Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Nature ; 629(8012): 652-659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693261

RESUMEN

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Asunto(s)
Susceptibilidad a Enfermedades , Disbiosis , Padre , Microbioma Gastrointestinal , Insuficiencia Placentaria , Lesiones Prenatales , Espermatozoides , Animales , Femenino , Masculino , Ratones , Embarazo , Disbiosis/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Leptina/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/fisiopatología , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Resultado del Embarazo , Lesiones Prenatales/etiología , Lesiones Prenatales/metabolismo , Lesiones Prenatales/fisiopatología , Transducción de Señal , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatología , Susceptibilidad a Enfermedades/etiología
2.
Clin Sci (Lond) ; 138(13): 761-775, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904187

RESUMEN

Placental insufficiency is one of the major causes of fetal growth restriction (FGR), a significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. As well as the acute consequences of being born too small, affected offspring are at increased risk of cardiovascular disease, diabetes and other chronic diseases in later life. The placenta and heart develop concurrently, therefore placental maldevelopment and function in FGR may have profound effect on the growth and differentiation of many organ systems, including the heart. Hence, understanding the key molecular players that are synergistically linked in the development of the placenta and heart is critical. This review highlights the key growth factors, angiogenic molecules and transcription factors that are common causes of defective placental and cardiovascular development.


Asunto(s)
Retardo del Crecimiento Fetal , Placenta , Humanos , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/fisiopatología , Embarazo , Femenino , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Animales , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/embriología , Sistema Cardiovascular/fisiopatología , Sistema Cardiovascular/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
Pediatr Res ; 95(6): 1410-1411, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38263448

RESUMEN

Uteroplacental insufficiency (UPI) is a major cause of fetal growth restriction (FGR). Leptin, an adipokine, has been shown to play a vital role in fetal organogenesis. There is evidence reporting leptin deficiency in preterm and growth-restricted fetuses. In this issue of Pediatric Research, Yuliana et al. report leptin expression and lung development in UPI-induced FGR rats. UPI-induced FGR rats expressed decreased lung leptin and had impaired lung development, as shown by decreased surface area and lung volume. They also found a significant association between lung radial alveolar count, serum leptin, von Willebrand factor, and specific metabolites on metabolomic analyses. Previous studies on leptin supplementation in vivo have been associated with improvement in lung maturation; supporting the evidence, that leptin improves lung growth and development in FGR and may have future therapeutic potential in the improvement of respiratory outcomes in these infants. Future studies to support evidence of this association in humans are warranted.


Asunto(s)
Retardo del Crecimiento Fetal , Leptina , Pulmón , Insuficiencia Placentaria , Animales , Femenino , Humanos , Embarazo , Ratas , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Leptina/metabolismo , Pulmón/embriología , Pulmón/metabolismo , Insuficiencia Placentaria/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338665

RESUMEN

We report the case of a four-year-old male patient with a complex medical history born prematurely as the result of intrauterine growth restriction due to placental insufficiency. His clinical manifestations included severe neurodevelopmental deficits, global developmental delay, Pierre-Robin sequence, and intractable epilepsy with both generalized and focal features. The proband's low levels of citrulline and lactic acidosis provoked by administration of Depakoke were evocative of a mitochondrial etiology. The proband's genotype-phenotype correlation remained undefined in the absence of nuclear and mitochondrial pathogenic variants detected by deep sequencing of both genomes. However, live-cell mitochondrial metabolic investigations provided evidence of a deficient oxidative-phosphorylation pathway responsible for adenosine triphosphate (ATP) synthesis, leading to chronic energy crisis in the proband. In addition, our metabolic analysis revealed metabolic plasticity in favor of glycolysis for ATP synthesis. Our mitochondrial morphometric analysis by transmission electron microscopy confirmed the suspected mitochondrial etiology, as the proband's mitochondria exhibited an immature morphology with poorly developed and rare cristae. Thus, our results support the concept that suboptimal levels of intrauterine oxygen and nutrients alter fetal mitochondrial metabolic reprogramming toward oxidative phosphorylation (OXPHOS) leading to a deficient postnatal mitochondrial energy metabolism. In conclusion, our collective studies shed light on the long-term postnatal mitochondrial pathophysiology caused by intrauterine growth restriction due to idiopathic placental insufficiency and its negative impact on the energy-demanding development of the fetal and postnatal brain.


Asunto(s)
Retardo del Crecimiento Fetal , Insuficiencia Placentaria , Masculino , Humanos , Femenino , Embarazo , Preescolar , Retardo del Crecimiento Fetal/metabolismo , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/patología , Placenta/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
5.
Am J Physiol Endocrinol Metab ; 324(6): E556-E568, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126847

RESUMEN

Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.


Asunto(s)
Insuficiencia Placentaria , Humanos , Embarazo , Femenino , Animales , Ovinos , Insuficiencia Placentaria/metabolismo , Placenta/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Glutamina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Aminoácidos/metabolismo , Nutrientes , Glicina/metabolismo , Serina/metabolismo , Piruvatos/metabolismo , Oxígeno/metabolismo
6.
Biol Reprod ; 109(6): 982-993, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37724932

RESUMEN

During implantation, trophoblast cell invasion and differentiation is predominantly important to achieving proper placental formation and embryonic development. The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) working through its receptor C-X-C motif chemokine receptor 4 (CXCR4) is implicated in implantation and placentation but precise roles of this axis are unclear. Suppressing CXCL12/CXCR4 signaling at the fetal-maternal interface in sheep reduces trophoblast invasion, disrupts uterine remodeling, and diminishes placental vascularization. We hypothesize these negative impacts during implantation will manifest as compromised fetal and placental growth at midgestation. To test, on day 12 postbreeding, osmotic pumps were surgically installed in 30 ewes and delivered intrauterine CXCR4 inhibitor or saline for 7 or 14 days. On day 90, fetal/maternal tissues were collected, measured, weighed, and maternal (caruncle) and fetal (cotyledon) placenta components separated and analyzed. The objectives were to determine if (i) suppressing CXCL12/CXCR4 during implantation results in reduced fetal and placental growth and development and (ii) if varying the amount of time CXCL12/CXCR4 is suppressed impacts fetal/placental development. Fetal weights were similar; however greater placental weight and placentome numbers occurred when CXCL12/CXCR4 was suppressed for 14 days. In caruncles, greater abundance of fibroblast growth factor 2, vascular endothelial growth factor A, vascular endothelial growth factor A receptor 1 (FLT-1), and placental growth factor were observed after suppressing CXCL12/CXCR4. Similar results occurred in cotyledons except less vascular endothelial growth factor in 7 day group and less fibroblast growth factor in 14 day group. Our data underscore the importance of CXCL12/CXCR4 signaling during placentation and provide strong evidence that altering CXCL12-mediated signaling induces enduring placental effects manifesting later in gestation.


Asunto(s)
Placenta , Insuficiencia Placentaria , Humanos , Embarazo , Femenino , Ovinos , Animales , Placenta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Insuficiencia Placentaria/metabolismo , Factor de Crecimiento Placentario/metabolismo , Placentación , Quimiocina CXCL12/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
7.
J Nutr ; 153(4): 958-969, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36775243

RESUMEN

BACKGROUND: Placental insufficiency negatively impacts fetal growth and body composition (BC), potentially affecting lifelong health. Placental insufficiency, detectable as an abnormal umbilical artery resistance index (UmA-RI) on Doppler ultrasonography, is highly prevalent in otherwise healthy South African pregnant women. Appropriate intervention reduces stillbirth and perinatal death, but research on long-term outcomes of surviving infants is lacking. OBJECTIVES: This study aimed to describe and compare anthropometry and BC during the first 2 y of life in a cohort of term-born infants with normal and abnormal prenatal UmA-RI. METHODS: Term-born infants (n = 81; n = 55 normal, n = 26 abnormal UmA-RI on third trimester Doppler screening) were followed up at 8-time points until age 2 y. Anthropometric measurements were taken, and FFM and FM were assessed by deuterium dilution. Age- and sex-specific z-scores were calculated for anthropometric indices, FM, FFM, FM index (FMI), and FFM index (FFMI) using appropriate reference data. Anthropometry and BC of infants with normal and abnormal UmA-RI were compared using an independent t-test or Mann-Whitney test. RESULTS: At most ages, group mean z-scores were <0 for length-for-age and FM and >0 for weight-for-length and FFM. Compared with infants with normal UmA-RI, infants with abnormal UmA-RI had significantly lower weight-for-age z-scores at birth (-0.77 ± 0.75 compared with -0.30 ± 1.10, P = 0.026), ages 10 wk to 9 mo (-0.4 ± 0.87 to -0.2 ± 1.12 compared with 0.3 ± 0.85 to 0.6 ± 1.09; P = 0.007-0.017) and 18 mo (-0.6 ± 0.82 compared with 0.1 ± 1.18; P = 0.037); length-for-age z-scores at ages ≤14 wk (-1.3 ± 1.25 to -0.9 ± 0.87 compared with -0.2 ± 1.04 to -0.1 ± 1.00; P = 0.004-0.021); and FFM-for-age z-scores at ages ≤9 mo (-0.1 ± 0.82 to 0.7 ± 0.71 compared with 0.7 ± 1.00 to 1.3 ± 0.85; P = 0.002-0.028). FFMI, percentage FFM, FM, percentage FM, and FMI showed no consistent significant differences. CONCLUSIONS: Infants with abnormal UmA-RI had lower weight-for-age and length-for-age z-scores, particularly at younger ages, with proportionally lower FFM but no consistent differences in percentage FFM and FFMI. These findings merit further investigation in larger cohorts.


Asunto(s)
Insuficiencia Placentaria , Masculino , Recién Nacido , Humanos , Lactante , Femenino , Embarazo , Niño , Preescolar , Índice de Masa Corporal , Insuficiencia Placentaria/metabolismo , Sudáfrica , Placenta , Composición Corporal , Antropometría , Tejido Adiposo/metabolismo
8.
FASEB J ; 36(7): e22388, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35639049

RESUMEN

Epidemiological and animal experimental studies suggest an association between gestational cholestasis and intrauterine growth restriction (IUGR). Here, we explored the mechanism through which gestational cholestasis induced IUGR. To establish gestational cholestasis model, pregnant mice were subcutaneously injected with 17α-Ethynylestradiol (E2) on gestational day 13 (GD13)-GD17. Some pregnant mice were intraperitoneally injected with 4µ8C on GD13-GD17. The results found that the apoptosis of trophoblast cells was elevated in placentas of mice with gestational cholestasis and in deoxycholic acid (DCA)-treated human trophoblast cell lines and primary mouse trophoblast cells. Correspondingly, the levels of placental cleaved caspase-3 and Bax were increased, while placental Bcl2 level was decreased in mice with gestational cholestasis and in DCA-treated trophoblast cells. Further analysis found that placental IRE1α pathway was activated in mice with gestational cholestasis and in DCA-treated trophoblast cells. Interestingly, 4µ8C, an IRE1α RNase inhibitor, significantly inhibited caspase-3 activity and apoptosis of trophoblast cells in vivo and in vitro. Importantly, 4µ8C rescued gestational cholestasis-induced placental insufficiency and IUGR. Furthermore, a case-control study demonstrated that placental IRE1α and caspase-3 pathways were activated in cholestasis cases. Our results provide evidence that gestational cholestasis induces placental insufficiency and IUGR may be via triggering IRE1α-mediated apoptosis of placental trophoblast cells.


Asunto(s)
Colestasis Intrahepática , Endorribonucleasas , Insuficiencia Placentaria , Proteínas Serina-Treonina Quinasas , Animales , Apoptosis , Estudios de Casos y Controles , Caspasa 3/metabolismo , Colestasis Intrahepática/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Femenino , Retardo del Crecimiento Fetal/metabolismo , Humanos , Ratones , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Embarazo , Complicaciones del Embarazo , Proteínas Serina-Treonina Quinasas/genética , Trofoblastos/metabolismo
9.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R228-R240, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907787

RESUMEN

Skeletal muscle from the late gestation sheep fetus with intrauterine growth restriction (IUGR) has evidence of reduced oxidative metabolism. Using a sheep model of placental insufficiency and IUGR, we tested the hypothesis that by late gestation, IUGR fetal skeletal muscle has reduced capacity for oxidative phosphorylation because of intrinsic deficits in mitochondrial respiration. We measured mitochondrial respiration in permeabilized muscle fibers from biceps femoris (BF) and soleus (SOL) from control and IUGR fetal sheep. Using muscles including BF, SOL, tibialis anterior (TA), and flexor digitorum superficialis (FDS), we measured citrate synthase (CS) activity, mitochondrial complex subunit abundance, fiber type distribution, and gene expression of regulators of mitochondrial biosynthesis. Ex vivo mitochondrial respiration was similar in control and IUGR muscle. However, CS activity was lower in IUGR BF and TA, indicating lower mitochondrial content, and protein expression of individual mitochondrial complex subunits was lower in IUGR TA and BF in a muscle-specific pattern. IUGR TA, BF, and FDS also had lower expression of type I oxidative fibers. Fiber-type shifts that support glycolytic instead of oxidative metabolism may be advantageous for the IUGR fetus in a hypoxic and nutrient-deficient environment, whereas these adaptions may be maladaptive in postnatal life.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo/fisiología , Animales , Femenino , Feto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilación Oxidativa , Placenta/metabolismo , Insuficiencia Placentaria/metabolismo , Embarazo , Ovinos
10.
Fetal Diagn Ther ; 49(5-6): 279-292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35760055

RESUMEN

Placental insufficiency is associated with reduced oxygen and nutrient supply to the fetus, which may result in fetal growth restriction (FGR). In an attempt to cope with the hostile intrauterine environment, FGR fetuses respond through metabolic, endocrine, vascular, cardiac, behavioral, hematological, and immunological adaptive mechanisms. However, permanent sequelae may result from such adaptive mechanisms. In this review, we describe the mechanisms of fetal adaptation to the hostile intrauterine environment in FGR of uteroplacental origin and detail their pathophysiology and potential implications for the extrauterine life of the individual.


Asunto(s)
Insuficiencia Placentaria , Femenino , Retardo del Crecimiento Fetal , Feto , Humanos , Hipoxia/complicaciones , Placenta/irrigación sanguínea , Insuficiencia Placentaria/metabolismo , Embarazo
11.
Am J Physiol Heart Circ Physiol ; 320(5): H1923-H1934, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739156

RESUMEN

Stimulation of soluble guanylate cyclase (sGC) improves fetal growth at gestational day 20 in the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia suggesting a role for sGC in the etiology of intrauterine growth restriction (IUGR). This study tested the hypothesis that stimulation of sGC until birth attenuates asymmetric IUGR mitigating increased cardiovascular risk in offspring. Sham or RUPP surgery was performed at gestational day 14 (G14); vehicle or the sGC stimulator Riociguat (10 mg/kg/day sc) was administered G14 until birth. Birth weight was reduced in offspring from RUPP [intrauterine growth restricted (IUGR)], sGC RUPP (sGC IUGR), and sGC Sham (sGC Control) compared with Sham (Control). Crown circumference was maintained, but abdominal circumference was reduced in IUGR and sGC IUGR compared with Control indicative of asymmetrical growth. Gestational length was prolonged in sGC RUPP, and survival at birth was reduced in sGC IUGR. Probability of survival to postnatal day 2 was also significantly reduced in IUGR and sGC IUGR versus Control and in sGC IUGR versus IUGR. At 4 mo of age, blood pressure was increased in male IUGR and sGC IUGR but not male sGC Control born with symmetrical IUGR. Global longitudinal strain was increased and stroke volume was decreased in male IUGR and sGC IUGR compared with Control. Thus late gestational stimulation of sGC does not mitigate asymmetric IUGR or increased cardiovascular risk in male sGC IUGR. Furthermore, late gestational stimulation of sGC is associated with symmetrical growth restriction in sGC Control implicating contraindications in normal pregnancy.NEW & NOTEWORTHY The importance of the soluble guanylate cyclase-cGMP pathway in a rat model of placental ischemia differs during critical windows of development, implicating other factors may be critical mediators of impaired fetal growth in the final stages of gestation. Moreover, increased blood pressure at 4 mo of age in male intrauterine growth restriction offspring is associated with impaired cardiac function including an increase in global longitudinal strain in conjunction with a decrease in stroke volume, ejection fraction, and cardiac output.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Placenta/irrigación sanguínea , Insuficiencia Placentaria/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Presión Sanguínea/fisiología , Activadores de Enzimas/farmacología , Femenino , Retardo del Crecimiento Fetal/etiología , Embarazo , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Resistencia Vascular/fisiología
12.
Am J Obstet Gynecol ; 225(5): 520.e1-520.e10, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33901486

RESUMEN

BACKGROUND: The physiological control of human parturition at term is unknown. OBJECTIVE: This study aimed to test the hypothesis that slowing of fetal growth or elevated maternal serum levels of markers of placental hypoxia in late gestation will be associated with earlier term labor. STUDY DESIGN: We observed 2208 women having first births and performed serial blinded ultrasonography and immunoassay of soluble fms-like tyrosine kinase-1 and placenta growth factor. We estimated the probability of spontaneous delivery from 37 weeks of gestational age concerning (1) fetal growth between 20 and 36 weeks of gestational age and (2) the maternal serum soluble fms-like tyrosine kinase-1-to-placenta growth factor ratio measured at approximately 36 weeks of gestational age. Data were analyzed using logistic regression and Cox regression. RESULTS: Fetal size at 36 weeks of gestational age was not independently associated with the timing of delivery at term. However, there was an inverse relationship between fetal growth between 20 weeks of gestational age and 36 weeks of gestational age and the probability of spontaneous labor at 37 to 38 weeks' gestation (hazard ratio [95% confidence interval] for a 50 percentile increase in abdominal circumference growth velocity, 0.60 [0.47-0.78]; P=.0001). This association was weaker at 39 to 40 weeks' gestation (0.83 [0.74-0.93]; P=.0013), and there was no association at ≥41 weeks' gestation. Very similar associations were observed for estimated fetal weight growth velocity. There was a positive relationship between soluble fms-like tyrosine kinase-1-to-placenta growth factor ratio and the probability of spontaneous labor at 37 to 38 weeks' gestation (hazard ratio [95% confidence interval] for a 50 percentile increase in soluble fms-like tyrosine kinase-1-to-placenta growth factor ratio, 3.05 [2.32-4.02]; P<.0001). This association was weaker at 39 to 40 weeks' gestation (1.46 [1.30-1.63]; P<.0001), and there was no association at ≥41 weeks' gestation. Adjustment for maternal characteristics was without material effect on any of these associations. CONCLUSION: Slowing of fetal growth and biomarkers of placental insufficiency were associated with an increased probability of early onset of spontaneous term labor. We speculated that progressive placental insufficiency may be a physiological phenomenon that occurs with advancing gestational age near and at term and promotes the initiation of labor.


Asunto(s)
Desarrollo Fetal , Trabajo de Parto , Factor de Crecimiento Placentario/sangre , Receptor 1 de Factores de Crecimiento Endotelial Vascular/sangre , Adulto , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Edad Gestacional , Humanos , Insuficiencia Placentaria/metabolismo , Embarazo , Ultrasonografía Prenatal
13.
Dev Dyn ; 249(2): 237-244, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31625212

RESUMEN

Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is essential for the development of healthy placenta. The loss of SENP2 causes severe placental deficiencies and leads to embryonic death that is associated with heart and brain deformities. However, tissue-specific disruption of SENP2 demonstrates its dispensable role in embryogenesis and the embryonic defects are secondary to placental insufficiency. SENP2 regulates SUMO1 modification of Mdm2, which controls p53 activities critical for trophoblast cell proliferation and differentiation. Here we use genetic analyses to examine the involvement of SUMO2 and SUMO3 for SENP2-mediated placentation. The results indicate that hyper-SUMOylation caused by SENP2 deficiency can be compensated by reducing the level of SUMO modifiers. The placental deficiencies caused by the loss of SENP2 can be alleviated by the inactivation of gene encoding SUMO2 or SUMO3. Our findings demonstrate that SENP2 genetically interacts with SUMO2 and SUMO3 pivotal for the development of three major trophoblast layers. The alleviation of placental defects in the SENP2 knockouts further leads to the proper formation of the heart structures, including atrioventricular cushion and myocardium. SUMO2 and SUMO3 modifications regulate placentation and organogenesis mediated by SENP2.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Animales , Cisteína Endopeptidasas/genética , Femenino , Ratones , Ratones Noqueados , Insuficiencia Placentaria/genética , Insuficiencia Placentaria/metabolismo , Embarazo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Trofoblastos/metabolismo , Ubiquitinas/genética
14.
Am J Physiol Endocrinol Metab ; 319(1): E67-E80, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32396498

RESUMEN

Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower hindlimb oxygen consumption rates (OCRs), indicating depressed mitochondrial oxidative phosphorylation capacity in their skeletal muscle. We hypothesized that OCRs are lower in skeletal muscle mitochondria from IUGR fetuses, due to reduced electron transport chain (ETC) activity and lower abundances of tricarboxylic acid (TCA) cycle enzymes. IUGR sheep fetuses (n = 12) were created with mid-gestation maternal hyperthermia and compared with control fetuses (n = 12). At 132 ± 1 days of gestation, biceps femoris muscles were collected, and the mitochondria were isolated. Mitochondria from IUGR muscle have 47% lower State 3 (Complex I-dependent) OCRs than controls, whereas State 4 (proton leak) OCRs were not different between groups. Furthermore, Complex I, but not Complex II or IV, enzymatic activity was lower in IUGR fetuses compared with controls. Proteomic analysis (n = 6/group) identified 160 differentially expressed proteins between groups, with 107 upregulated and 53 downregulated mitochondria proteins in IUGR fetuses compared with controls. Although no differences were identified in ETC subunit protein abundances, abundances of key TCA cycle enzymes [isocitrate dehydrogenase (NAD+) 3 noncatalytic subunit ß (IDH3B), succinate-CoA ligase ADP-forming subunit-ß (SUCLA2), and oxoglutarate dehydrogenase (OGDH)] were lower in IUGR mitochondria. IUGR mitochondria had a greater abundance of a hypoxia-inducible protein, NADH dehydrogenase 1α subcomplex 4-like 2, which is known to incorporate into Complex I and lower Complex I-mediated NADH oxidation. Our findings show that mitochondria from IUGR skeletal muscle adapt to hypoxemia and hypoglycemia by lowering Complex I activity and TCA cycle enzyme concentrations, which together, act to lower OCR and NADH production/oxidation in IUGR skeletal muscle.


Asunto(s)
Ciclo del Ácido Cítrico/fisiología , Complejo I de Transporte de Electrón/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Mitocondrias Musculares/metabolismo , Animales , Regulación hacia Abajo , Complejo II de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Retardo del Crecimiento Fetal/enzimología , Músculos Isquiosurales/enzimología , Músculos Isquiosurales/metabolismo , Hipoglucemia/enzimología , Hipoglucemia/metabolismo , Hipoxia/enzimología , Hipoxia/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias Musculares/enzimología , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Insuficiencia Placentaria/enzimología , Insuficiencia Placentaria/metabolismo , Embarazo , Proteómica , Ovinos , Succinato-CoA Ligasas/metabolismo , Regulación hacia Arriba
15.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R255-R263, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32667834

RESUMEN

Fetal conditions associated with placental insufficiency and intrauterine growth restriction (IUGR) chronically elevate plasma norepinephrine (NE) concentrations. Our objective was to evaluate the effects of chronically elevated NE on insulin-stimulated glucose metabolism in normally grown, non-IUGR fetal sheep, which are independent of other IUGR-related reductions in nutrients and oxygen availability. After surgical placement of catheters, near-term fetuses received either a saline (control) or NE intravenous infusion with controlled euglycemia. In NE fetuses, plasma NE concentrations were 5.5-fold greater than controls, and fetal euglycemia was maintained with a maternal insulin infusion. Insulin secretion was blunted in NE fetuses during an intravenous glucose tolerance test. Weight-specific fluxes for glucose were measured during a euinsulinemic-euglycemic clamp (EEC) and a hyperinsulinemic-euglycemic clamp (HEC). Plasma glucose and insulin concentrations were not different between groups within each clamp, but insulin concentrations increased 10-fold between the EEC and the HEC. During the EEC, rates of glucose uptake (umbilical uptake + exogenous infusion) and glucose utilization were 47% and 35% lower (P < 0.05) in NE fetuses compared with controls. During the HEC, rates of glucose uptake were 28% lower (P < 0.05) in NE fetuses than controls. Glucose production was undetectable in either group, and glucose oxidation was unaffected by the NE infusion. These findings indicate that chronic exposure to high plasma NE concentrations lowers rates of net glucose uptake in the fetus without affecting glucose oxidation rates or initiating endogenous glucose production. Lower fetal glucose uptake was independent of insulin, which indicates insulin resistance as a consequence of chronically elevated NE.


Asunto(s)
Glucemia/metabolismo , Feto/metabolismo , Norepinefrina/sangre , Insuficiencia Placentaria/metabolismo , Animales , Femenino , Retardo del Crecimiento Fetal/metabolismo , Insulina/sangre , Resistencia a la Insulina/fisiología , Islotes Pancreáticos/metabolismo , Embarazo , Ovinos
16.
FASEB J ; 33(8): 8999-9007, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31039323

RESUMEN

The hypoxia of high-altitude (HA) residence increases the risk of intrauterine growth restriction (IUGR) and preeclampsia 3-fold, augmenting perinatal morbidity and mortality and the risk for childhood and adult disease. Currently, no effective therapies exist to prevent these vascular disorders of pregnancy. The peroxisome proliferator-activated receptor γ (PPAR-γ) is an important regulator of uteroplacental vascular development and function and has been implicated in the pathogenesis of IUGR and preeclampsia. Here, we used a model of HA pregnancy in mice to determine whether hypoxia-induced fetal growth restriction reduces placental PPAR-γ protein expression and placental vascularization and, if so, to evaluate the effectiveness of the selective PPAR-γ agonist pioglitazone (PIO) for preventing hypoxia-induced IUGR. Hypoxia resulted in asymmetric IUGR, placental insufficiency, and reduced placental PPAR-γ expression; PIO prevented approximately half of the fetal growth restriction and attenuated placental insufficiency. PIO did not affect fetal growth under normoxia. Although PIO was beneficial for fetal growth, PIO treatment reduced placental vascular density of the labrynthine zone in normoxic and hypoxic (Hx) conditions, and mean vascular area was reduced in the Hx group. Our results suggest that pharmacological PPAR-γ activation is a potential strategy for preventing IUGR in pregnancies complicated by hypoxia, although further studies are needed to identify its likely metabolic or vascular mechanisms.-Lane, S. L., Dodson, R. B., Doyle, A. S., Park, H., Rathi, H., Matarrazo, C. J., Moore, L. G., Lorca, R. A., Wolfson, G. H., Julian, C. G. Pharmacological activation of peroxisome proliferator-activated receptor γ (PPAR-γ) protects against hypoxia-associated fetal growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal/prevención & control , Hipoxia Fetal/complicaciones , PPAR gamma/agonistas , Pioglitazona/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Mal de Altura/complicaciones , Animales , Modelos Animales de Enfermedad , Femenino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/irrigación sanguínea , Placenta/efectos de los fármacos , Placenta/metabolismo , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/prevención & control , Preeclampsia/etiología , Preeclampsia/metabolismo , Preeclampsia/prevención & control , Embarazo
17.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R615-R629, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483682

RESUMEN

In a sheep model of intrauterine growth restriction (IUGR) produced from placental insufficiency, late gestation fetuses had smaller skeletal muscle mass, myofiber area, and slower muscle protein accretion rates compared with normally growing fetuses. We hypothesized that IUGR fetal muscle develops adaptations that divert amino acids (AAs) from protein accretion and activate pathways that conserve substrates for other organs. We placed hindlimb arterial and venous catheters into late gestation IUGR (n = 10) and control (CON, n = 8) fetal sheep and included an external iliac artery flow probe to measure hindlimb AA uptake rates. Arterial and venous plasma samples and biceps femoris muscle were analyzed by mass spectrometry-based metabolomics. IUGR fetuses had greater abundance of metabolites enriched within the alanine, aspartate, and glutamate metabolism pathway compared with CON. Net uptake rates of branched-chain AA (BCAA) were lower by 42%-73%, and muscle ammoniagenic AAs (alanine, glycine, and glutamine) were lower by 107%-158% in IUGR hindlimbs versus CON. AA uptake rates correlated with hindlimb weight; the smallest hindlimbs showed net release of ammoniagenic AAs. Gene expression levels indicated a decrease in BCAA catabolism in IUGR muscle. Plasma purines were lower and plasma uric acid was higher in IUGR versus CON, possibly a reflection of ATP conservation. We conclude that IUGR skeletal muscle has lower BCAA uptake and develops adaptations that divert AAs away from protein accretion into alternative pathways that sustain global energy production and nitrogen disposal in the form of ammoniagenic AAs for metabolism in other organs.


Asunto(s)
Aminoácidos/metabolismo , Extremidad Inferior/fisiopatología , Músculo Esquelético/metabolismo , Insuficiencia Placentaria/tratamiento farmacológico , Alanina/metabolismo , Animales , Femenino , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Miembro Posterior/metabolismo , Extremidad Inferior/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatología , Insuficiencia Placentaria/metabolismo , Embarazo , Ovinos
18.
J Pineal Res ; 67(3): e12591, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31231832

RESUMEN

Melatonin has been shown to reduce oxidative stress and mitigate hypercoagulability. We hypothesized that maternally administered melatonin may reduce placental oxidative stress and hypercoagulability associated with exposure to intrauterine inflammation (IUI) and consequently improve fetoplacental blood flow and fetal sequelae. Mice were randomized to the following groups: control (C), melatonin (M), lipopolysaccharide (LPS; a model of IUI) (L), and LPS with melatonin (ML). The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. The systolic/diastolic ratio, resistance index, and pulsatility index in uterine artery (UtA) and umbilical artery (UA) were significantly increased in L compared with other groups when analyzed by Doppler ultrasonography. The expression of antioxidant mediators in the placenta was significantly decreased, while that of pro-inflammatory mediators was significantly increased in L compared to C and ML. Vascular endothelial damage and thrombi formation, as evidenced by fibrin deposits, were similarly increased in L compared to other groups. Maternal pretreatment with melatonin appears to modulate maternal placental malperfusion, fetal cardiovascular compromise, and fetal neuroinflammation induced by IUI through its antioxidant properties.


Asunto(s)
Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Melatonina/uso terapéutico , Placenta/efectos de los fármacos , Placenta/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hemodinámica/efectos de los fármacos , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Ratones , Insuficiencia Placentaria/tratamiento farmacológico , Insuficiencia Placentaria/metabolismo , Embarazo , Ultrasonografía Doppler
19.
Fetal Diagn Ther ; 45(3): 176-183, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29953976

RESUMEN

INTRODUCTION: We have recently developed an extra-uterine environment for neonatal development (EXTEND) capable of supporting premature fetal lambs and have been able to replicate hypoxic in utero conditions by controlling fetal oxygen delivery. In this study, we investigated the fetal mitochondrial response to hypoxia. METHODS: Eight premature fetal lambs were delivered via hysterotomy and transitioned to extra-uterine support for 3 weeks. The lambs were divided into 2 groups: normoxic fetuses which maintained physiologic oxygen delivery and hypoxic fetuses in which oxygen delivery was significantly reduced. Control fetuses were delivered via hysterotomy but not cannulated. Measurements of mitochondrial membrane potential (MMP) were performed in peripheral blood mononuclear cells. RESULTS: There were no significant differences in MMP between normoxic EXTEND fetuses and controls. Hypoxic fetuses had significantly more depolarized mitochondria compared to normoxic fetuses overall, and these changes were specifically appreciated in weeks 1 and 2, but not by week 3. Hypoxic fetuses had significantly elevated levels of HIF-1α compared to normoxic fetuses in the first 2 weeks. DISCUSSION: Normoxic fetal lambs supported by EXTEND demonstrate normal mitochondrial function as evidenced by equivalent membrane potentials compared to control fetuses. Hypoxic fetuses exhibit mitochondrial dysfunction, though they do show evidence of adaptation after 3 weeks of hypoxic exposure.


Asunto(s)
Hipoxia Fetal/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/sangre , Potencial de la Membrana Mitocondrial/fisiología , Insuficiencia Placentaria/metabolismo , Animales , Femenino , Hipoxia Fetal/sangre , Insuficiencia Placentaria/sangre , Embarazo , Ovinos
20.
J Physiol ; 596(1): 67-82, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28940557

RESUMEN

KEY POINTS: Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass, which may contribute to insulin resistance and the development of diabetes. We demonstrate slower hindlimb linear growth and muscle protein synthesis rates that match the reduced hindlimb blood flow and oxygen consumption rates in IUGR fetal sheep. These adaptations resulted in hindlimb blood flow rates in IUGR that were similar to control fetuses on a weight-specific basis. Net hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was significantly lower in IUGR fetal sheep. Among all fetuses, blood O2 saturation and plasma glucose, insulin and insulin-like growth factor-1 were positively associated and norepinephrine was negatively associated with hindlimb weight. These results further our understanding of the metabolic and hormonal adaptations to reduced oxygen and nutrient supply with placental insufficiency that develop to slow hindlimb growth and muscle protein accretion. ABSTRACT: Reduced skeletal muscle mass in the fetus with intrauterine growth restriction (IUGR) persists into adulthood and may contribute to increased metabolic disease risk. To determine how placental insufficiency with reduced oxygen and nutrient supply to the fetus affects hindlimb blood flow, substrate uptake and protein accretion rates in skeletal muscle, late gestation control (CON) (n = 8) and IUGR (n = 13) fetal sheep were catheterized with aortic and femoral catheters and a flow transducer around the external iliac artery. Muscle protein kinetic rates were measured using isotopic tracers. Hindlimb weight, linear growth rate, muscle protein accretion rate and fractional synthetic rate were lower in IUGR compared to CON (P < 0.05). Absolute hindlimb blood flow was reduced in IUGR (IUGR: 32.9 ± 5.6 ml min-1 ; CON: 60.9 ± 6.5 ml min-1 ; P < 0.005), although flow normalized to hindlimb weight was similar between groups. Hindlimb oxygen consumption rate was lower in IUGR (IUGR: 10.4 ± 1.4 µmol min-1  100 g-1 ; CON: 14.7 ± 1.3 µmol min-1  100 g-1 ; P < 0.05). Hindlimb glucose uptake and lactate output rates were similar between groups, whereas amino acid uptake was lower in IUGR (IUGR: 1.3 ± 0.5 µmol min-1  100 g-1 ; CON: 2.9 ± 0.2 µmol min-1  100 g-1 ; P < 0.05). Blood O2 saturation (r2  = 0.80, P < 0.0001) and plasma glucose (r2  = 0.68, P < 0.0001), insulin (r2  = 0.40, P < 0.005) and insulin-like growth factor (IGF)-1 (r2  = 0.80, P < 0.0001) were positively associated and norepinephrine (r2  = 0.59, P < 0.0001) was negatively associated with hindlimb weight. Slower hindlimb linear growth and muscle protein synthesis rates match reduced hindlimb blood flow and oxygen consumption rates in the IUGR fetus. Metabolic adaptations to slow hindlimb growth are probably hormonally-mediated by mechanisms that include increased fetal norepinephrine and reduced IGF-1 and insulin.


Asunto(s)
Retardo del Crecimiento Fetal/fisiopatología , Miembro Posterior/crecimiento & desarrollo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Insuficiencia Placentaria/etiología , Biosíntesis de Proteínas , Animales , Femenino , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Masculino , Músculo Esquelético/patología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/patología , Embarazo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA