Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.190
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811809

RESUMEN

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19
2.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624205

RESUMEN

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Humanos , Hipoxia/etiología , Inflamación/complicaciones , Pulmón , Lesión Pulmonar/complicaciones , Ratones
3.
Annu Rev Immunol ; 30: 677-706, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22224761

RESUMEN

Recent scientific advances have contributed much to the dissection of the complex molecular and cellular pathways involved in the connection between cancer and inflammation. The evidence for this connection in humans is based on the association between infection or chronic sterile inflammation and cancer. The decreased incidence of tumors in individuals who have used nonsteroidal anti-inflammatory drugs is supportive of a role for inflammation in cancer susceptibility. The increased incidence of tumors in overweight patients points to a role for adipose tissue inflammation and energy metabolism in cancer. Energy metabolism, obesity, and genetic instability are regulated in part by the relationship of the organism with commensal bacteria that affect inflammation with both local and systemic effects. Different aspects of inflammation appear to regulate all phases of malignant disease, including susceptibility, initiation, progression, dissemination, morbidity, and mortality.


Asunto(s)
Inflamación/complicaciones , Neoplasias/etiología , Animales , Susceptibilidad a Enfermedades , Humanos , Inflamación/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo
4.
Annu Rev Immunol ; 29: 415-45, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21219177

RESUMEN

The modern rise in obesity and its strong association with insulin resistance and type 2 diabetes have elicited interest in the underlying mechanisms of these pathologies. The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity. Here, we summarize the unique features of this metabolic inflammatory state, termed metaflammation and defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy. We explore the effects of such inflammation in metabolic tissues including adipose, liver, muscle, pancreas, and brain and its contribution to insulin resistance and metabolic dysfunction. Another area in which many unknowns still exist is the origin or mechanism of initiation of inflammatory signaling in obesity. We discuss signals or triggers to the inflammatory response, including the possibility of endoplasmic reticulum stress as an important contributor to metaflammation. Finally, we examine anti-inflammatory therapies for their potential in the treatment of obesity-related insulin resistance and glucose intolerance.


Asunto(s)
Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Transducción de Señal , Animales , Metabolismo Energético , Humanos , Inflamación/complicaciones , Resistencia a la Insulina , Enfermedades Metabólicas/metabolismo
5.
Nat Immunol ; 19(3): 222-232, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29379119

RESUMEN

In contrast to most other malignancies, hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver cancers, arises almost exclusively in the setting of chronic inflammation. Irrespective of etiology, a typical sequence of chronic necroinflammation, compensatory liver regeneration, induction of liver fibrosis and subsequent cirrhosis often precedes hepatocarcinogenesis. The liver is a central immunomodulator that ensures organ and systemic protection while maintaining immunotolerance. Deregulation of this tightly controlled liver immunological network is a hallmark of chronic liver disease and HCC. Notably, immunotherapies have raised hope for the successful treatment of advanced HCC. Here we summarize the roles of specific immune cell subsets in chronic liver disease, with a focus on non-alcoholic steatohepatitis and HCC. We review new advances in immunotherapeutic approaches for the treatment of HCC and discuss the challenges posed by the immunotolerant hepatic environment and the dual roles of adaptive and innate immune cells in HCC.


Asunto(s)
Carcinogénesis/inmunología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/inmunología , Humanos , Inflamación/complicaciones , Inflamación/inmunología
6.
Nature ; 623(7987): 616-624, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938773

RESUMEN

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Citocinas/metabolismo , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Membrana Sinovial/patología , Linfocitos T/inmunología , Linfocitos B/inmunología , Predisposición Genética a la Enfermedad/genética , Fenotipo , Análisis de Expresión Génica de una Sola Célula
7.
Nature ; 623(7986): 415-422, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914939

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.


Asunto(s)
Inflamación , Interleucina-1beta , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Humanos , Carcinogénesis , Carcinoma Ductal Pancreático/complicaciones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Dinoprostona/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Inflamación/complicaciones , Inflamación/inmunología , Inflamación/patología , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Factores de Necrosis Tumoral/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
8.
Nature ; 616(7955): 137-142, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949192

RESUMEN

Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.


Asunto(s)
Ansiedad , Células Enterocromafines , Dolor Visceral , Femenino , Humanos , Masculino , Ansiedad/complicaciones , Ansiedad/fisiopatología , Sistema Digestivo/inervación , Sistema Digestivo/fisiopatología , Células Enterocromafines/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/fisiopatología , Síndrome del Colon Irritable/psicología , Caracteres Sexuales , Dolor Visceral/complicaciones , Dolor Visceral/fisiopatología , Dolor Visceral/psicología , Inflamación/complicaciones , Inflamación/fisiopatología , Serotonina/metabolismo , Reproducibilidad de los Resultados
9.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968397

RESUMEN

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Norepinefrina , Animales , Ratones , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilación , Receptores Adrenérgicos/metabolismo
10.
Nature ; 600(7889): 472-477, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34237774

RESUMEN

The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.


Asunto(s)
COVID-19/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/genética , Autoinmunidad/genética , Índice de Masa Corporal , COVID-19/virología , Enfermedad Crítica , Femenino , Mapeo Geográfico , Hospitalización , Humanos , Inflamación/complicaciones , Difusión de la Información , Masculino , Herencia Multifactorial , Grupos Raciales/genética , SARS-CoV-2/patogenicidad , Fumar
11.
Proc Natl Acad Sci U S A ; 121(16): e2313070121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588434

RESUMEN

Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis (DM) is characterized by amyopathic DM with interstitial lung disease (ILD). Patients with anti-MDA5 antibody-associated ILD frequently develop rapidly progression and present high mortality rate in the acute phase. Here, we established a murine model of ILD mediated by autoimmunity against MDA5. Mice immunized with recombinant murine MDA5 whole protein, accompanied with complete Freund's adjuvant once a week for four times, developed MDA5-reactive T cells and anti-MDA5 antibodies. After acute lung injury induced by intranasal administration of polyinosinic-polycytidylic acid [poly (I:C)] mimicking viral infection, the MDA5-immunized mice developed fibrotic ILD representing prolonged respiratory inflammation accompanied by fibrotic changes 2 wk after poly (I:C)-administration, while the control mice had quickly and completely recovered from the respiratory inflammation. Treatment with anti-CD4 depleting antibody, but not anti-CD8 depleting antibody, suppressed the severity of MDA5-induced fibrotic ILD. Upregulation of interleukin (IL)-6 mRNA, which was temporarily observed in poly (I:C)-treated mice, was prolonged in MDA5-immunized mice. Treatment with anti-IL-6 receptor antibody ameliorated the MDA5-induced fibrotic ILD. These results suggested that autoimmunity against MDA5 exacerbates toll-like receptor 3-mediated acute lung injury, and prolongs inflammation resulting in the development of fibrotic ILD. IL-6 may play a key role initiating ILD in this model.


Asunto(s)
Lesión Pulmonar Aguda , Dermatomiositis , Enfermedades Pulmonares Intersticiales , Melanoma , Humanos , Animales , Ratones , Dermatomiositis/diagnóstico , Dermatomiositis/complicaciones , Pronóstico , Progresión de la Enfermedad , Autoinmunidad , Helicasa Inducida por Interferón IFIH1/genética , Autoanticuerpos , Enfermedades Pulmonares Intersticiales/diagnóstico , Interleucina-6 , Inflamación/complicaciones , Estudios Retrospectivos
12.
Nature ; 588(7836): 146-150, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32726800

RESUMEN

Coronavirus disease 2019 (COVID-19) is a disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in a pandemic1. The C5a complement factor and its receptor C5aR1 (also known as CD88) have a key role in the initiation and maintenance of several inflammatory responses by recruiting and activating neutrophils and monocytes1. Here we provide a longitudinal analysis of immune responses, including phenotypic analyses of immune cells and assessments of the soluble factors that are present in the blood and bronchoalveolar lavage fluid of patients at various stages of COVID-19 severity, including those who were paucisymptomatic or had pneumonia or acute respiratory distress syndrome. The levels of soluble C5a were increased in proportion to the severity of COVID-19 and high expression levels of C5aR1 receptors were found in blood and pulmonary myeloid cells, which supports a role for the C5a-C5aR1 axis in the pathophysiology of acute respiratory distress syndrome. Anti-C5aR1 therapeutic monoclonal antibodies prevented the C5a-mediated recruitment and activation of human myeloid cells, and inhibited acute lung injury in human C5aR1 knock-in mice. These results suggest that blockade of the C5a-C5aR1 axis could be used to limit the infiltration of myeloid cells in damaged organs and prevent the excessive lung inflammation and endothelialitis that are associated with acute respiratory distress syndrome in patients with COVID-19.


Asunto(s)
COVID-19/complicaciones , COVID-19/inmunología , Complemento C5a/inmunología , Inflamación/complicaciones , Inflamación/inmunología , Receptor de Anafilatoxina C5a/inmunología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/prevención & control , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , COVID-19/sangre , COVID-19/patología , Complemento C5a/antagonistas & inhibidores , Complemento C5a/biosíntesis , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/prevención & control , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/patología , Receptor de Anafilatoxina C5a/antagonistas & inhibidores , Receptor de Anafilatoxina C5a/sangre , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/prevención & control , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
13.
Proc Natl Acad Sci U S A ; 120(20): e2220334120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155893

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Ratas , Animales , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinc/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/complicaciones , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas de Unión al ARN/metabolismo
14.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103643

RESUMEN

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Asunto(s)
Adipoquinas , Perfilación de la Expresión Génica , Inflamación , Lipopolisacáridos , Macrófagos , Fosfoproteínas , Proteómica , Animales , Ratones , Adipoquinas/deficiencia , Adipoquinas/genética , Adipoquinas/metabolismo , Células de la Médula Ósea/citología , Citocinas/metabolismo , Glucólisis , Hipotermia/complicaciones , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ácido Láctico/biosíntesis , Lipopolisacáridos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo
15.
Circulation ; 149(1): 28-35, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37929602

RESUMEN

BACKGROUND: Among patients treated with statin therapy to guideline-recommended cholesterol levels, residual inflammatory risk assessed by high-sensitivity C-reactive protein (hsCRP) is at least as strong a predictor of future cardiovascular events as is residual risk assessed by low-density lipoprotein cholesterol (LDLC). Whether these relationships are present among statin-intolerant patients with higher LDLC levels is uncertain but has implications for the choice of preventive therapies, including bempedoic acid, an agent that reduces both LDLC and hsCRP. METHODS: The multinational CLEAR-Outcomes trial (Cholesterol Lowering via Bempedoic Acid, an ACL-Inhibiting Regimen Outcomes Trial) randomly allocated 13 970 statin-intolerant patients to 180 mg of oral bempedoic acid daily or matching placebo and followed them for a 4-component composite of incident myocardial infarction, stroke, coronary revascularization, or cardiovascular death, and for all-cause mortality. Quartiles of increasing baseline hsCRP and LDLC were assessed as predictors of future adverse events after adjustment for traditional risk factors and randomized treatment assignment. RESULTS: Compared with placebo, bempedoic acid reduced median hsCRP by 21.6% and mean LDLC levels by 21.1% at 6 months. Baseline hsCRP was significantly associated with the primary composite end point of major cardiovascular events (highest versus lowest hsCRP quartile; hazard ratio [HR], 1.43 [95% CI, 1.24-1.65]), cardiovascular mortality (HR, 2.00 [95% CI, 1.53-2.61]), and all-cause mortality (HR, 2.21 [95% CI, 1.79-2.73]). By contrast, the relationship of baseline LDLC quartile (highest versus lowest) to future events was smaller in magnitude for the primary composite cardiovascular end point (HR, 1.19 [95% CI, 1.04-1.37]) and neutral for cardiovascular mortality (HR, 0.90 [95% CI, 0.70-1.17]) and all-cause mortality (HR, 0.95 [95% CI, 0.78-1.16]). Risks were high for those with elevated hsCRP irrespective of LDLC level. Bempedoic acid demonstrated similar efficacy in reducing cardiovascular events across all levels of hsCRP and LDLC. CONCLUSIONS: Among contemporary statin-intolerant patients, inflammation assessed by hsCRP predicted risk for future cardiovascular events and death more strongly than hyperlipidemia assessed by LDLC. Compared with placebo, bempedoic acid had similar efficacy for reducing cardiovascular risk across hsCRP and LDLC strata. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02993406.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Infarto del Miocardio , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Proteína C-Reactiva/metabolismo , Inflamación/complicaciones , Colesterol , Infarto del Miocardio/epidemiología , Infarto del Miocardio/prevención & control , Resultado del Tratamiento
16.
PLoS Pathog ; 19(12): e1011847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060620

RESUMEN

The upper respiratory tract (nasopharynx or NP) is the first site of influenza replication, allowing the virus to disseminate to the lower respiratory tract or promoting community transmission. The host response in the NP regulates an intricate balance between viral control and tissue pathology. The hyper-inflammatory responses promote epithelial injury, allowing for increased viral dissemination and susceptibility to secondary bacterial infections. However, the pathologic contributors to influenza upper respiratory tissue pathology are incompletely understood. In this study, we investigated the role of interleukin IL-17 recetor A (IL-17RA) as a modulator of influenza host response and inflammation in the upper respiratory tract. We used a combined experimental approach involving IL-17RA-/- mice and an air-liquid interface (ALI) epithelial culture model to investigate the role of IL-17 response in epithelial inflammation, barrier function, and tissue pathology. Our data show that IL-17RA-/- mice exhibited significantly reduced neutrophilia, epithelial injury, and viral load. The reduced NP inflammation and epithelial injury in IL-17RA-/- mice correlated with increased resistance against co-infection by Streptococcus pneumoniae (Spn). IL-17A treatment, while potentiating the apoptosis of IAV-infected epithelial cells, caused bystander cell death and disrupted the barrier function in ALI epithelial model, supporting the in vivo findings.


Asunto(s)
Gripe Humana , Animales , Ratones , Humanos , Gripe Humana/complicaciones , Interleucina-17/genética , Interleucina-17/metabolismo , Inflamación/complicaciones , Streptococcus pneumoniae/metabolismo , Interleucinas
17.
Am J Pathol ; 194(3): 384-401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38159723

RESUMEN

Respiratory tract virus infections cause millions of hospitalizations worldwide each year. Severe infections lead to lung damage that coincides with persistent inflammation and a lengthy repair period. Vaccination and antiviral therapy help to mitigate severe infections before or during the acute stage of disease, but there are currently limited specific treatment options available to individuals experiencing the long-term sequelae of respiratory viral infection. Herein, C57BL/6 mice were infected with influenza A/PR/8/34 as a model for severe viral lung infection and allowed to recover for 21 days. Mice were treated with rapamycin, a well-characterized mammalian target of rapamycin complex 1 (mTORC1) inhibitor, on days 12 to 20 after infection, a time period after viral clearance. Persistent inflammation following severe influenza infection in mice was primarily driven by macrophages and T cells. Uniform manifold approximation and projection analysis of flow cytometry data revealed that lung macrophages had high activation of mTORC1, an energy-sensing kinase involved in inflammatory immune cell effector functions. Rapamycin treatment reduced lung inflammation and the frequency of exudate macrophages, T cells, and B cells in the lung, while not impacting epithelial progenitor cells or adaptive immune memory. These data highlight mTORC1's role in sustaining persistent inflammation following clearance of a viral respiratory pathogen and suggest a possible intervention for post-viral chronic lung inflammation.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Neumonía , Ratones , Animales , Humanos , Infecciones por Orthomyxoviridae/complicaciones , Ratones Endogámicos C57BL , Pulmón , Macrófagos , Inflamación/complicaciones , Sirolimus/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Serina-Treonina Quinasas TOR , Mamíferos
18.
Ann Neurol ; 95(4): 706-719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38149648

RESUMEN

OBJECTIVE: Analysis of postmortem multiple sclerosis (MS) tissues combined with in vivo disease milestones suggests that whereas perivascular white matter infiltrates are associated with demyelinating activity in the initial stages, leptomeningeal immune cell infiltration, enriched in B cells, and associated cortical lesions contribute to disease progression. We systematically examine the association of inflammatory features and white matter demyelination at postmortem with clinical milestones. METHODS: In 269 MS brains, 20 sites were examined using immunohistochemistry for active lesions (ALs) and perivenular inflammation (PVI). In a subset of 22, a detailed count of CD20+ B cells and CD3+ T cells in PVIs was performed. RESULTS: ALs were detected in 22%, whereas high levels of PVI were detected in 52% of cases. ALs were present in 35% of cases with high levels of PVI. Shorter time from onset of progression to death was associated with increased prevalence and higher levels of PVI (both p < 0.0001). Shorter time from onset of progression to wheelchair use was associated with higher prevalence of ALs (odds ratio [OR] = 0.921, 95% confidence interval [CI] = 0.858-0.989, p = 0.0230) and higher level of PVI (OR = 0.932, 95% CI = 0.886-0.981, p = 0.0071). High levels of PVI were associated with meningeal inflammation and increased cortical demyelination and significantly higher levels of B lymphocytes within the PVI. INTERPRETATION: ALs, a feature of early disease stage, persist up to death in a subgroup with high levels of PVI. These features link to a rapid progressive phase and higher levels of meningeal inflammation and B-cell infiltrates, supporting the hypothesis that chronic inflammation drives progression in MS. ANN NEUROL 2024;95:706-719.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Estudios de Cohortes , Estudios Retrospectivos , Inflamación/complicaciones , Encéfalo/patología , Esclerosis Múltiple Crónica Progresiva/patología
19.
Blood ; 142(8): 724-741, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37363829

RESUMEN

Immune cell inflammation is implicated in the pathophysiology of acute trauma-induced coagulopathy (TIC). We hypothesized that leukocyte inflammation contributes to TIC through the oxidation and proteolysis of fibrinogen. To test this hypothesis, antioxidants and a novel anti-inflammatory melanocortin fusion protein (AQB-565) were used to study the effects of interleukin-6 (IL-6)-stimulated human leukocytes on fibrinogen using single-cell imaging flow cytometry and multiplex fluorescent western blotting. We also studied the effects of AQB-565 on fibrinogen using an in vivo rat trauma model of native TIC. IL-6 induced cellular inflammation and mitochondrial superoxide production in human monocytes, causing fibrinogen oxidation and degradation in vitro. Antioxidants suppressing mitochondrial superoxide reduced oxidative stress and inflammation and protected fibrinogen. AQB-565 decreased inflammation, inhibited mitochondrial superoxide, and protected fibrinogen in vitro. Trauma with hemorrhagic shock increased IL-6 and other proinflammatory cytokines and chemokines, selectively oxidized and degraded fibrinogen, and induced TIC in rats in vivo. AQB-565, given at the onset of hemorrhage, blocked inflammation, protected fibrinogen from oxidation and degradation, and prevented TIC. Leukocyte activation contributes to TIC through the oxidation and degradation of fibrinogen, which involves mitochondrial superoxide and cellular inflammation. Suppression of inflammation by activation of melanocortin pathways may be a novel approach for the prevention and treatment of TIC.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Hemostáticos , Humanos , Ratas , Animales , Fibrinógeno/metabolismo , Interleucina-6 , Antioxidantes , Superóxidos , Trastornos de la Coagulación Sanguínea/metabolismo , Inflamación/complicaciones
20.
Blood ; 141(7): 787-799, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36441964

RESUMEN

Clonal hematopoiesis (CH) is common among older people and is associated with an increased risk of atherosclerosis, inflammation, and shorter overall survival. Age and inflammation are major risk factors for ischemic stroke, yet the association of CH with risk of secondary vascular events and death is unknown. We investigated CH in peripheral blood DNA from 581 patients with first-ever ischemic stroke from the Prospective Cohort With Incident Stroke-Berlin study using error-corrected targeted sequencing. The primary composite end point (CEP) consisted of recurrent stroke, myocardial infarction, and all-cause mortality. A total of 348 somatic mutations with a variant allele frequency ≥1% were identified in 236 of 581 patients (41%). CH was associated with large-artery atherosclerosis stroke (P = .01) and white matter lesion (P < .001). CH-positive patients showed increased levels of proinflammatory cytokines, such as interleukin-6 (IL-6), interferon gamma, high-sensitivity C-reactive protein, and vascular cell adhesion molecule 1. CH-positive patients had a higher risk for the primary CEP (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.04-2.31; P = .03), which was more pronounced in patients with larger clones. CH clone size remained an independent risk factor (HR, 1.30; 95% CI, 1.04-1.62; P = .022) in multivariable Cox regression. Although our data show that, in particular, larger and TET2- or PPM1D-mutated clones are associated with increased risk of recurrent vascular events and death, this risk is partially mitigated by a common germline variant of the IL-6 receptor (IL-6R p.D358A). The CH mutation profile is accompanied by a proinflammatory profile, opening new avenues for preventive precision medicine approaches to resolve the self-perpetuating cycle of inflammation and clonal expansion.


Asunto(s)
Aterosclerosis , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Anciano , Hematopoyesis Clonal/genética , Estudios Prospectivos , Hematopoyesis/genética , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Inflamación/genética , Inflamación/complicaciones , Aterosclerosis/complicaciones , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA