Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Cell ; 170(4): 748-759.e12, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802044

RESUMEN

Social insects are emerging models to study how gene regulation affects behavior because their colonies comprise individuals with the same genomes but greatly different behavioral repertoires. To investigate the molecular mechanisms that activate distinct behaviors in different castes, we exploit a natural behavioral plasticity in Harpegnathos saltator, where adult workers can transition to a reproductive, queen-like state called gamergate. Analysis of brain transcriptomes during the transition reveals that corazonin, a neuropeptide homologous to the vertebrate gonadotropin-releasing hormone, is downregulated as workers become gamergates. Corazonin is also preferentially expressed in workers and/or foragers from other social insect species. Injection of corazonin in transitioning Harpegnathos individuals suppresses expression of vitellogenin in the brain and stimulates worker-like hunting behaviors, while inhibiting gamergate behaviors, such as dueling and egg deposition. We propose that corazonin is a central regulator of caste identity and behavior in social insects.


Asunto(s)
Hormigas/metabolismo , Proteínas de Insectos/metabolismo , Neuropéptidos/metabolismo , Animales , Hormigas/genética , Hormigas/crecimiento & desarrollo , Conducta Animal , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Conducta Social
2.
PLoS Biol ; 19(3): e3001031, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651798

RESUMEN

Evolutionary innovations underlie the rise of diversity and complexity-the 2 long-term trends in the history of life. How does natural selection redesign multiple interacting parts to achieve a new emergent function? We investigated the evolution of a biomechanical innovation, the latch-spring mechanism of trap-jaw ants, to address 2 outstanding evolutionary problems: how form and function change in a system during the evolution of new complex traits, and whether such innovations and the diversity they beget are repeatable in time and space. Using a new phylogenetic reconstruction of 470 species, and X-ray microtomography and high-speed videography of representative taxa, we found the trap-jaw mechanism evolved independently 7 to 10 times in a single ant genus (Strumigenys), resulting in the repeated evolution of diverse forms on different continents. The trap mechanism facilitates a 6 to 7 order of magnitude greater mandible acceleration relative to simpler ancestors, currently the fastest recorded acceleration of a resettable animal movement. We found that most morphological diversification occurred after evolution of latch-spring mechanisms, which evolved via minor realignments of mouthpart structures. This finding, whereby incremental changes in form lead to a change of function, followed by large morphological reorganization around the new function, provides a model for understanding the evolution of complex biomechanical traits, as well as insights into why such innovations often happen repeatedly.


Asunto(s)
Adaptación Biológica/fisiología , Hormigas/fisiología , Mandíbula/anatomía & histología , Animales , Hormigas/metabolismo , Evolución Biológica , Fenómenos Biomecánicos/fisiología , Evolución Molecular , Mandíbula/fisiología , Movimiento , Filogenia , Relación Estructura-Actividad , Microtomografía por Rayos X/métodos
3.
J Chem Ecol ; 50(5-6): 222-236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748380

RESUMEN

In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in interspecific communication and defense against chemical-oriented predators. Although these interactions form complex information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidoptera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65-82%), but a low similarity between caterpillars and their tending ants (30 - 25%). Cluster analysis showed that caterpillars, ants, and plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical profile, though slightly affected by biotic environmental factors.


Asunto(s)
Hormigas , Hidrocarburos , Larva , Animales , Hormigas/fisiología , Hormigas/química , Hormigas/metabolismo , Hidrocarburos/metabolismo , Hidrocarburos/química , Hidrocarburos/análisis , Larva/fisiología , Larva/química , Simbiosis , Mariposas Diurnas/fisiología , Mariposas Diurnas/química
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893232

RESUMEN

An inherent strength of evolved collective systems is their ability to rapidly adapt to dynamic environmental conditions, offering resilience in the face of disruption. This is thought to arise when individual sensory inputs are filtered through local interactions, producing an adaptive response at the group level. To understand how simple rules encoded at the individual level can lead to the emergence of robust group-level (or distributed) control, we examined structures we call "scaffolds," self-assembled by Eciton burchellii army ants on inclined surfaces that aid travel during foraging and migration. We conducted field experiments with wild E. burchellii colonies, manipulating the slope over which ants traversed, to examine the formation of scaffolds and their effects on foraging traffic. Our results show that scaffolds regularly form on inclined surfaces and that they reduce losses of foragers and prey, by reducing slipping and/or falling of ants, thus facilitating traffic flow. We describe the relative effects of environmental geometry and traffic on their growth and present a theoretical model to examine how the individual behaviors underlying scaffold formation drive group-level effects. Our model describes scaffold growth as a control response at the collective level that can emerge from individual error correction, requiring no complex communication among ants. We show that this model captures the dynamics observed in our experiments and is able to predict the growth-and final size-of scaffolds, and we show how the analytical solution allows for estimation of these dynamics.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Conducta Cooperativa , Animales , Hormigas/metabolismo , Conducta Alimentaria , Conducta Social
5.
J Exp Biol ; 226(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695637

RESUMEN

Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.


Asunto(s)
Hormigas , Animales , Hormigas/genética , Hormigas/metabolismo , Trehalosa/metabolismo , Agregado de Proteínas , Ecosistema , Insectos/metabolismo , Calor
6.
Gen Comp Endocrinol ; 344: 114373, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37657761

RESUMEN

Estrogen-related receptor (ERR) is a key regulator of insect growth, development, and metabolic processes in insects; however, the molecular mechanisms underlying its effects are not fully understood. We investigated roles of 20-hydroxyecdysone (20E) and insulin/insulin-like signaling/target of rapamycin (IIS/TOR) signaling pathways in the effects of PvERR on larval development, metamorphosis, and adult growth in ant Polyrhachis vicina Roger. PvFOXO expression levels depended on caste and developmental stage. PvERR RNAi significantly reduced the expression levels of IIS/TOR signaling pathway genes and 20E signaling pathway genes in fourth-instar larvae, pupae, females, and workers and significantly increased the expression levels of IIS/TOR signaling pathway genes PvFOXO and PvAkt in males. PvFOXO RNAi resulted in developmental defects and increased mortality. After PvFOXO RNAi, the expression of PvERR, 20E signaling pathway genes, and IIS/TOR signaling pathway genes decreased significantly in pupae, females, and workers and increased significantly in fourth-instar larvae. Exogenous 20E attenuated expression changes induced by PvFOXO RNAi in a sex- and stage-specific manner. These results indicate that ERR interacts with 20E and IIS/TOR signaling pathways to regulate caste determination, metamorphosis, and male fertility in P. vicina and that correlations between PvERR and PvFOXO are caste- and stage-specific.


Asunto(s)
Hormigas , Animales , Femenino , Masculino , Hormigas/genética , Hormigas/metabolismo , Insulina/metabolismo , Ecdisterona/metabolismo , Receptores de Estrógenos/metabolismo , Larva/metabolismo , Insectos , Transducción de Señal , Metamorfosis Biológica/genética , Pupa/genética , Estrógenos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
7.
Insect Mol Biol ; 31(1): 1-9, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34418191

RESUMEN

Social insects depend on communication to regulate social behaviour. This also applies to their larvae, which are commonly exposed to social interactions and can react to social stimulation. However, how social insect larvae sense their environment is not known. Using RNAseq, we characterized expression of sensory-related genes in larvae of the ant Formica fusca, upon exposure to two social environments: isolation without contact to other individuals, and stimulation via the presence of other developing individuals. Expression of key sensory-related genes was higher following social stimulation, and larvae expressed many of the same sensory-related genes as adult ants and larvae of other insects, including genes belonging to the major insect chemosensory gene families. Our study provides first insights into the molecular changes associated with social information perception in social insect larvae.


Asunto(s)
Hormigas , Receptores Odorantes , Animales , Hormigas/genética , Hormigas/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/metabolismo , Filogenia , Receptores Odorantes/metabolismo , Medio Social , Transcriptoma
8.
Cell Mol Life Sci ; 79(1): 29, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34971425

RESUMEN

The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.


Asunto(s)
Hormigas/inmunología , Hormigas/metabolismo , Jerarquia Social , Sistema Inmunológico/metabolismo , Conducta Social , Animales , Conducta Animal , Metaboloma , Metabolómica , Análisis de Componente Principal
9.
J Exp Zool B Mol Dev Evol ; 336(4): 333-340, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33621432

RESUMEN

Canalization underlies the expression of steady phenotypes in the face of unsteady environmental conditions or varying genetic backgrounds. The chaperone HSP90 has been identified as a key component of the molecular machinery regulating canalization and a growing body of research suggests that HSP90 could act as a general capacitator in evolution. However, empirical data about HSP90-dependent phenotypic variation and its evolutionary impact is still scarce, particularly for non-model species. Here we report how pharmacological suppression of HSP90 increases morphological variation up to 87% in the invasive ant Cardiocondyla obscurior. We show that workers treated with the HSP90 inhibitor 17-DMAG are significantly more diverse compared to untreated workers in two of four measured traits: maximal eye distance and maximal propodeal spine distance. We further find morphological differentiation between natural populations of C. obscurior in the same traits that responded to our pharmacological treatment. These findings add support for the putative impact of HSP90 on canalization, the modularity of phenotypic traits, and its potential role in morphological evolution of ants.


Asunto(s)
Hormigas/metabolismo , Benzoquinonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Especies Introducidas , Lactamas Macrocíclicas/farmacología , Animales , Hormigas/anatomía & histología , Femenino , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Masculino
10.
Insect Mol Biol ; 30(1): 113-121, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33150669

RESUMEN

In eusocial insect colonies, non-reproductive workers often perform different tasks. Tasks of an individual worker are shifted depending on various factors, e.g., age and colony demography. Although a vitellogenin (Vg) gene play regulatory roles in both reproductive and non-reproductive division of labours in a honeybee, it has been shown that the insect Vg underwent multiple gene duplications and sub-functionalisation, especially in apical ant lineages. The regulatory roles of duplicated Vgs were suggested to change evolutionarily among ants, whereas such roles in phylogenetically basal ants remain unclear. Here, we examined the expression patterns of conventional Vg (CVg), Vg-like A, Vg-like B and Vg-like C, as well as Vg receptor, during the task shift in an age-dependent manner and under experimental manipulation of colony demography in a primitive ant Diacamma sp. Expressions of CVg and Vg-like A in a brain were associated with a nursing task. It is suggested that associations of brain expressions of these Vgs with worker tasks were acquired in the basal ant lineage, and that such Vg functions could have sub-functionalised in the derived ant lineage.


Asunto(s)
Hormigas , Encéfalo/metabolismo , Duplicación de Gen , Vitelogeninas , Animales , Hormigas/genética , Hormigas/metabolismo , Hormigas/fisiología , Conducta Animal/fisiología , Evolución Biológica , Proteínas del Huevo/metabolismo , Femenino , Genes de Insecto , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia , Receptores de Superficie Celular/metabolismo , Reproducción/fisiología , Conducta Social , Vitelogeninas/genética , Vitelogeninas/metabolismo
11.
J Muscle Res Cell Motil ; 42(2): 399-417, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34255253

RESUMEN

Ants use their mandibles for a variety of functions and behaviors. We investigated mandibular muscle structure and function from major workers of the Florida carpenter ant Camponotus floridanus: force-pCa relation and velocity of unloaded shortening of single, permeabilized fibres, primary sequences of troponin subunits (TnC, TnI and TnT) from a mandibular muscle cDNA library, and muscle fibre ultrastructure. From the mechanical measurements, we found Ca2+-sensitivity of isometric force was markedly shifted rightward compared with vertebrate striated muscle. From the troponin sequence results, we identified features that could explain the rightward shift of Ca2+-activation: the N-helix of TnC is effectively absent and three of the four EF-hands of TnC (sites I, II and III) do not adhere to canonical sequence rules for divalent cation binding; two alternatively spliced isoforms of TnI were identified with the alternatively spliced exon occurring in the region of the IT-arm α-helical coiled-coil, and the N-terminal extension of TnI may be involved in modulation of regulation, as in mammalian cardiac muscle; and TnT has a Glu-rich C-terminus. In addition, a structural homology model was built of C. floridanus troponin on the thin filament. From analysis of electron micrographs, we found thick filaments are almost as long as the 6.8 µm sarcomeres, have diameter of ~ 16 nm, and typical center-to-center spacing of ~ 46 nm. These results have implications for the mechanisms by which mandibular muscle fibres perform such a variety of functions, and how the structure of the troponin complex aids in these tasks.


Asunto(s)
Hormigas , Troponina C , Animales , Hormigas/metabolismo , Calcio/metabolismo , Humanos , Invertebrados/metabolismo , Mandíbula/metabolismo , Músculo Esquelético/metabolismo , Troponina C/genética , Troponina C/metabolismo , Troponina T/genética , Troponina T/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-33677697

RESUMEN

Navigation is comprised of a variety of strategies which rely on multiple external cues to shape a navigator's behavioral output. Here, we explored in the ant Veromessor pergandei, the interactions between the information provided by the pheromone trail and the home vector guided by the celestial compass. We found that a cross sensory interaction between the pheromone cue and the path integrator underlies correct orientation during the inbound journey. The celestial compass provides directional information, while the presence of the trail pheromone acts as a critical context cue, triggering distinct behaviors (vector orientation, search, and backtracking). While exposed to the pheromone, foragers orient to the vector direction regardless of vector state, while in the pheromone's absence, the current remaining vector determines the forager's navigational behavior. This interaction also occurs in foragers with no remaining path integrator, relying on the activation of a celestial compass-based memory of the previous trip. Such cue interactions maximize the foragers' return to the nest and inhibit movement off the pheromone trail. Finally, our manipulations continuously rotated foragers away from their desired heading, yet foragers were proficient at counteracting these changes, steering to maintain a correct compass heading even at rotational speeds of ~ 40°/s.


Asunto(s)
Hormigas/metabolismo , Señales (Psicología) , Fenómenos de Retorno al Lugar Habitual , Locomoción , Orientación Espacial , Feromonas/metabolismo , Navegación Espacial , Animales , Memoria , Umbral Sensorial
13.
J Chem Ecol ; 47(6): 513-524, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33900528

RESUMEN

Chemical communication is common across all organisms. Insects in particular use predominantly chemical stimuli in assessing their environment and recognizing their social counterparts. One of the chemical stimuli used for recognition in social insects, such as ants, is the suite of long-chain, cuticular hydrocarbons. In addition to providing waterproofing, these surface hydrocarbons serve as a signature mixture, which ants can perceive, and use to distinguish between strangers and colony mates, and to determine caste, sex, and reproductive status of another individual. They can be both environmentally and endogenously acquired. The surface chemistry of adult workers has been studied extensively in ants, yet the pupal stage has rarely been considered. Here we characterized the surface chemistry of pupae of Formica exsecta, and examine differences among sexes, castes (reproductive vs. worker), and types of sample (developing individual vs. cocoon envelope). We found quantitative and qualitative differences among both castes and types of sample, but male and female reproductives did not differ in their surface chemistry. We also found that the pupal surface chemistry was more complex than that of adult workers in this species. These results improve our understanding of the information on which ants base recognition, and highlights the diversity of surface chemistry in social insects across developmental stages.


Asunto(s)
Hormigas/metabolismo , Hidrocarburos/metabolismo , Odorantes/análisis , Pupa/metabolismo , Animales , Hormigas/efectos de los fármacos , Hormigas/fisiología , Femenino , Hidrocarburos/farmacología , Masculino , Pupa/efectos de los fármacos , Reproducción/efectos de los fármacos
14.
Mol Cell Proteomics ; 18(Suppl 1): S34-S45, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30598476

RESUMEN

All social insects with obligate reproductive division of labor evolved from strictly monogamous ancestors, but multiple queen-mating (polyandry) arose de novo, in several evolutionarily derived lineages. Polyandrous ant queens are inseminated soon after hatching and store sperm mixtures for a potential reproductive life of decades. However, they cannot re-mate later in life and are thus expected to control the loss of viable sperm because their lifetime reproductive success is ultimately sperm limited. In the leaf-cutting ant Atta colombica,, the survival of newly inseminated sperm is known to be compromised by seminal fluid of rival males and to be protected by secretions of the queen sperm storage organ (spermatheca). Here we investigate the main protein-level interactions that appear to mediate sperm competition dynamics and sperm preservation. We conducted an artificial insemination experiment and DIGE-based proteomics to identify proteomic changes when seminal fluid is exposed to spermathecal fluid followed by a mass spectrometry analysis of both secretions that allowed us to identify the sex-specific origins of the proteins that had changed in abundance. We found that spermathecal fluid targets only seven (2%) of the identified seminal fluid proteins for degradation, including two proteolytic serine proteases, a SERPIN inhibitor, and a semen-liquefying acid phosphatase. In vitro, and in vivo, experiments provided further confirmation that these proteins are key molecules mediating sexual conflict over sperm competition and viability preservation during sperm storage. In vitro, exposure to spermathecal fluid reduced the capacity of seminal fluid to compromise survival of rival sperm in a matter of hours and biochemical inhibition of these seminal fluid proteins largely eliminated that adverse effect. Our findings indicate that A. colombica, queens are in control of sperm competition and sperm storage, a capacity that has not been documented in other animals but is predicted to have independently evolved in other polyandrous social insects.


Asunto(s)
Hormigas/metabolismo , Proteínas de Insectos/metabolismo , Conducta Sexual Animal/fisiología , Animales , Electroforesis en Gel Bidimensional , Femenino , Masculino , Inhibidores de Proteasas/farmacología , Proteoma/metabolismo , Semen/efectos de los fármacos , Semen/metabolismo , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
15.
Bull Entomol Res ; 111(4): 464-475, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33691812

RESUMEN

Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.


Asunto(s)
Hormigas/genética , Antenas de Artrópodos/metabolismo , Receptores Odorantes/genética , Olfato/genética , Transcriptoma , Animales , Hormigas/metabolismo , Filogenia , Receptores Odorantes/metabolismo
16.
J Therm Biol ; 100: 103030, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503777

RESUMEN

Color traits are highly influenced by environmental conditions along the distributional range of many species. Studies on the variation of animal coloration across different geographic gradients are, therefore, fundamental for a better understanding of the ecological and evolutionary processes that shape color variation. Here, we address whether color lightness in velvet ants (Hymenoptera: Mutillidae) responds to latitudinal gradients and bioclimatic variations, testing three ecogeographic rules: The Thermal melanism hypothesis; the Photoprotection hypothesis; and Gloger's rule. We test these hypotheses across the New World. We used photographs of 482 specimens (n = 142 species) of female mutillid wasps and extracted data on color lightness (V). We analyzed whether variation in color is determined by bioclimatic factors, using Phylogenetic Generalized Least Square analysis. Our explanatory variables were temperature, ultraviolet radiation, humidity, and forest indicators. Our results were consistent with the Photoprotection hypothesis and Gloger's rule. Species with darker coloration occupied habitats with more vegetation, higher humidity, and UV-B radiation. However, our results refute one of the initial hypotheses suggesting that mutillids do not respond to the predictions of the Thermal melanism hypothesis. The results presented here provide the first evidence that abiotic components of the environment can act as ecological filters and as selective forces driving the body coloration of velvet ants. Finally, we suggest that studies using animals with melanin-based colors as a model for mimetic and aposematic coloration hypotheses consider that this coloration may also be under the influence of climatic factors and not only predators.


Asunto(s)
Adaptación Fisiológica , Hormigas/fisiología , Pigmentación , Animales , Hormigas/metabolismo , Humedad , Temperatura , Rayos Ultravioleta
17.
Molecules ; 26(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562181

RESUMEN

The African weaver ant, Oecophylla longinoda, is used as a biological control agent for the management of pests. The ant has several exocrine glands in the abdomen, including Dufour's, poison, rectal, and sternal glands, which are associated with pheromone secretions for intra-specific communication. Previous studies have analyzed the gland secretions of Dufour's and poison glands. The chemistry of the rectal and sternal glands is unknown. We re-analyzed the secretions from Dufour's and poison glands plus the rectal and sternal glands to compare their chemistries and identify additional components. We used the solid-phase microextraction (SPME) technique to collect gland headspace volatiles and solvent extraction for the secretions. Coupled gas chromatography-mass spectrometry (GC-MS) analysis detected a total of 78 components, of which 62 were being reported for the first time. These additional components included 32 hydrocarbons, 12 carboxylic acids, 5 aldehydes, 3 alcohols, 2 ketones, 4 terpenes, 3 sterols, and 1 benzenoid. The chemistry of Dufour's and poison glands showed a strong overlap and was distinct from that of the rectal and sternal glands. The different gland mixtures may contribute to the different physiological and behavioral functions in this ant species.


Asunto(s)
Hormigas/química , Glándulas Exocrinas/química , Control Biológico de Vectores , Abdomen , Alcoholes/química , Alcoholes/aislamiento & purificación , Aldehídos/química , Aldehídos/aislamiento & purificación , Animales , Hormigas/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/química , Hidrocarburos/aislamiento & purificación , Cetonas/química , Cetonas/aislamiento & purificación , Feromonas/biosíntesis , Feromonas/química , Feromonas/aislamiento & purificación , Microextracción en Fase Sólida , Esteroles/química , Esteroles/aislamiento & purificación , Terpenos/química , Terpenos/aislamiento & purificación
18.
J Exp Zool B Mol Dev Evol ; 334(4): 225-234, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32037664

RESUMEN

In the major eusocial species of Hymenoptera, the regulatory mechanisms controlling queen/worker differentiation and exclusive reproduction by queens have been studied extensively. These studies have shown that insulin/insulin-like growth factors and juvenile hormones (JHs) act as key endocrine factors. However, although considerable knowledge has accumulated in this area, large disparities in the regulatory mechanisms governing caste differentiation have been observed in different hymenopteran taxa to date. We focused on the queenless ant Pristomyrmex punctatus (Hymenoptera: Formicidae), which exhibits the simplest type of sociality and in which reproductive tasks (egg production) are distributed among morphologically and genetically identical workers. To elucidate the molecular mechanisms underlying reproduction in P. punctatus, we analyzed the correlations between the gene expression profiles of a reproductive marker gene, vitellogenin (PripuVTG1), and candidate regulatory genes comprising the major components of the JH and insulin/insulin-like growth factor signaling pathways that are involved in the regulation of reproduction upstream of JH signaling. Expression of insulin-like peptide 1 (PripuILP1) and JH signaling-related genes was negatively correlated with PripuVTG1 expression. On the contrary, insulin-like peptide 2 (PripuILP2a) was positively correlated with PripuVTG1. These findings suggest that an equilibrium perhaps controlled by switches in JH signaling exists between these two ILP paralogs, and that these interactions are important for regulating reproduction. Our findings are expected to be useful for understanding how various modes of sociality have evolved in insects.


Asunto(s)
Hormigas/metabolismo , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Oviposición/fisiología , Animales , Hormigas/clasificación , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
19.
Zoolog Sci ; 37(4): 371-381, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32729716

RESUMEN

Camponotus japonicus uses basiconic antennal sensilla (s. basiconica) to sense a colony-specific blend of species-specific cuticular hydrocarbons (CHCs). The inner portion of the s. basiconica is filled with sensillar lymph and chemosensory proteins (CSPs) presumed to transport CHCs to olfactory neuron receptors. Although 12 CSPs have been found in C. japonicus antennae, we focused on CjapCSP1 and CjapCSP13. The molecular basis of CSP1 function was explored by observation of its structure in solution at pH 4.0 and 7.0 through circular dichroism (CD) and X-ray solution scattering. Although the secondary structure did not vary with pH change, the radius of gyration (Rg) was larger by 5.3% (0.74 Å increase) at pH 4.0 than at pH 7.0. The dissociation constant (Kd) for CjapCSP1 measured with a fluorescent probe, 1-N-phenylnaphthylamine, was larger at pH 4.0 than at pH 7.0, suggesting that acidic pH triggers ligand dissociation. In contrast to CjapCSP1, the Rg of CjapCSP13 was slightly smaller at pH 4.0 than at pH 7.0. Western blotting and immunohistochemistry with protein-specific antisera revealed that both CjapCSP1 and CjapCSP13 are detected in the antennae, but differ in their specific internal localization. Binding to four compounds, including the ant CHC (z)-9-tricosene, was examined. Although both CjapCSP1 and CjapCSP13 bound to (z)-9-tricosene, CjapCSP13 bound with higher affinity than CjapCSP1 and showed different binding properties. CjapCSP1 and CjapCSP13 are synthesized by the same cells of the antenna, but function differently in CHC distribution due to differences in their localization and binding characteristics.


Asunto(s)
Hormigas/metabolismo , Antenas de Artrópodos/metabolismo , Proteínas de Insectos/metabolismo , Animales , Células Quimiorreceptoras/fisiología , Regulación de la Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Proteínas de Insectos/química , Unión Proteica , Transporte de Proteínas
20.
Proc Natl Acad Sci U S A ; 114(32): 8586-8591, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28696298

RESUMEN

Animals use a variety of sensory modalities-including visual, acoustic, and chemical-to sense their environment and interact with both conspecifics and other species. Such communication is especially critical in eusocial insects such as honey bees and ants, where cooperation is critical for survival and reproductive success. Various classes of chemoreceptors have been hypothesized to play essential roles in the origin and evolution of eusociality in ants, through their functional roles in pheromone detection that characterizes reproductive status and colony membership. To better understand the molecular mechanisms by which chemoreceptors regulate social behaviors, we investigated the roles of a critical class of chemoreceptors, the odorant receptors (ORs), from the ponerine ant Harpegnathos saltator in detecting cuticular hydrocarbon pheromones. In light of the massive OR expansion in ants (∼400 genes per species), a representative survey based on phylogenetic and transcriptomic criteria was carried out across discrete odorant receptor subfamilies. Responses to several classes of semiochemicals are described, including cuticular hydrocarbons and mandibular gland components that act as H. saltator pheromones, and a range of more traditional general odorants. When viewed through the prism of caste-specific OR enrichment and distinctive OR subfamily odorant response profiles, our findings suggest that whereas individual HsOrs appear to be narrowly tuned, there is no apparent segregation of tuning responses within any discrete HsOr subfamily. Instead, the HsOR gene family as a whole responds to a broad array of compounds, including both cuticular hydrocarbons and general odorants that are likely to mediate distinct behaviors.


Asunto(s)
Hormigas , Proteínas de Insectos , Feromonas/metabolismo , Receptores Odorantes , Transcriptoma/fisiología , Animales , Hormigas/genética , Hormigas/metabolismo , Conducta Animal/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA