Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
J Virol ; 98(6): e0027224, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38771043

RESUMEN

Klebsiella spp. are causative agents of healthcare-associated infections in patients who are immunocompromised and use medical devices. The antibiotic resistance crisis has led to an increase in infections caused by these bacteria, which can develop into potentially life-threatening illnesses if not treated swiftly and effectively. Thus, new treatment options for Klebsiella are urgently required. Phage therapy can offer an alternative to ineffective antibiotic treatments for antibiotic-resistant bacteria infections. The aim of the present study was to produce a safe and effective phage cocktail treatment against Klebsiella pneumoniae and Klebsiella oxytoca, both in liquid in vitro culture and an in vivo Galleria mellonella infection model. The phage cocktail was significantly more effective at killing K. pneumoniae and K. oxytoca strains compared with monophage treatments. Preliminary phage cocktail safety was demonstrated through application in the in vivo G. mellonella model: where the phage cocktail induced no toxic side effects in G. mellonella. In addition, the phage cocktail significantly improved the survival of G. mellonella when administered as a prophylactic treatment, compared with controls. In conclusion, our phage cocktail was demonstrated to be safe and effective against Klebsiella spp. in the G. mellonella infection model. This provides a strong case for future treatment for Klebsiella infections, either as an alternative or adjunct to antibiotics.IMPORTANCEKlebsiella infections are a concern in individuals who are immunocompromised and are becoming increasingly difficult to treat with antibiotics due to their drug-resistant properties. Bacteriophage is one potential alternative therapy that could be used to tackle these infections. The present study describes the design of a non-toxic phage cocktail that improved the survival of Galleria mellonella infected with Klebsiella. This phage cocktail demonstrates potential for the safe and effective treatment of Klebsiella infections, as an adjunct or alternative to antibiotics.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella oxytoca , Klebsiella pneumoniae , Terapia de Fagos , Animales , Infecciones por Klebsiella/terapia , Infecciones por Klebsiella/microbiología , Bacteriófagos/fisiología , Terapia de Fagos/métodos , Klebsiella pneumoniae/virología , Klebsiella oxytoca/virología , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/virología , Klebsiella/virología , Modelos Animales de Enfermedad , Larva/microbiología , Larva/virología , Lepidópteros/microbiología , Lepidópteros/virología
2.
Mol Cell ; 66(5): 721-728.e3, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552617

RESUMEN

A major limitation in using bacteriophage-based applications is their narrow host range. Approaches for extending the host range have focused primarily on lytic phages in hosts supporting their propagation rather than approaches for extending the ability of DNA transduction into phage-restrictive hosts. To extend the host range of T7 phage for DNA transduction, we have designed hybrid particles displaying various phage tail/tail fiber proteins. These modular particles were programmed to package and transduce DNA into hosts that restrict T7 phage propagation. We have also developed an innovative generalizable platform that considerably enhances DNA transfer into new hosts by artificially selecting tails that efficiently transduce DNA. In addition, we have demonstrated that the hybrid particles transduce desired DNA into desired hosts. This study thus critically extends and improves the ability of the particles to transduce DNA into novel phage-restrictive hosts, providing a platform for myriad applications that require this ability.


Asunto(s)
Bacteriófago T7/genética , ADN Bacteriano/genética , ADN Viral/genética , Escherichia coli/genética , Vectores Genéticos , Klebsiella pneumoniae/genética , Shigella sonnei/genética , Transducción Genética/métodos , Virión , ADN Bacteriano/biosíntesis , ADN Viral/biosíntesis , Escherichia coli/metabolismo , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/virología , Shigella sonnei/metabolismo , Shigella sonnei/virología
3.
BMC Microbiol ; 24(1): 211, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877452

RESUMEN

BACKGROUND: This study investigates the effectiveness of the bacteriophage KZag1 against drug-resistant Klebsiella pneumoniae, aiming to assess its potential as a therapeutic agent. The novelty lies in the characterization of KZag1, a Myovirus with specific efficacy against multidrug-resistant K. pneumoniae strains. This highlights the significance of exploring alternative strategies, particularly phage therapy, in addressing biofilm-associated infections. METHODS: KZag1, characterized by a typical Myovirus structure with a 75 ± 5 nm diameter icosahedral head and a 15 ± 5 nm short tail, was evaluated in experimental trials against 15 strains of K. pneumoniae. The infection cycle duration was determined to be 50 min, resulting in an estimated burst size of approximately 83 plaque-forming units per colony-forming unit (PFU/CFU). Stability assessments were conducted within a pH range of 4 to 12 and temperatures ranging from 45°C to 60°C. Biofilm biomass reduction was observed, particularly at a multiplicity of infection (MOI) of 10. RESULTS: KZag1 demonstrated infection efficacy against 12 out of 15 tested K. pneumoniae strains. The phage exhibited stability across a broad pH range and at elevated temperatures. Notably, treatment with KZag1 significantly reduced K. pneumoniae biofilm biomass, emphasizing its potential in combating biofilm formation. Genomic analysis revealed a complete genome of 157,089 base pairs with a GC content of 46.38%, encompassing 203 open reading frames (ORFs) and a cysteine-specific tRNA sequence. Comparison with phage GP4 highlighted similarities, with KZag1 having a longer genome by approximately 4829 base pairs and a higher GC content by approximately 0.93%. Phylogenetic analysis classified KZag1 within the Myoviridae family. CONCLUSION: The efficacy of KZag1 against K. pneumoniae biofilm suggests its potential as a therapeutic candidate, especially for drug-resistant infections. Further clinical research is warranted to explore its synergy with other treatments, elucidate genomic traits, compare with Myoviridae phages, and understand its host interactions. These findings underscore the promising role of KZag1 in addressing drug-resistant bacterial infections.


Asunto(s)
Bacteriófagos , Biopelículas , Genoma Viral , Klebsiella pneumoniae , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/genética , Biopelículas/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Myoviridae/genética , Myoviridae/fisiología , Myoviridae/clasificación , Farmacorresistencia Bacteriana Múltiple/genética , Filogenia , ADN Viral/genética , Composición de Base , Terapia de Fagos
4.
Vet Res ; 55(1): 59, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715095

RESUMEN

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/fisiología , Ratones , Infecciones por Klebsiella/terapia , Infecciones por Klebsiella/veterinaria , Infecciones por Klebsiella/microbiología , Bacteriófagos/fisiología , Modelos Animales de Enfermedad , Terapia de Fagos , Femenino , Glicósido Hidrolasas/metabolismo , Bovinos
5.
Can J Microbiol ; 70(6): 213-225, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447122

RESUMEN

Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer Klebsiella pneumoniae isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named Klebsiella phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except Klebsiella phage Kpn02 which encodes 24 tRNAs. Interestingly, Klebsiella phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the Klebsiella-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR K. pneumoniae, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.


Asunto(s)
Bacteriófagos , Genoma Viral , Klebsiella pneumoniae , Plásmidos , Klebsiella pneumoniae/virología , Klebsiella pneumoniae/genética , Plásmidos/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Bacteriófagos/clasificación , Infecciones por Klebsiella/microbiología , Secuenciación Completa del Genoma , Genómica
6.
Ann Clin Microbiol Antimicrob ; 22(1): 18, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829156

RESUMEN

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant clinical problem, given the lack of therapeutic options. The CRKP strains have emerged as an essential worldwide healthcare issue during the last 10 years. Global expansion of the CRKP has made it a significant public health hazard. We must consider to novel therapeutic techniques. Bacteriophages are potent restorative cases against infections with multiple drug-resistant bacteria. The Phages offer promising prospects for the treatment of CRKP infections. OBJECTIVE: In this study, a novel K. pneumoniae phage vB_KshKPC-M was isolated, characterized, and sequenced, which was able to infect and lyse Carbapenem-resistant K. pneumoniae host specifically. METHODS: One hundred clinical isolates of K. pneumoniae were collected from patients with COVID-19 associated with ventilator-associated acute pneumonia hospitalized at Shahid Beheshti Hospital, Kashan, Iran, from 2020 to 2021. Initially, all samples were cultured, and bacterial isolates identified by conventional biochemical tests, and then the ureD gene was used by PCR to confirm the isolates. The Antibiotic susceptibility test in the disc diffusion method and Minimum inhibitory concentrations for Colistin was done and interpreted according to guidelines. Phenotypic and molecular methods determined the Carbapenem resistance of isolates. The blaKPC, blaNDM, and blaOXA-23 genes were amplified for this detection. Biofilm determination of CRKP isolates was performed using a quantitative microtiter plate (MTP) method. The phage was isolated from wastewater during the summer season at a specific position from Beheshti Hospital (Kashan, Iran). The sample was processed and purified against the bacterial host, a CRKP strain isolated from a patient suffering from COVID-19 pneumoniae and resistance to Colistin with high potency for biofilm production. This isolate is called Kp100. The separated phages were diluted and titration by the double overlay agar plaque assay. The separate Phage is concentrated with 10% PEG and stored at -80 °C until use. The phage host range was identified by the spot test method. The purified phage morphology was determined using a transmission electron microscope. The phage stability tests (pH and temperature) were analyzed. The effect of cationic ions on phage adsorption was evaluated. The optimal titer of bacteriophage was determined to reduce the concentration of the CRKP strain. One-step growth assays were performed to identify the purified phage burst's latent cycle and size. The SDS-PAGE was used for phage proteins analysis. Phage DNA was extracted by chloroform technique, and the whole genome of lytic phage was sequenced using Illumina HiSeq technology (Illumina, San Diego, CA). For quality assurance and preprocessing, such as trimming, Geneious Prime 2021.2.2 and Spades 3.9.0. The whole genome sequence of the lytic phage is linked to the GenBank database accession number. RASTtk-v1.073 was used to predict and annotate the ORFs. Prediction of ORF was performed using PHASTER software. ResFinder is used to assess the presence of antimicrobial resistance and virulence genes in the genome. The tRNAs can-SE v2.0.6 is used to determine the presence of tRNA in the genome. Linear genome comparisons of phages and visualization of coding regions were performed using Easyfig 2.2.3 and Mauve 2.4.0. Phage lifestyles were predicted using the program PHACTS. Phylogenetic analysis and amino acid sequences of phage core proteins, such as the major capsid protein. Phylogenies were reconstructed using the Neighbor-Joining method with 1000 bootstrap repeat. HHpred software was used to predict depolymerase. In this study, GraphPad Prism version 9.1 was used for the statistical analysis. Student's t-test was used to compare the sets and the control sets, and the significance level was set at P ≤ 0.05. RESULTS: Phage vB_KshKPC-M is assigned to the Siphoviridae, order Caudovirales. It was identified as a linear double-stranded DNA phage of 54,378 bp with 50.08% G + C content, had a relatively broad host range (97.7%), a short latency of 20 min, and a high burst size of 260 PFU/cell, and was maintained stable at different pH (3-11) and temperature (45-65 °C). The vB_KshKPC-M genome contains 91 open-reading frames. No tRNA, antibiotic resistance, toxin, virulence-related genes, or lysogen-forming gene clusters were detected in the phage genome. Comparative genomic analysis revealed that phage vB_KshKPC-M has sequence similarity to the Klebsiella phages, phage 13 (NC_049844.1), phage Sushi (NC_028774.1), phage vB_KpnD_PeteCarol (OL539448.1) and phage PWKp14 (MZ634345.1). CONCLUSION: The broad host range and antibacterial activity make it a promising candidate for future phage therapy applications. The isolated phage was able to lyse most of the antibiotic-resistant clinical isolates. Therefore, this phage can be used alone or as a phage mixture in future studies to control and inhibit respiratory infections caused by these bacteria, especially in treating respiratory infections caused by resistant strains in sick patients.


Asunto(s)
Bacteriófagos , COVID-19 , Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Colistina/farmacología , COVID-19/complicaciones , Genómica , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/virología , Filogenia , Ventiladores Mecánicos
7.
BMC Microbiol ; 21(1): 186, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154528

RESUMEN

BACKGROUND: Multidrug-resistant Klebsiella pneumoniae spp. (kp) are emerging agents of severe infections of the respiratory, urinary tract and wounds that can progress to fatal septicemia. The use of bacteriophages is currently being considered as an effective alternative or adjuvant to antibiotic therapy. RESULTS: In this study, we report capsule (K)-typing of 163 carbapenem-resistant Kp (CRKP) isolated 2014-2018 at the Military Hospital of Instruction of Tunis (MHT), Tunisia, by partial amplification and sequencing of the Kp wzi gene. The most prevalent K-type overall was K64 with 50.3% followed by K17 and K27 (22.7 and 11.0%, respectively). K64 Kp strains were most common and associated with increased case/fatality rates, especially at the intensive care unit (ICU). Using a K64 Kp strain we isolated and characterized a lytic Kp phage, vB_KpP_TUN1 (phage TUN1), from wastewater samples of the ICU at the MHT. TUN1 belongs to the Autographiviridae family and specifically digests K64 Kp capsules most probably via a depolymerase encoded by gp47. Furthermore, we successfully assembled phage TUN1 in a non-replicative host (E. coli) raising the possibility of in vitro assembly in the absence of live bacterial hosts. We propose that phage TUN1 is a promising candidate to be used as an adjuvant or an alternative to antibiotic therapy in CRKP infections, facilitating regulatory approval of phage therapy. CONCLUSIONS: K64, K17 and K27 are the most common wzi capsule types in this geographical location in Northern Africa. The lytic phage TUN1 efficiently lyses K64 Kp strains associated with increased case/fatality rates at body temperature. Together with its ability to be rescued in a non-replicative host these features enhance the utility of this phage as an antibacterial agent.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/virología , Humanos , Túnez
8.
FASEB J ; 34(8): 10801-10817, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32598522

RESUMEN

Multidrug resistant (MDR) carbapenemase-producing (CP) Klebsiella pneumoniae, belonging to clonal group CG258, is capable of causing severe disease in humans and is classified as an urgent threat by health agencies worldwide. Bacteriophages are being actively explored as therapeutic alternatives to antibiotics. In an effort to define a robust experimental approach for effective selection of lytic viruses for therapy, we have fully characterized the genomes of 18 Kumoniae target strains and tested them against novel lytic bacteriophages (n = 65). The genomes of K pneumoniae carrying blaNDM and blaKPC were sequenced and CG258 isolates selected for bacteriophage susceptibility testing. The local K pneumoniae CG258 population was dominated by sequence type ST258 clade 1 (86%) with variations in capsular locus (cps) and prophage content. CG258-specific bacteriophages primarily targeted the capsule, but successful infection is also likely blocked in some by immunity conferred by existing prophages. Five tailed bacteriophages against K pneumoniae ST258 clade 1 were selected for further characterization. Our findings show that effective control of K pneumoniae CG258 with bacteriophage will require mixes of diverse lytic viruses targeting relevant cps variants and allowing for variable prophage content. These insights will facilitate identification and selection of therapeutic bacteriophage candidates against this serious pathogen.


Asunto(s)
Bacteriófagos/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/virología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/efectos de los fármacos , Filogenia , beta-Lactamasas/genética
9.
Virol J ; 18(1): 9, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407669

RESUMEN

BACKGROUND: Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates. METHODS: This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence. RESULTS: Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules. CONCLUSIONS: The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.


Asunto(s)
Bacteriófagos/fisiología , Caudovirales/fisiología , Klebsiella pneumoniae/virología , Terapia de Fagos/métodos , Bacteriólisis , Bacteriófagos/clasificación , Bacteriófagos/genética , Caudovirales/clasificación , Caudovirales/genética , Caudovirales/aislamiento & purificación , ADN Viral/genética , Genoma Viral/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Especificidad del Huésped , Concentración de Iones de Hidrógeno , Infecciones por Klebsiella/terapia , Temperatura , Proteínas Virales/genética , Proteínas Virales/metabolismo , Acoplamiento Viral , Latencia del Virus
10.
Virus Genes ; 57(5): 434-442, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34156584

RESUMEN

The increasing prevalence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to global health. Phages and phage-derived enzymes gained increasing attention for controling CRKP infections. In this study, a lytic phage P510 infecting KL64 type K. pneumoniae was isolated and characterized. Whole genome analysis and electron microscopy analysis showed that phage P510 belonged to genus Przondovirus, family Autographiviridae, the order Caudovirales. The tail fiber protein of the phage was predicted to encode capsule depolymerase. Further analysis demonstrated that recombinant depolymerase P510dep had polysaccharide-degrading activity against KL64-types capsule of K. pneumoniae, and its lysis spectrum matched to host range of phage P510. We also demonstrated that the recombinant depolymerase was able to significantly inhibit biofilm formation. The discovery of the phage-derived depolymerase lays the foundation for controlling the spread of CRKPs.


Asunto(s)
Bacteriófagos/genética , Genoma Viral/genética , Glicósido Hidrolasas/genética , Klebsiella pneumoniae/genética , Bacteriófagos/enzimología , Bacteriófagos/patogenicidad , Biopelículas/crecimiento & desarrollo , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/virología , Caudovirales/enzimología , Caudovirales/genética , Caudovirales/patogenicidad , Humanos , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/virología , Proteínas Virales/genética
11.
Ann Clin Microbiol Antimicrob ; 20(1): 30, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902597

RESUMEN

Multi-Drug Resistant (MDR) uropathogenic bacteria have increased in number in recent years and the development of new treatment options for the corresponding infections has become a major challenge in the field of medicine. In this respect, recent studies have proposed bacteriophage (phage) therapy as a potential alternative against MDR Urinary Tract Infections (UTI) because the resistance mechanism of phages differs from that of antibiotics and few side effects have been reported for them. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis are the most common uropathogenic bacteria against which phage therapy has been used. Phages, in addition to lysing bacterial pathogens, can prevent the formation of biofilms. Besides, by inducing or producing polysaccharide depolymerase, phages can easily penetrate into deeper layers of the biofilm and degrade it. Notably, phage therapy has shown good results in inhibiting multiple-species biofilm and this may be an efficient weapon against catheter-associated UTI. However, the narrow range of hosts limits the use of phage therapy. Therefore, the use of phage cocktail and combination therapy can form a highly attractive strategy. However, despite the positive use of these treatments, various studies have reported phage-resistant strains, indicating that phage-host interactions are more complicated and need further research. Furthermore, these investigations are limited and further clinical trials are required to make this treatment widely available for human use. This review highlights phage therapy in the context of treating UTIs and the specific considerations for this application.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Terapia de Fagos , Infecciones Urinarias/microbiología , Infecciones Urinarias/terapia , Animales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple , Glicósido Hidrolasas/farmacología , Especificidad del Huésped , Humanos , Klebsiella pneumoniae/virología , Proteus mirabilis/virología , Escherichia coli Uropatógena/virología
12.
BMC Vet Res ; 17(1): 37, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468111

RESUMEN

BACKGROUND: Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. RESULTS: Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1ß concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1ß, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. CONCLUSIONS: Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.


Asunto(s)
Bacteriófagos , Células Epiteliales/microbiología , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/virología , Animales , Apoptosis , Bovinos , Línea Celular , Citocinas/metabolismo , Células Epiteliales/metabolismo , Femenino , Inflamación , L-Lactato Deshidrogenasa/metabolismo , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología
13.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440735

RESUMEN

The appearance of carbapenem-resistant Klebsiella pneumoniae has increased the use of colistin as a last-resort antibiotic for treating infections by this pathogen. A consequence of its use has been the spread of colistin-resistant strains, in several cases carrying colistin resistance genes. In addition, when susceptible strains are confronted with colistin during treatment, mutation is a major cause of the acquisition of resistance. To analyze the mechanisms of resistance that might be selected during colistin treatment, an experimental evolution assay for 30 days using as a model the clinical K. pneumoniae kp52145 isolate in the presence of increasing amounts of colistin was performed. All evolved populations presented a decreased susceptibility to colistin, without showing cross-resistance to antibiotics belonging to other structural families. We did not find any common mutation in the evolved mutants, neither in already known genes, previously known to be associated with the resistance phenotype, nor in new ones. The only common genetic change observed in the strains that evolved in the presence of colistin was the amplification of a 34 Kb sequence, homologous to a prophage (Enterobacteria phage Fels-2). Our data support that gene amplification can be a driving force in the acquisition of colistin resistance by K. pneumoniae.


Asunto(s)
Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Bacteriófagos/genética , Biología Computacional/métodos , Evolución Molecular , Humanos , Klebsiella pneumoniae/virología
14.
Arch Virol ; 165(12): 2799-2806, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32989574

RESUMEN

The increasing population infected by carbapenem-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. In this study, we isolated, characterized, and sequenced a bacteriophage, P509, which was able to specifically infect and lyse carbapenem-resistant K. pneumoniae of K locus type KL64. A one-step growth curve experiment showed that the latent time period of phage P509 was 5 min, and the burst size was about 85 phage particles/cell. Stability tests confirmed that P509 was stable over a wide range of temperatures (4 to 50 °C) and pH (3 to 11) conditions. Phage P509 was identified as a linear double-stranded DNA phage with a genome of 40,954 bp with 53.2% G + C content, encoding 50 predicted proteins. Genomic and morphological analysis suggested that P509 belonged to the genus Przondovirus, family Autographiviridae, order Caudovirales. Further analysis showed that no virulence-related genes or lysogen-formation gene clusters were detected in the genome, suggesting that P509 is a lytic phage, making it potentially suitable for clinical applications. In vitro, the number of viable cells in three phage-treated groups (MOI = 0.1, 0.01, 0.001) decreased by 3.75 log10 CFU/ml, 3.32 log10 CFU/ml and 3.21 log10 CFU/ml, respectively, after 80 min of incubation, in comparison to that in the untreated group. Based on these characteristics, phage P509 may be a promising candidate for future phage therapy applications.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Klebsiella pneumoniae/virología , Bacteriófagos/genética , Composición de Base , Enterobacteriaceae Resistentes a los Carbapenémicos/patogenicidad , Enterobacteriaceae Resistentes a los Carbapenémicos/virología , Genoma Viral , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/patogenicidad , Factores de Virulencia/genética
15.
Arch Virol ; 165(1): 97-104, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31734749

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has spread globally and emerged as an urgent public health threat. Bacteriophages are considered an effective weapon against multidrug-resistant pathogens. In this study, we report a novel lytic phage, kpssk3, which is able to lyse CRKP and degrade exopolysaccharide (EPS). The morphological characteristics of kpssk3 observed by transmission electron microscopy, including a polyhedral head and a short tail, indicate that it belongs to the family Podoviridae. A one-step growth curve revealed that kpssk3 has a latent period of 10 min and a burst size of 200 plaque-forming units (pfu) per cell. kpssk3 was able to lyse 25 out of 27 (92.59%) clinically isolated CRKP strains, and it also exhibited high stability to changes in temperature and pH. kpssk3 has a linear dsDNA genome of 40,539 bp with 52.80% G+C content and 42 putative open reading frames (ORFs). No antibiotic resistance genes, virulence factors, or integrases were identified in the genome. Based on bioinformatic analysis, the tail fiber protein of phage kpssk3 was speculated to possess depolymerase activity towards EPS. By comparative genomics and phylogenetic analysis, it was determined that kpssk3 is a new T7-like virus and belongs to the subfamily Autographivirinae. The characterization and genomic analysis of kpssk3 will promote our understanding of phage biology and diversity and provide a potential strategy for controlling CRKP infection.


Asunto(s)
Farmacorresistencia Bacteriana , Klebsiella pneumoniae/virología , Podoviridae/clasificación , Secuenciación Completa del Genoma/métodos , Composición de Base , Carbapenémicos , Genoma Viral , Concentración de Iones de Hidrógeno , Lisogenia , Microscopía Electrónica de Transmisión , Filogenia , Podoviridae/genética , Podoviridae/fisiología , Termodinámica , Proteínas de la Cola de los Virus/genética
16.
Curr Microbiol ; 77(5): 722-729, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31912220

RESUMEN

A novel virulent phage, vB_KpnP_IME337, isolated from a hospital sewage in Beijing, China, that infects carbapenem-resistant Klebsiella pneumoniae KN2 capsular type was identified and characterized. Next-generation sequencing and genome analysis revealed that vB_KpnP_IME337 had a linear double-stranded genome with a length of 44,266 base pairs and G+C content of 53.7%. Fifty-two putative open reading frames were identified, and no transfer RNA-encoding genes were detected. BLASTn analysis revealed that phage vB_KpnP_IME337 had the highest sequence similarity with Klebsiella phage phiBO1E, with genome coverage of 79%. Based on morphology, phage vB_KpnP_IME337 was determined to belong to the family Podoviridae of the order Caudovirales. It was shown that phage vB_KpnP_IME337 had an infection duration of ~ 90 min and 10 min latent period, and a highly specific to host strain. In conclusion, phage vB_KpnP_IME337 may be a promising alternative candidate to antibiotic treatment for controlling diseases caused by drug-resistant K. pneumoniae.


Asunto(s)
Genoma Viral , Klebsiella pneumoniae/virología , Podoviridae/genética , Podoviridae/aislamiento & purificación , Antibacterianos/farmacología , Composición de Base , Carbapenémicos/farmacología , China , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Klebsiella pneumoniae/efectos de los fármacos , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Aguas del Alcantarillado/virología , Virulencia , Resistencia betalactámica
17.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936552

RESUMEN

The emergence of multi-drug-resistant bacteria represents a major public-health threat. Phages constitute a promising alternative to chemical antibiotics due to their high host specificity, abundance in nature, and evolvability. However, phage host specificity means that highly diverse bacterial species are particularly difficult to target for phage therapy. This is the case of Klebsiella pneumoniae, which presents a hypervariable extracellular matrix capsule exhibiting dozens of variants. Here, we report four novel phages infecting K. pneumoniae capsular type K22 which were isolated from environmental samples in Valencia, Spain. Full genome sequencing showed that these phages belong to the Podoviridae family and encode putative depolymerases that allow digestion of specific K22 K. pneumoniae capsules. Our results confirm the capsular type-specificity of K. pneumoniae phages, as indicated by their narrow infectivity in a panel of K. pneumoniae clinical isolates. Nonetheless, this work represents a step forward in the characterization of phage diversity, which may culminate in the future use of large panels of phages for typing and/or for combating multi-drug-resistant K. pneumoniae.


Asunto(s)
Bacteriófagos/aislamiento & purificación , Klebsiella pneumoniae/virología , Bacteriófagos/genética , Bacteriófagos/ultraestructura , Genoma Viral , Especificidad del Huésped , Humanos , Klebsiella pneumoniae/ultraestructura , Funciones de Verosimilitud , Filogenia , Dominios Proteicos , España , Proteínas Virales/química
18.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365770

RESUMEN

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Klebsiella pneumoniae/virología , Proteínas Virales/genética , Secuencia de Aminoácidos , Antígenos Virales/química , Antígenos Virales/inmunología , Bacteriólisis , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Biología Computacional/métodos , Variación Genética , Genoma Viral , Especificidad del Huésped , Infecciones por Klebsiella/microbiología , Modelos Moleculares , Conformación Molecular , Anotación de Secuencia Molecular , Fenotipo , Filogenia , Proteínas Virales/química , Secuenciación Completa del Genoma
19.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899105

RESUMEN

Klebsiella pneumoniae is one of the most common nosocomial opportunistic pathogens and usually exhibits multiple-drug resistance. Phage therapy, a potential therapeutic to replace or supplement antibiotics, has attracted much attention. However, very few Klebsiella phages have been well characterized because of the lack of efficient genome-editing tools. Here, Cas9 from Streptococcus pyogenes and a single guide RNA (sgRNA) were used to modify a virulent Klebsiella bacteriophage, phiKpS2. We first evaluated the distribution of sgRNA activity in phages and proved that it is largely inconsistent with the predicted activity from current models trained on eukaryotic cell data sets. A simple CRISPR-based phage genome-editing procedure was developed based on the discovery that homologous arms as short as 30 to 60 bp were sufficient to introduce point mutation, gene deletion, and swap. We also demonstrated that weak sgRNAs could be used for precise phage genome editing but failed to select random recombinants, possibly because inefficient cleavage can be tolerated through continuous repair by homologous recombination with the uncut genomes. Small frameshift deletion was proved to be an efficient way to evaluate the essentiality of phage genes. By using the abovementioned strategies, a putative promoter and nine genes of phiKpS2 were successfully deleted. Interestingly, the holin gene can be deleted with little effect on phiKpS2 infection, but the reason is not yet clear. This study established an efficient, time-saving, and cost-effective procedure for phage genome editing, which is expected to significantly promote the development of bacteriophage therapy.IMPORTANCE In the present study, we have addressed efficient, time-saving, and cost-effective CRISPR-based phage genome editing of Klebsiella phage, which has the potential to significantly expand our knowledge of phage-host interactions and to promote applications of phage therapy. The distribution of sgRNA activity was first evaluated in phages. Short homologous arms were proven to be enough to introduce point mutation, small frameshift deletion, gene deletion, and swap into phages, and weak sgRNAs were proven useful for precise phage genome editing but failed to select random recombinants, all of which makes the CRISPR-based phage genome-editing method easier to use.


Asunto(s)
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Genoma Viral/genética , Klebsiella pneumoniae/virología , Bacteriófagos/patogenicidad , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Roturas del ADN de Doble Cadena , Edición Génica/economía , Edición Génica/normas , Recombinación Homóloga , Mutación Puntual , ARN Viral/química , ARN Viral/genética , Eliminación de Secuencia , Virulencia
20.
Microb Pathog ; 135: 103625, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31325570

RESUMEN

This study was design to evaluate the physiological properties of bacteriophage-insensitive Klebsiella pneumoniae (BIKP) mutants in association with the antibiotic cross-resistance, ß-lactamase activity, and gene expression. Klebsiella pneumoniae ATCC 23357(KPWT), ciprofloxacin-induced antibiotic-resistant K. pneumoniae ATCC 23357 (KPCIP), and clinically isolated antibiotic-resistant K. pneumoniae 10263 (KPCLI) were used to isolate BIKP mutants against KPB1, PBKP02, PBKP21, PBKP29, PBKP33, and PBKP35. PBKP35-induced mutants, including bacteriophage-insensitive K. pneumoniae ATCC 23357 (BIKPWT), ciprofloxacin-induced K. pneumoniae ATCC 23357 (BIKPCIP), and clinically isolated antibiotic-resistant K. pneumoniae CCARM 10263 (BIKPCLI). BIKPWT, BIKPCIP, and BIKPCLI were resistant to Klebsiella bacteriophages, KPB1, PBKP02, PBKP21, PBKP29, and PBKP33. The antibiotic cross-resistance to cefotaxime, cephalothin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, levofloxacin, and nalidixic acid was observed in BIKPWT. The relative expression levels of vagC was increased by more than 8-folds in BIKPWT, corresponding to the increased ß-lactamase activity. The aac(6')-Ib-cr was overexpressed in BIKP mutants, responsible for aminoglycoside and quinolone resistance. The phage-resistant mutants decreased the antibiotic susceptibilities in association with ß-lactamase activity and antibiotic resistance-related gene expression. The results pointed out the cross-resistance of BIKP mutants to antibiotics, which might be considered when applying for the therapeutic use of bacteriophage.


Asunto(s)
Antibacterianos/farmacología , Bacteriófagos/fisiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/virología , Aminoglicósidos/genética , Cefotaxima/farmacología , Cefalotina/farmacología , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Levofloxacino/farmacología , Terapia de Fagos , Quinolonas/farmacología , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA