annotation. For each comparison group, significant probes were filtered out at significant cut off by fold change (P < 0.05 and/or > twofold change). For SA vs control, SE vs control, and SE vs SA, 204, 9369, 9900 probes were filtered respectively. In SA vs control, TNF signaling, NOD-like receptor and chemokine receptor signaling pathways were upregulated with key genes such as CCL2, CCL20 and BIRC3. The SE vs SA, showed significant expression variations of a number of important genes. Molecular pathways associated with ILs, TNFs, TGFs, IFNs, FGFs, MAPKs, MMPs, caspases and Wnts were either up regulated or downregulated. This effect was reversed by the extract, possibly through downregulating various proinflammatory cytokines and apoptotic pathways. Our study reveals that S. aureus inserts a negative impact on the regulation of various key genes which is apparently reversed by the HR extract.


Asunto(s)
Hippophae/química , Extractos Vegetales/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Células Cultivadas , Citocinas/genética , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/microbiología , Dermatitis Atópica/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
20.
Drug Dev Res ; 82(8): 1124-1130, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33847382

RESUMEN

Coronavirus Disease 2019 (COVID-19) cases and deaths are still rising worldwide, there is currently no effective treatment for severe inflammation and acute lung injury caused by new coronavirus (SARS-COV-2) infection. Therapies to prevent or treat COVID-19, including antiviral drug and several vaccines, are still being development. Human angiotensin-converting enzyme 2 (ACE2), expressing in lung, has been confirmed to be a receptor for SARS-COV-2 infection, interventions for attachment of spike protein of SARS-CoV-2 to ACE2 may be a potential approach to prevent viral infections and it is considered as a potential target for drug development. In this study, we observed that seabuckthorn and its flavonoid compounds quercetin and isorhamnetin were shown strong retention to ACE2 overexpression HEK293 (ACE2h ) cells by CMC analysis. Based on drug receptor interaction analysis and viral entry studies in vitro, we evaluated the interaction of two flavonoid compounds and ACE2 as well as the inhibitory effect of the two compounds on viral entry. Surface plasmon resonance assay proved the effect that isorhamnetin bound to the ACE2, and its affinity (KD value) was at the micromolar level, that was, 2.51 ± 0.68 µM. Viral entry studies in vitro indicated that isorhamnetin inhibited SARS-CoV-2 spike pseudotyped virus entering ACE2h cells. Based on promising in vitro results, we proposed isorhamnetin to be a potential therapeutic candidate compound against COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Quercetina/análogos & derivados , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Antivirales , Células HEK293 , Hippophae/química , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Quercetina/química , Quercetina/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Pseudotipado Viral , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA