Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.560
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Transl Med ; 22(1): 80, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243294

RESUMEN

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Asunto(s)
Infecciones por Clostridium , Enteritis , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Humanos , Animales , Clostridium perfringens/genética , Pollos/genética , ARN Ribosómico 16S/genética , Disbiosis , Yeyuno/química , Yeyuno/patología , Enteritis/microbiología , Enteritis/patología , Enteritis/veterinaria , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/patología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/patología
2.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710998

RESUMEN

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Enteritis , Variación Genética , Mastitis Bovina , Leche , Filogenia , Animales , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/clasificación , Clostridium perfringens/patogenicidad , Bovinos , Egipto , Femenino , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Leche/microbiología , Enteritis/microbiología , Enteritis/veterinaria , Mastitis Bovina/microbiología , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Fosfolipasas de Tipo C/genética , Industria Lechera , Granjas , Toxinas Bacterianas/genética
3.
Microb Pathog ; 192: 106691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759933

RESUMEN

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Asunto(s)
Alimentación Animal , Pollos , Infecciones por Clostridium , Clostridium perfringens , Citocinas , Suplementos Dietéticos , Enteritis , Enfermedades de las Aves de Corral , Selenio , Animales , Enteritis/prevención & control , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Selenio/farmacología , Selenio/administración & dosificación , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/inmunología , Clostridium perfringens/inmunología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología , Citocinas/metabolismo , Toxinas Bacterianas/inmunología , Necrosis , beta-Defensinas/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/inmunología , Yeyuno/microbiología , Yeyuno/patología , Bazo/inmunología , Levaduras , Óxido Nítrico Sintasa de Tipo II/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-1beta/metabolismo , Anticuerpos Antibacterianos/sangre
4.
Vet Res ; 55(1): 52, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622656

RESUMEN

Clostridium perfringens (C. perfringens) infection is recognized as one of the most challenging issues threatening food safety and perplexing agricultural development. To date, the molecular mechanisms of the interactions between C. perfringens and the host remain poorly understood. Here, we show that stimulator of interferon genes (STING)-dependent trained immunity protected against C. perfringens infection through mTOR signaling. Heat-killed Candida albicans (HKCA) training elicited elevated TNF-α and IL-6 production after LPS restimulation in mouse peritoneal macrophages (PM). Although HKCA-trained PM produced decreased levels of TNF-α and IL-6, the importance of trained immunity was demonstrated by the fact that HKCA training resulted in enhanced bacterial phagocytic ability and clearance in vivo and in vitro during C. perfringens infection. Interestingly, HKCA training resulted in the activation of STING signaling. We further demonstrate that STING agonist DMXAA is a strong inducer of trained immunity and conferred host resistance to C. perfringens infection in PM. Importantly, corresponding to higher bacterial burden, reduction in cytokine secretion, phagocytosis, and bacterial killing were shown in the absence of STING after HKCA training. Meanwhile, the high expression levels of AKT/mTOR/HIF1α were indeed accompanied by an activated STING signaling under HKCA or DMXAA training. Moreover, inhibiting mTOR signaling with rapamycin dampened the trained response to LPS and C. perfringens challenge in wild-type (WT) PM after HKCA training. Furthermore, STING­deficient PM presented decreased levels of mTOR signaling-related proteins. Altogether, these results support STING involvement in trained immunity which protects against C. perfringens infection via mTOR signaling.


Asunto(s)
Infecciones por Clostridium , Animales , Ratones , Infecciones por Clostridium/veterinaria , Clostridium perfringens , Interleucina-6 , Lipopolisacáridos , Serina-Treonina Quinasas TOR , Inmunidad Entrenada , Factor de Necrosis Tumoral alfa/metabolismo
5.
BMC Vet Res ; 20(1): 300, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971814

RESUMEN

BACKGROUND: Clostridium perfringens (C. perfringens) is an important zoonotic microorganism that can cause animal and human infections, however information about the prevalence status in wild birds of this pathogenic bacterium is currently limited. RESULT: In this study, 57 strains of C. perfringens were isolated from 328 fecal samples of wild birds. All the isolates were identified as type A and 70.18% of the isolates carried the cpb2 gene. Antimicrobial susceptibility testing showed that and 22.80% of the isolates were classified as multidrug-resistant strains. The MLST analysis of the 57 isolates from wild birds was categorized into 55 different sequence types (STs) and clustered into eight clonal complexes (CCs) with an average of 20.1 alleles and the Simpson Diversity index (Ds) of 0.9812, and revealed a high level of genetic diversity within the C. perfringens populations. Interestingly, the isolates from swan goose were clustered in the same CC while isolates from other bird species were more scattered suggesting that a potential difference in genetic diversity among the C. perfringens populations associated with different bird species. CONCLUSION: C. perfringens exhibits a wide range of host adaptations, varying degrees of antimicrobial resistance, and a high degree of genetic diversity in wild birds. Understanding the prevalence, toxin type, antimicrobial resistance, and genetic diversity of C. perfringens in wildlife populations is essential for developing effective strategies for disease control and management.


Asunto(s)
Animales Salvajes , Aves , Infecciones por Clostridium , Clostridium perfringens , Farmacorresistencia Bacteriana Múltiple , Variación Genética , Clostridium perfringens/genética , Clostridium perfringens/aislamiento & purificación , Clostridium perfringens/efectos de los fármacos , Animales , Aves/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/epidemiología , Animales Salvajes/microbiología , Heces/microbiología , Tipificación de Secuencias Multilocus/veterinaria , Antibacterianos/farmacología , Enfermedades de las Aves/microbiología , Enfermedades de las Aves/epidemiología , Pruebas de Sensibilidad Microbiana/veterinaria
6.
Vet Pathol ; 61(4): 653-663, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38140953

RESUMEN

While the immunodeficient status of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and NSG-related mice provides utility for numerous research models, it also results in increased susceptibility to opportunistic pathogens. Over a 9-week period, a high rate of mortality was reported in a housing room of NSG and NSG-related mice. Diagnostics were performed to determine the underlying etiopathogenesis. Mice submitted for evaluation included those found deceased (n = 2), cage mates of deceased mice with or without diarrhea (n = 17), and moribund mice (n = 8). Grossly, mice exhibited small intestinal and cecal dilation with abundant gas and/or digesta (n = 18), serosal hemorrhage and congestion (n = 6), or were grossly normal (n = 3). Histologically, there was erosive to ulcerative enterocolitis (n = 7) of the distal small and large intestine or widespread individual epithelial cell death with luminal sloughing (n = 13) and varying degrees of submucosal edema and mucosal hyperplasia. Cecal dysbiosis, a reduction in typical filamentous bacteria coupled with overgrowth of bacterial rods, was identified in 18 of 24 (75%) mice. Clostridium spp. and Paeniclostridium sordellii were identified in 13 of 23 (57%) and 7 of 23 (30%) mice, respectively. Clostridium perfringens (7 of 23, 30%) was isolated most frequently. Toxinotyping of C. perfringens positive mice (n = 2) identified C. perfringens type A. Luminal immunoreactivity to several clostridial species was identified within lesioned small intestine by immunohistochemistry. Clinicopathologic findings were thus associated with overgrowth of various clostridial species, though direct causality could not be ascribed. A diet shift preceding the mortality event may have contributed to loss of intestinal homeostasis.


Asunto(s)
Infecciones por Clostridium , Enterocolitis , Animales , Ratones , Enterocolitis/veterinaria , Enterocolitis/microbiología , Enterocolitis/patología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/patología , Infecciones por Clostridium/microbiología , Modelos Animales de Enfermedad , Ratones Endogámicos NOD , Femenino , Clostridium/aislamiento & purificación , Disbiosis/veterinaria , Disbiosis/patología , Masculino , Ciego/patología , Ciego/microbiología
7.
Food Microbiol ; 120: 104485, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431330

RESUMEN

This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Animales , Bovinos , Humanos , Clostridium perfringens/genética , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/veterinaria , Leche , Prevalencia , Granjas , Genotipo , Cruzamiento
8.
Anaerobe ; 85: 102817, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163631

RESUMEN

OBJECTIVES: This study aimed to produce and purify Clostridium perfringens type C beta-toxin, sheep anti-beta toxin immunoglobulin G (IgG) and chicken immunoglobulin Y (IgY). METHODS: Two methods were used for beta-toxin purification: single-step metal affinity chromatography (MAC) using zinc as a chelator and ion exchange chromatography (IEX). The purified and inactivated beta-toxoids were then administered to sheep and chickens in order to produce IgG and IgY. RESULTS: All assays using the IEX failed. In contrast, MAC purified more than 21 mg of toxin per run in a single-step protocol. The purified and inactivated beta-toxoids were then administered to sheep and chickens, and IgG and IgY were purified with a high yield, medium antibody titer of 50 IU/mL, and high avidity (73.2 %). CONCLUSIONS: C. perfringens type C beta-toxin and sheep or chicken anti-beta toxin IgG and IgY antibodies were successfully produced and purified using a simple protocol. This protocol can be used for the production of components used in the diagnosis and research of necrotic enteritis caused by C. perfringens type C, as well as for the evaluation of existing vaccines and the development of new preventive methods against this disease.


Asunto(s)
Antitoxinas , Infecciones por Clostridium , Enteritis , Inmunoglobulinas , Enfermedades de las Aves de Corral , Animales , Ovinos , Clostridium perfringens , Infecciones por Clostridium/veterinaria , Enteritis/veterinaria , Pollos , Toxoides , Inmunoglobulina G , Enfermedades de las Aves de Corral/prevención & control
9.
Br Poult Sci ; 65(2): 129-136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38416108

RESUMEN

1. This study evaluated the effectiveness of yeast (Saccharomyces cerevisiae) cell wall (YCW) supplementation on the growth performance, carcase characteristics, serum biomarkers, liver function, ileal histology and microbiota of broiler chickens challenged with Clostridium perfringens (C. perfringens).2. In a 35-d trial, 240 chicks aged 1-d-old were randomly assigned to one of four treatment groups, each with 10 replicates: control (CON) with no challenge or additives, challenged with C. perfringens (CHAL), CHAL and supplemented with YCW at either 0.25 g/kg (YCW0.25) or 0.5 g/kg (YCW0.5).3. In comparison to CON, the CHAL birds had reduced growth performance, survival rate, dressing percentage, breast meat yield, levels of total protein (TP), globulin (GLO), glucose (GLU), total antioxidant capacity (T-AOC) and total superoxide dismutase (T-SOD), as well as a decreased Lactobacillus population (P < 0.01). Additionally, this group showed elevated levels of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and C. perfringens count (P < 0.01). Compared to CHAL, the YCW0.25 or YCW0.5 groups had improved growth performance, survival rate, dressing percentage, breast meat yield, levels of TP, GLO, GLU, and T-AOC, as well as the activities of T-SOD, GOT, and GPT, villus height, villus surface area, villus height to crypt depth ratio, and the populations of both Lactobacillus and C. perfringens; (P < 0.01).4. The data suggested that YCW supplementation at either 0.25 or 0.50 g/kg can restore the growth performance of broiler chickens during a C. perfringens challenge.


Asunto(s)
Infecciones por Clostridium , Clostridium perfringens , Animales , Saccharomyces cerevisiae , Pollos , Prebióticos , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/patología , Suplementos Dietéticos , Antioxidantes , Pared Celular , Superóxido Dismutasa , Alimentación Animal/análisis , Dieta/veterinaria
10.
J Antimicrob Chemother ; 78(5): 1278-1281, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36995979

RESUMEN

BACKGROUND: Clostridium perfringens, the causative agent of necrotic enteritis (NE) in chickens, has an enormous economic impact on global broiler production. The non-medically important antibiotic avilamycin was approved in Canada in 2014 to prevent and control NE in broiler chickens. OBJECTIVES: To compare avilamycin susceptibility in C. perfringens isolates collected pre- and 7 years post-avilamycin approval in Canada and determine the avilamycin resistance mutation frequency rate in C. perfringens. METHODS: The MICs of avilamycin were determined for 89 strains of C. perfringens recovered from clinically relevant NE field cases pre-avilamycin approval between 2003 and 2013 (n = 50) and post-avilamycin approval between 2014 and 2021 (n = 39) across Canada. For determining the mutant prevention concentration (MPC) of avilamycin for C. perfringens strains, a strain with avilamycin MIC of 1 mg/L was randomly selected. RESULTS: MIC studies showed no difference in avilamycin susceptibility in pre-avilamycin and post-avilamycin isolates (MIC50/90: pre-avilamycin approval 2/2 mg/L and post-avilamycin approval 1/2 mg/L). The MPC was 8 × MIC (8 mg/L) for the selected strain. CONCLUSIONS: These findings suggest that the susceptibility of C. perfringens strains to avilamycin was not impacted by its continued use in the 7 years following its approval in Canada. Avilamycin, a non-medically important antibiotic, poses no threat to human health regarding cross-resistance or co-selection of other medically important antibiotics. These factors make avilamycin an appropriate choice for continued use in broiler chickens to prevent and control NE without increased antimicrobial resistance concerns.


Asunto(s)
Infecciones por Clostridium , Enfermedades de las Aves de Corral , Humanos , Animales , Clostridium perfringens/genética , Aves de Corral , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/prevención & control , Pollos , Antibacterianos/farmacología , Canadá , Pruebas de Sensibilidad Microbiana
11.
Appl Environ Microbiol ; 89(10): e0037923, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823643

RESUMEN

Clostridioides (Clostridium) difficile is a leading cause of infectious diarrhea in humans and production animals and can be found in a variety of environmental sources. The prevalence and diversity of multi-locus sequence type clade 5 strains of C. difficile in Australian production animals suggest Australia might be the ancestral home of this lineage of One Health importance. To better understand the role of the environment in the colonization of humans and animals in Australia, it is important to investigate these endemic sources. This study describes the prevalence, molecular epidemiology, and biogeographic distribution of C. difficile in soils of Western Australia. A total of 321 soil samples from remote geographical locations across the eight health regions of Western Australia were screened for C. difficile and isolates characterized by PCR ribotyping and toxin gene profiling. C. difficile was isolated from 31.15% of samples, with the highest prevalence in the Perth Metropolitan Health Region (49.25%, n = 33/67). Overall, 52 different strains [PCR ribotypes (RTs)] were identified, with 14 being novel, and 38% (38/100) of isolates being toxigenic, the most common of which was RT014/020. Five unique novel isolates showed characteristics similar to C. difficile clade 5. This is the first study of C. difficile isolated from soils in Australia. The high prevalence and heterogeneity of C. difficile strains recovered suggest that soils play a role in the survival and environmental dissemination of this organism, and potentially its transmission among native wildlife and production animals, and in community and hospital settings.IMPORTANCEClostridium difficile is a pathogen of One Health importance. To better understand the role of the environment in human and animal colonization/infection, it is critical that autochthonous reservoirs/sources of C. difficile be investigated. This is the first study of C. difficile isolated from soils of Western Australia (WA). Here, the ecology of C. difficile in WA is described by examining the geographic distribution, molecular epidemiology, and diversity of C. difficile isolated from soils across WA.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Humanos , Australia/epidemiología , Clostridioides/genética , Epidemiología Molecular , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/veterinaria , Ribotipificación , Clostridium/genética
12.
Microb Pathog ; 182: 106269, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516212

RESUMEN

Clostridium perfringens (types A and C) can cause several diseases by secreting alpha (CPA) and beta (CPB) exotoxins in the gastrointestinal tract. Although vaccination is the main measure of immunization against C. perfringens, available vaccines have limitations in terms of productivity and safety. Thus, recombinant vaccines are an important, more effective, practical, and safer strategy in the immunization of animals. In this study, we evaluated the immunization of sheep with recombinant Escherichia coli bacterins expressing CPA and CPB complete proteins (co-administered), the immunogenic nontoxic domains rCPA-C247-370 and rCPB-C143-311 co-administered or fused as a bivalent chimera (rCPBcAc). For this, in silico analysis was performed to design rCPBcAc, considering the stability of the mRNA (-278.80 kcal/mol), the degree of antigenicity (0.7557), the epitopes of the B cell ligand, and different physicochemical characteristics. All proteins were expressed in vitro. In vivo, animals vaccinated with the co-administered antigens rCPA + rCPB and rCPA-C+ rCPB-C (200 µg each) had mean CPA and CPB neutralizing antitoxin titers of 4, 10, 4.8, and 14.4 IU/mL, respectively, while those vaccinated with 200 µg of rCPBcAc chimera (approximately 100 µg of each antigen) had titers of <4 and 12 IU/mL of CPA and CPB antitoxins, respectively, 56 days after the administration of the first dose. In addition, the chimera was considered to be immunogenic for inducing antitoxin titers using the half dose. In this study, we presented a new recombinant antigen potentially applicable for vaccines against the CPA and CPB toxins for preventing diseases caused by Clostridium perfringens.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Infecciones por Clostridium , Animales , Ovinos , Clostridium perfringens/metabolismo , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Vacunas Bacterianas , Inmunización , Vacunación , Vacunas Sintéticas , Anticuerpos Antibacterianos
13.
Avian Pathol ; 52(2): 108-118, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36453684

RESUMEN

Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1ß gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFß, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.


Asunto(s)
Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Clostridium perfringens/genética , Infecciones por Clostridium/veterinaria , Pollos , Virulencia , Enteritis/veterinaria , Enfermedades de las Aves de Corral/patología , Inmunidad , Antiinflamatorios/metabolismo
14.
Avian Pathol ; 52(5): 309-322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37485826

RESUMEN

The poultry industry has been facing the impact of necrotic enteritis (NE), a disease caused by the bacterium Clostridium perfringens producing the haemolytic toxin NetB. NE severity may vary from mild clinical to prominent enteric signs causing reduced growth rates and affecting feed conversion ratio. NetB production is controlled by the Agr-like quorum-sensing (QS) system, which coordinates virulence gene expression in response to bacterial cell density. In this study, the peptide-containing cell-free spent media (CFSM) from Enterococcus faecium was tested in NE challenged broilers in two battery cage and one floor pen studies. Results showed a significant reduction of NE mortality. Metagenomic sequencing of the jejunum microbiome revealed no impact of the CFSM on the microbial community, and growth of C. perfringens was unaffected by CFSM in vitro. The expression of QS-controlled virulence genes netB, plc and pfoA was found to be significantly repressed by CFSM during the mid-logarithmic stage of C. perfringens growth and this corresponded with a significant decrease in haemolytic activity. Purified fractions of CFSM containing bioactive peptides were found to cause reduced haemolysis. These results showed that bioactive peptides reduce NE mortality in broilers by interfering with the QS system of C. perfringens and reducing bacterial virulence. Furthermore, the microbiome of C. perfringens-challenged broilers is not affected by quorum sensing inhibitor containing CFSM.


Asunto(s)
Toxinas Bacterianas , Infecciones por Clostridium , Enteritis , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Animales , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/microbiología , Pollos/microbiología , Enteritis/veterinaria , Enteritis/microbiología , Clostridium perfringens/genética , Agua/metabolismo , Enfermedades de las Aves de Corral/microbiología
15.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296244

RESUMEN

AIMS: To investigate the prevalence, molecular type, and antimicrobial susceptibility of Clostridioides difficile in the environment in Vietnam, where little is known about C. difficile. METHODS AND RESULTS: Samples of pig faeces, soils from pig farms, potatoes, and the hospital environment were cultured for C. difficile. Isolates were identified and typed by polymerase chain reaction (PCR) ribotyping. The overall prevalence of C. difficile contamination was 24.5% (68/278). Clostridioides difficile was detected mainly in soils from pig farms and hospital soils, with 70%-100% prevalence. Clostridioides difficile was isolated from 3.4% of pig faecal samples and 5% of potato surfaces. The four most prevalent ribotypes (RTs) were RTs 001, 009, 038, and QX574. All isolates were susceptible to metronidazole, fidaxomicin, vancomycin, and amoxicillin/clavulanate, while resistance to erythromycin, tetracycline, and moxifloxacin was common in toxigenic strains. Clostridioides difficile RTs 001A+B+CDT- and 038A-B-CDT- were predominantly multidrug resistant. CONCLUSIONS: Environmental sources of C. difficile are important to consider in the epidemiology of C. difficile infection in Vietnam, however, contaminated soils are likely to be the most important source of C. difficile. This poses additional challenges to controlling infections in healthcare settings.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Porcinos , Clostridioides difficile/genética , Clostridioides , Vietnam/epidemiología , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Clostridium , Ribotipificación , Pruebas de Sensibilidad Microbiana
16.
BMC Vet Res ; 19(1): 13, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658534

RESUMEN

BACKGROUND: Clostridium perfringens (C. perfringens) is a serious anaerobic enteric pathogen causing necrotic enteritis (NE) in broiler chickens. Following the ban on antibiotics as growth promoters in animal feedstuffs, there has been a remarkable rise in occurrence of NE which resulted in considering alternative approaches, particularly vaccination. The objective of this work was to evaluate the recombinant Lactobacillus casei (L. casei) expressing the C-terminal domain of α-toxin from C. perfringens as a potential probiotic-based vaccine candidate to immunize the broiler chickens against NE. RESULTS: The broiler chickens immunized orally with recombinant vaccine strain were significantly protected against experimental NE challenge, and developed specific serum anti-α antibodies. Additionally, the immunized birds showed higher body weight gains compared with control groups during the challenge experiment. CONCLUSIONS: The current study showed that oral immunization of broiler chickens with a safe probiotic-based vector vaccine expressing α-toxin from C. perfringens could provide protective immunity against NE in birds.


Asunto(s)
Infecciones por Clostridium , Enteritis , Lacticaseibacillus casei , Enfermedades de las Aves de Corral , Animales , Clostridium perfringens , Pollos , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Lacticaseibacillus casei/genética , Vacunas Bacterianas , Enteritis/veterinaria , Inmunización/veterinaria , Vacunación/veterinaria , Vacunas Sintéticas , Enfermedades de las Aves de Corral/prevención & control , Necrosis/veterinaria
17.
BMC Vet Res ; 19(1): 8, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639759

RESUMEN

BACKGROUND: The pathogenic Clostridia cause neurotoxic, histotoxic and enterotoxic infections in humans and animals. Several Clostridium species have been associated with abomasitis in ruminants. The present study aimed to investigate the frequency, and the presence of virulence genes, of Clostridium perfringens, Paeniclostridium sordellii and Clostridium septicum in lambs and goat kids with hemorrhagic abomasitis. RESULTS: A total of 38 abomasum samples, collected from lambs and goat kids of 1 week to 1 month of age in different farms located in eastern Turkey between 2021 and 2022, were evaluated by histopathology, culture and PCR. At necropsy, the abomasum of the animals was excessively filled with caseinized content and gas, and the abomasum mucosa was hemorrhagic in varying degrees. In histopathological evaluation, acute necrotizing hemorrhagic inflammation was noted in abomasum samples. The examination of swab samples by culture and PCR revealed that C. perfringens type A was the most frequently detected species (86.84%) either alone or in combination with other Clostridium species. P. sordellii, C. perfringens type F and C. septicum were also harboured in the samples, albeit at low rates. Beta2 toxin gene (cpb2) was found in three of C. perfringens type A positive samples. CONCLUSION: It was suggested that vaccination of pregnant animals with toxoid vaccines would be beneficial in terms of protecting newborn animals against Clostridial infections. This study investigated the presence of clostridial toxin genes in abomasal samples for the first time in Turkey.


Asunto(s)
Infecciones por Clostridium , Gastritis , Enfermedades de las Cabras , Enfermedades de las Ovejas , Animales , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/veterinaria , Clostridium perfringens/genética , Clostridium septicum/genética , Clostridium sordellii , Gastritis/epidemiología , Gastritis/microbiología , Gastritis/veterinaria , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/microbiología , Cabras , Hemorragia/veterinaria , Ovinos , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/microbiología , Oveja Doméstica , Turquía/epidemiología
18.
BMC Vet Res ; 19(1): 238, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974163

RESUMEN

BACKGROUND: Previous studies have demonstrated that fidaxomicin, a macrocyclic lactone antibiotic used to treat recurrent Clostridioides difficile-associated diarrhea, also displays potent in vitro bactericidal activity against Clostridium perfringens strains isolated from humans. However, to date, there is no data on the susceptibility to fidaxomicin of C. perfringens strains of animal origin. On the other hand, although combination therapy has become popular in human and veterinary medicine, limited data are available on the effects of antibiotic combinations on C. perfringens. We studied the in vitro response of 21 C. perfringens strains obtained from dogs and cats to fidaxomicin and combinations of fidaxomicin with six other antibiotics. RESULTS: When tested by an agar dilution method, fidaxomicin minimum inhibitory concentrations (MICs) ranged between 0.004 and 0.032 µg/ml. Moreover, the results of Etest-based combination assays revealed that the incorporation of fidaxomicin into the test medium at a concentration equivalent to half the MIC significantly increased the susceptibility of isolates to metronidazole and erythromycin in 71.4% and 61.9% of the strains, respectively, and the susceptibility to clindamycin, imipenem, levofloxacin, and vancomycin in 42.9-52.4% of the strains. In contrast, » × MIC concentrations of fidaxomicin did not have any effect on levofloxacin and vancomycin MICs and only enhanced the effects of clindamycin, erythromycin, imipenem, and metronidazole in ≤ 23.8% of the tested strains. CONCLUSIONS: The results of this study demonstrate that fidaxomicin is highly effective against C. perfringens strains of canine and feline origin. Although fidaxomicin is currently considered a critically important antimicrobial that has not yet been licensed for veterinary use, we consider that the results reported in this paper provide useful baseline data to track the possible emergence of fidaxomicin resistant strains of C. perfringens in the veterinary setting.


Asunto(s)
Enfermedades de los Gatos , Clostridioides difficile , Infecciones por Clostridium , Enfermedades de los Perros , Gatos , Animales , Perros , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Clostridium perfringens , Enfermedades de los Gatos/tratamiento farmacológico , Vancomicina/farmacología , Metronidazol/farmacología , Clindamicina , Levofloxacino/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Infecciones por Clostridium/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Imipenem/farmacología , Eritromicina/farmacología , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Pruebas de Sensibilidad Microbiana/veterinaria
19.
Vet Pathol ; 60(4): 412-419, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37177792

RESUMEN

Type D enterotoxemia, caused by Clostridium perfringens epsilon toxin (ETX), is one of the most economically important clostridial diseases of sheep. Acute type D enterotoxemia is characterized by well-documented lesions in the nervous, cardiocirculatory, and pulmonary systems. However, discrepancies and confusion exist as to whether renal lesions are part of the spectrum of lesions of this condition, which is controversial considering that for many decades it has been colloquially referred to as "pulpy kidney disease." Here, the authors assess renal changes in an experimental model of acute type D enterotoxemia in sheep and evaluate the possible role of ETX in their genesis. Four groups of 6 sheep each were intraduodenally inoculated with either a wild-type virulent C. perfringens type D strain, an etx knockout mutant unable to produce ETX, the etx mutant strain complemented with the wild-type etx gene that regains the ETX toxin production, or sterile culture medium (control group). All sheep were autopsied less than 24 hours after inoculation; none of them developed gross lesions in the kidneys. Ten predefined histologic renal changes were scored in each sheep. The proportion of sheep with microscopic changes and their severity scores did not differ significantly between groups. Mild intratubular medullary hemorrhage was observed in only 2 of the 12 sheep inoculated with the wild-type or etx-complemented bacterial strains, but not in the 12 sheep of the other 2 groups. The authors conclude that no specific gross or histologic renal lesions are observed in sheep with experimental acute type D enterotoxemia.


Asunto(s)
Infecciones por Clostridium , Enfermedades de las Ovejas , Ovinos , Animales , Clostridium perfringens/genética , Enterotoxemia/microbiología , Infecciones por Clostridium/patología , Infecciones por Clostridium/veterinaria , Riñón/patología , Enfermedades de las Ovejas/patología
20.
Anaerobe ; 81: 102736, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196842

RESUMEN

OBJECTIVE: Clostridium perfringens is one of most important bacterial pathogens in the poultry industry and mainly causes necrotizing enteritis (NE). This pathogen and its toxins can cause foodborne diseases in humans through the food chain. In China, with the rise of antibiotic resistance and the banning of antibiotic growth promoters (AGPs) in poultry farming, food contamination and NE are becoming more prevalent. Bacteriophages are a viable technique to control C. perfringens as an alternative to antibiotics. We isolated Clostridium phage from the environment, providing a new method for the prevention of NE and C. perfringens contamination in meat. METHODS: In this study, we selected C. perfringens strains from various regions and animal sources in China for phage isolation. The biological characteristics of Clostridium phage were studied in terms of host range, MOI, one-step curve, temperature and pH stability. We sequenced and annotated the genome of the Clostridium phage and performed phylogenetic and pangenomic analyses. Finally, we studied its antibacterial activity against bacterial culture and its disinfection effect against C. perfringens in meat. RESULTS: A Clostridium phage, named ZWPH-P21 (P21), was isolated from chicken farm sewage in Jiangsu, China. P21 has been shown to specifically lyse C. perfringens type G. Further analysis of basic biological characteristics showed that P21 was stable under the conditions of pH 4-11 and temperature 4-60 °C, and the optimal multiple severity of infection (MOI) was 0.1. In addition, P21 could form a "halo" on agar plates, suggesting that the phage may encode depolymerase. Genome sequence analysis showed that P21 was the most closely related to Clostridium phage CPAS-15 belonging to the Myoviridae family, with a recognition rate of 97.24% and a query coverage rate of 98%. No virulence factors or drug resistance genes were found in P21. P21 showed promising antibacterial activity in vitro and in chicken disinfection experiments. In conclusion, P21 has the potential to be used for preventing and controlling C. perfringens in chicken food production.


Asunto(s)
Bacteriófagos , Infecciones por Clostridium , Enteritis , Enfermedades de las Aves de Corral , Animales , Humanos , Clostridium perfringens/genética , Bacteriófagos/genética , Pollos , Desinfección , Filogenia , Antibacterianos/farmacología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/veterinaria , Carne
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA