Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37257450

RESUMEN

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Asunto(s)
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infección Irruptiva , Multiómica , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Immunity ; 56(9): 2137-2151.e7, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37543032

RESUMEN

How infection by a viral variant showing antigenic drift impacts a preformed mature human memory B cell (MBC) repertoire remains an open question. Here, we studied the MBC response up to 6 months after SARS-CoV-2 Omicron BA.1 breakthrough infection in individuals previously vaccinated with three doses of the COVID-19 mRNA vaccine. Longitudinal analysis, using single-cell multi-omics and functional analysis of monoclonal antibodies from RBD-specific MBCs, revealed that a BA.1 breakthrough infection mostly recruited pre-existing cross-reactive MBCs with limited de novo response against BA.1-restricted epitopes. Reorganization of clonal hierarchy and new rounds of germinal center reactions, however, combined to maintain diversity and induce progressive maturation of the MBC repertoire against common Hu-1 and BA.1, but not BA.5-restricted, SARS-CoV-2 Spike RBD epitopes. Such remodeling was further associated with a marked improvement in overall neutralizing breadth and potency. These findings have fundamental implications for the design of future vaccination booster strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Células B de Memoria , Infección Irruptiva , Epítopos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
3.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958334

RESUMEN

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Infección Irruptiva , ARN Viral , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación
5.
Nature ; 614(7948): 521-529, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535326

RESUMEN

Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.


Asunto(s)
Anticuerpos Antivirales , Deriva y Cambio Antigénico , COVID-19 , Evolución Molecular , Inmunidad Humoral , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infección Irruptiva/inmunología , Infección Irruptiva/virología , COVID-19/inmunología , COVID-19/virología , Sueroterapia para COVID-19 , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Deriva y Cambio Antigénico/inmunología , Mutación
6.
PLoS Pathog ; 20(1): e1011805, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198521

RESUMEN

Hybrid immunity (vaccination + natural infection) to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. The mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed for T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera, reflected by smaller antigenic cartography distances. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Vacuna BNT162 , Infección Irruptiva , COVID-19/prevención & control , Mesocricetus , Anticuerpos Neutralizantes , Complicaciones Posoperatorias , ARN Mensajero/genética , Inmunidad , Anticuerpos Antivirales , Vacunación
7.
J Immunol ; 213(8): 1105-1114, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39248629

RESUMEN

Infection before primary vaccination (herein termed "hybrid immunity") engenders robust humoral immunity and broad Ab-dependent cell-mediated cytotoxicity (ADCC) across SARS-CoV-2 variants. We measured and compared plasma IgG and IgA against Wuhan-Hu-1 and Omicron (B.1.1.529) full-length spike (FLS) and receptor binding domain after three mRNA vaccines encoding Wuhan-Hu-1 spike (S) and after Omicron breakthrough infection. We also measured IgG binding to Wuhan-Hu-1 and Omicron S1, Wuhan-Hu-1 S2 and Wuhan-Hu-1 and Omicron cell-based S. We compared ADCC using human embryonic lung fibroblast (MRC-5) cells expressing Wuhan-Hu-1 or Omicron S. The effect of Omicron breakthrough infection on IgG anti-Wuhan-Hu-1 and Omicron FLS avidity was also considered. Despite Omicron breakthrough infection increasing IgG and IgA against FLS and receptor binding domain to levels similar to those seen with hybrid immunity, there was no boost to ADCC. Preferential recognition of Wuhan-Hu-1 persisted following Omicron breakthrough infection, which increased IgG avidity against Wuhan-Hu-1 FLS. Despite similar total anti-FLS IgG levels following breakthrough infection, 4-fold higher plasma concentrations were required to elicit ADCC comparable to that elicited by hybrid immunity. The greater capacity for hybrid immunity to elicit ADCC was associated with a differential IgG reactivity pattern against S1, S2, and linear determinants throughout FLS. Immunity against SARS-CoV-2 following Omicron breakthrough infection manifests significantly less ADCC capacity than hybrid immunity. Thus, the sequence of antigenic exposure by infection versus vaccination and other factors such as severity of infection affect antiviral functions of humoral immunity in the absence of overt quantitative differences in the humoral response.


Asunto(s)
Anticuerpos Antivirales , Citotoxicidad Celular Dependiente de Anticuerpos , Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Vacunación , Femenino , Inmunoglobulina A/inmunología , Masculino , Persona de Mediana Edad , Adulto , Anticuerpos Neutralizantes/inmunología , Infección Irruptiva
8.
Mol Cell Proteomics ; 23(6): 100769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641227

RESUMEN

The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA2.2 breakthrough infections were enrolled. Serum samples were collected at days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Proteómica , SARS-CoV-2 , Humanos , Proteómica/métodos , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , Femenino , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Masculino , Estudios Longitudinales , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunización Secundaria , Vacunación , Estudios de Cohortes , Proteoma , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Infección Irruptiva
9.
Proc Natl Acad Sci U S A ; 120(45): e2308655120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903249

RESUMEN

The ongoing SARS-CoV-2 epidemic was marked by the repeated emergence and replacement of "variants" with genetic and phenotypic distance from the ancestral strains, the most recent examples being viruses of the Omicron lineage. Here, we describe a hamster direct contact exposure challenge model to assess protection against reinfection conferred by either vaccination or prior infection. We found that two doses of self-amplifying RNA vaccine based on the ancestral Spike ameliorated weight loss following Delta infection and decreased viral loads but had minimal effect on Omicron BA.1 infection. Prior vaccination followed by Delta or BA.1 breakthrough infections led to a high degree of cross-reactivity to all tested variants, suggesting that repeated exposure to antigenically distinct Spikes, via infection and/or vaccination drives a cross-reactive immune response. Prior infection with ancestral or Alpha variant was partially protective against BA.1 infection, whereas all animals previously infected with Delta and exposed to BA.1 became reinfected, although they shed less virus than BA.1-infected naive hamsters. Hamsters reinfected with BA.1 after prior Delta infection emitted infectious virus into the air, indicating that they could be responsible for onwards airborne transmission. We further tested whether prior infection with BA.1 protected from reinfection with Delta or later Omicron sublineages BA.2, BA.4, or BA.5. BA.1 was protective against BA.2 but not against Delta, BA.4, or BA.5 reinfection. These findings suggest that cohorts whose only immune experience of COVID-19 is Omicron BA.1 infection may be vulnerable to future circulation of reemerged Delta-like derivatives, as well as emerging Omicron sublineages.


Asunto(s)
COVID-19 , Hepatitis D , Animales , Cricetinae , Infección Irruptiva , Reinfección , Reacciones Cruzadas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
10.
Proc Natl Acad Sci U S A ; 120(23): e2220948120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253011

RESUMEN

The antiviral benefit of antibodies can be compromised by viral escape especially for rapidly evolving viruses. Therefore, durable, effective antibodies must be both broad and potent to counter newly emerging, diverse strains. Discovery of such antibodies is critically important for SARS-CoV-2 as the global emergence of new variants of concern (VOC) has compromised the efficacy of therapeutic antibodies and vaccines. We describe a collection of broad and potent neutralizing monoclonal antibodies (mAbs) isolated from an individual who experienced a breakthrough infection with the Delta VOC. Four mAbs potently neutralize the Wuhan-Hu-1 vaccine strain, the Delta VOC, and also retain potency against the Omicron VOCs through BA.4/BA.5 in both pseudovirus-based and authentic virus assays. Three mAbs also retain potency to recently circulating VOCs XBB.1.5 and BQ.1.1 and one also potently neutralizes SARS-CoV-1. The potency of these mAbs was greater against Omicron VOCs than all but one of the mAbs that had been approved for therapeutic applications. The mAbs target distinct epitopes on the spike glycoprotein, three in the receptor-binding domain (RBD) and one in an invariant region downstream of the RBD in subdomain 1 (SD1). The escape pathways we defined at single amino acid resolution with deep mutational scanning show they target conserved, functionally constrained regions of the glycoprotein, suggesting escape could incur a fitness cost. Overall, these mAbs are unique in their breadth across VOCs, their epitope specificity, and include a highly potent mAb targeting a rare epitope outside of the RBD in SD1.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Infección Irruptiva , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
11.
Proc Natl Acad Sci U S A ; 120(16): e2221652120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036977

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) possess mutations that confer resistance to neutralizing antibodies within the Spike protein and are associated with breakthrough infection and reinfection. By contrast, less is known about the escape from CD8+ T cell-mediated immunity by VOC. Here, we demonstrated that all SARS-CoV-2 VOCs possess the ability to suppress major histocompatibility complex class I (MHC-I) expression. We identified several viral genes that contribute to the suppression of MHC I expression. Notably, MHC-I upregulation was strongly inhibited after SARS-CoV-2 but not influenza virus infection in vivo. While earlier VOCs possess similar capacity as the ancestral strain to suppress MHC-I, the Omicron subvariants exhibited a greater ability to suppress surface MHC-I expression. We identified a common mutation in the E protein of Omicron that further suppressed MHC-I expression. Collectively, our data suggest that in addition to escaping from neutralizing antibodies, the success of Omicron subvariants to cause breakthrough infection and reinfection may in part be due to its optimized evasion from T cell recognition.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infección Irruptiva , COVID-19/genética , Reinfección , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
12.
J Virol ; 98(3): e0120623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305154

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with greater transmissibility or immune evasion properties has jeopardized the existing vaccine and antibody-based countermeasures. Here, we evaluated the efficacy of boosting pre-immune hamsters with protein nanoparticle vaccines (Novavax, Inc.) containing recombinant Prototype (Wuhan-1) or BA.5 S proteins against a challenge with the Omicron BA.5 variant of SARS-CoV-2. Serum antibody binding and neutralization titers were quantified before challenge, and viral loads were measured 3 days after challenge. Boosting with Prototype or BA.5 vaccine induced similar antibody binding responses against ancestral Wuhan-1 or BA.5 S proteins, and neutralizing activity of Omicron BA.1 and BA.5 variants. One and three months after vaccine boosting, hamsters were challenged with the Omicron BA.5 variant. Prototype and BA.5 vaccine-boosted hamsters had reduced viral infection in the nasal washes, nasal turbinates, and lungs compared to unvaccinated animals. Although no significant differences in virus load were detected between the Prototype and BA.5 vaccine-boosted animals, fewer breakthrough infections were detected in the BA.5-vaccinated hamsters. Thus, immunity induced by Prototype or BA.5 S protein nanoparticle vaccine boosting can protect against the Omicron BA.5 variant in the Syrian hamster model. IMPORTANCE: As SARS-CoV-2 continues to evolve, there may be a need to update the vaccines to match the newly emerging variants. Here, we compared the protective efficacy of the updated BA.5 and the original Wuhan-1 COVID-19 vaccine against a challenge with the BA.5 Omicron variant of SARS-CoV-2 in hamsters. Both vaccines induced similar levels of neutralizing antibodies against multiple variants of SARS-CoV-2. One and three months after the final immunization, hamsters were challenged with BA.5. No differences in protection against the BA.5 variant virus were observed between the two vaccines, although fewer breakthrough infections were detected in the BA.5-vaccinated hamsters. Together, our data show that both protein nanoparticle vaccines are effective against the BA.5 variant of SARS-CoV-2 but given the increased number of breakthrough infections and continued evolution, it is important to update the COVID-19 vaccine for long-term protection.


Asunto(s)
Vacunas contra la COVID-19 , Nanovacunas , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , Infección Irruptiva/virología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Mesocricetus/inmunología , Mesocricetus/virología , Nanovacunas/inmunología , SARS-CoV-2/inmunología , Inmunización Secundaria , Carga Viral
13.
PLoS Pathog ; 19(12): e1011856, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048356

RESUMEN

The rapid emergence of SARS-CoV-2 variants of concern (VOCs) calls for efforts to study broadly neutralizing antibodies elicited by infection or vaccination so as to inform the development of vaccines and antibody therapeutics with broad protection. Here, we identified two convalescents of breakthrough infection with relatively high neutralizing titers against all tested viruses. Among 50 spike-specific monoclonal antibodies (mAbs) cloned from their B cells, the top 6 neutralizing mAbs (KXD01-06) belong to previously defined IGHV3-53/3-66 public antibodies. Although most antibodies in this class are dramatically escaped by VOCs, KXD01-06 all exhibit broad neutralizing capacity, particularly KXD01-03, which neutralize SARS-CoV-2 from prototype to the emerging EG.5.1 and FL.1.5.1. Deep mutational scanning reveals that KXD01-06 can be escaped by current and prospective variants with mutations on D420, Y421, L455, F456, N460, A475 and N487. Genetic and functional analysis further indicates that the extent of somatic hypermutation is critical for the breadth of KXD01-06 and other IGHV3-53/3-66 public antibodies. Overall, the prevalence of broadly neutralizing IGHV3-53/3-66 public antibodies in these two convalescents provides rationale for novel vaccines based on this class of antibodies. Meanwhile, KXD01-06 can be developed as candidates of therapeutics against SARS-CoV-2 through further affinity maturation.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2/genética , Infección Irruptiva , Estudios Prospectivos , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
14.
PLoS Pathog ; 19(8): e1011596, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603565

RESUMEN

SARS-CoV-2 (CoV2) infected, asymptomatic individuals are an important contributor to COVID transmission. CoV2-specific immunoglobulin (Ig)-as generated by the immune system following infection or vaccination-has helped limit CoV2 transmission from asymptomatic individuals to susceptible populations (e.g. elderly). Here, we describe the relationships between COVID incidence and CoV2 lineage, viral load, saliva Ig levels (CoV2-specific IgM, IgA and IgG), and ACE2 binding inhibition capacity in asymptomatic individuals between January 2021 and May 2022. These data were generated as part of a large university COVID monitoring program in Ohio, United States of America, and demonstrate that COVID incidence among asymptomatic individuals occurred in waves which mirrored those in surrounding regions, with saliva CoV2 viral loads becoming progressively higher in our community until vaccine mandates were established. Among the unvaccinated, infection with each CoV2 lineage (pre-Omicron) resulted in saliva Spike-specific IgM, IgA, and IgG responses, the latter increasing significantly post-infection and being more pronounced than N-specific IgG responses. Vaccination resulted in significantly higher Spike-specific IgG levels compared to unvaccinated infected individuals, and uninfected vaccinees' saliva was more capable of inhibiting Spike function. Vaccinees with breakthrough Delta infections had Spike-specific IgG levels comparable to those of uninfected vaccinees; however, their ability to inhibit Spike binding was diminished. These data are consistent with COVID vaccines having achieved hoped-for effects in our community, including the generation of mucosal antibodies that inhibit Spike and lower community viral loads, and suggest breakthrough Delta infections were not due to an absence of vaccine-elicited Ig, but instead limited Spike binding activity in the face of high community viral loads.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Anciano , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Saliva , Universidades , Infección Irruptiva , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M
15.
Rev Med Virol ; 34(2): e2522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38348583

RESUMEN

Recently, patients with Mpox breakthrough infection or reinfection were constantly reported. However, the induction, risk factors, and important clinical symptoms of breakthrough infection and reinfection of Mpox virus (MPXV), as well as the factors affecting the effectiveness of Mpox vaccine are not characterized. Herein, a literature review was preformed to summarize the risk factors and important clinical symptoms of patients with Mpox breakthrough infection or reinfection, as well as the factors affecting the effectiveness of smallpox vaccine against Mpox. Results showed that MSM sexual behavior, condomless sexual behavior, multiple sexual partners, close contact, HIV infection, and the presence of comorbidity are important risk factors for Mpox breakthrough infection and reinfection. Genital ulcers, proctitis, and lymphadenopathy are the important clinical symptoms of Mpox breakthrough infection and reinfection. The effectiveness of emergent vaccination of smallpox vaccine for post-exposure of MPXV is associated with smallpox vaccination history, interval between exposure and vaccination, and history of HIV infection. This review provides a better understanding for the risk factors and important clinical symptoms of Mpox breakthrough infection and reinfection, as well as the formulation of Mpox vaccine vaccination strategies.


Asunto(s)
Infecciones por VIH , Mpox , Vacuna contra Viruela , Humanos , Reinfección/epidemiología , Reinfección/prevención & control , Infección Irruptiva , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Antígenos Virales
16.
J Immunol ; 210(9): 1236-1246, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961450

RESUMEN

mRNA vaccination of individuals with prior SARS-CoV-2 infection provides superior protection against breakthrough infections with variants of concern compared with vaccination in the absence of prior infection. However, the immune mechanisms by which this hybrid immunity is generated and maintained are unknown. Whereas genetic variation in spike glycoprotein effectively subverts neutralizing Abs, spike-specific T cells are generally maintained against SARS-CoV-2 variants. Thus, we comprehensively profiled human T cell responses against the S1 and S2 domains of spike glycoprotein in a cohort of SARS-CoV-2-naive (n = 13) or -convalescent (n = 17) individuals who received two-dose mRNA vaccine series and were matched by age, sex, and vaccine type. Using flow cytometry, we observed that the overall functional breadth of CD4 T cells and polyfunctional Th1 responses was similar between the two groups. However, polyfunctional cytotoxic CD4 T cell responses against both S1 and S2 domains trended higher among convalescent subjects. Multimodal single-cell RNA sequencing revealed diverse functional programs in spike-specific CD4 and CD8 T cells in both groups. However, convalescent individuals displayed enhanced cytotoxic and antiviral CD8 T cell responses to both S1 and S2 in the absence of cytokine production. Taken together, our data suggest that cytotoxic CD4 and CD8 T cells targeting spike glycoprotein may partially account for hybrid immunity and protection against breakthrough infections with SARS-CoV-2.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Infección Irruptiva , ARN Mensajero , Vacunación , Inmunidad Adaptativa , Glicoproteínas , Anticuerpos Antivirales , Anticuerpos Neutralizantes
17.
J Allergy Clin Immunol ; 154(3): 754-766.e7, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38763170

RESUMEN

BACKGROUND: Despite impaired humoral response in patients treated with immunosuppressants (ISPs), recent studies found similar severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection compared to controls. One potential explanation is the rapid generation of humoral response on infection, but evidence is lacking. OBJECTIVES: We investigated the longitudinal dynamics of the SARS-CoV-2 antibody repertoire after SARS-CoV-2 delta and omicron breakthrough infection in patients with immune-mediated inflammatory diseases (IMIDs) receiving ISP therapy and controls. METHODS: As a prospective substudy of the national Target-to-B! (T2B!) consortium, we included IMID patients receiving ISPs therapy and controls who reported SARS-CoV-2 breakthrough infection between July 1, 2021, and April 1, 2022. To get an impression of the dynamics of the antibody repertoire, 3 antibody titers of wild-type RBD, wild-type S, and omicron RBD were measured at 4 time points after SARS-CoV-2 breakthrough infection. RESULTS: We included 302 IMID patients receiving ISPs and 178 controls. Antibody titers increased up to 28 days after breakthrough infection in both groups. However, in IMID patients receiving therapy with anti-CD20 and sphingosine-1 phosphate receptor modulators, antibody titers were considerably lower compared to controls. In the anti-TNF group, we observed slightly lower antibody titers in the early stages and a faster decline of antibodies after infection compared to controls. Breakthrough infections were mostly mild, and hospitalization was required in less than 1% of cases. CONCLUSIONS: Most ISPs do not influence the dynamics of the SARS-CoV-2 antibody repertoire and exhibit a rapid recall response with cross-reactive antibody clones toward new virus variants. However, in patients treated with anti-CD20 therapy or sphingosine-1 phosphate receptor modulators, the dynamics were greatly impaired, and to a lesser extent in those who received anti-TNF. Nevertheless, only a few severe breakthrough cases were reported.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunidad Humoral , Inmunosupresores , SARS-CoV-2 , Humanos , COVID-19/inmunología , Masculino , SARS-CoV-2/inmunología , Persona de Mediana Edad , Femenino , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Inmunosupresores/uso terapéutico , Anciano , Estudios Prospectivos , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Infección Irruptiva
18.
J Infect Dis ; 229(6): 1711-1721, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38149984

RESUMEN

BACKGROUND: Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS: We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS: In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS: In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunación , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , China , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Mutación , Sustitución de Aminoácidos , Variación Genética , Masculino , Femenino , Infección Irruptiva
19.
Immunology ; 172(2): 313-327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462236

RESUMEN

This study longitudinally evaluated the immune response in individuals over a year after receiving three doses of an inactivated SARS-CoV-2 vaccine, focusing on reactions to Omicron breakthrough infections. From 63 blood samples of 37 subjects, results showed that the third booster enhanced the antibody response against Alpha, Beta, and Delta VOCs but was less effective against Omicron. Although antibody titres decreased post-vaccination, SARS-CoV-2-specific T-cell responses, both CD4+ and CD8+, remained stable. Omicron breakthrough infections significantly improved neutralization against various VOCs, including Omicron. However, the boost in antibodies against WT, Alpha, Beta, and Delta variants was more pronounced. Regarding T cells, breakthrough infection predominantly boosted the CD8+ T-cell response, and the intensity of the spike protein-specific T-cell response was roughly comparable between WT and Omicron BA.5.


Asunto(s)
Anticuerpos Antivirales , Infección Irruptiva , Vacunas contra la COVID-19 , COVID-19 , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infección Irruptiva/epidemiología , Infección Irruptiva/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Inmunización Secundaria , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
20.
Am J Epidemiol ; 193(2): 285-295, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37823271

RESUMEN

In this study, we aimed to evaluate the impact of vaccination on intensive care unit (ICU) admission and in-hospital mortality among breakthrough coronavirus disease 2019 (COVID-19) infections. A total of 3,351 adult patients hospitalized with COVID-19 in the Memorial Healthcare System (Hollywood, Florida) between June 1 and September 20, 2021, were included; 284 (8.5%) were fully vaccinated. A propensity-score-matched analysis was conducted to compare fully vaccinated patients with unvaccinated controls. Propensity scores were calculated on the basis of variables associated with vaccination status. A 1:1 matching ratio was applied using logistic regression models, ensuring balanced characteristics between the two groups. The matched samples were then subjected to multivariate analysis. Among breakthrough infections, vaccinated patients demonstrated lower incidences of ICU admission (10.3% vs. 16.4%; P = 0.042) and death (12.2% vs. 18.7%; P = 0.041) than the matched controls. Risk-adjusted multivariate analysis demonstrated a significant inverse association between vaccination and ICU admission (odds ratio = 0.52, 95% confidence interval: 0.31, 0.89; P = 0.019) as well as in-hospital mortality (odds ratio = 0.57, 95% confidence interval: 0.34, 0.94; P = 0.027). Vaccinated individuals experiencing breakthrough infections had significantly lower risks of ICU admission and in-hospital mortality. These findings highlight the benefits of COVID-19 vaccines in reducing severe outcomes among patients with breakthrough infections.


Asunto(s)
COVID-19 , Adulto , Humanos , Vacunas contra la COVID-19 , Infección Irruptiva , Puntaje de Propensión , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA