Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.335
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 54(12): 2724-2739.e10, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34687607

RESUMEN

Nitric oxide (NO) is an important antimicrobial effector but also prevents unnecessary tissue damage by shutting down the recruitment of monocyte-derived phagocytes. Intracellular pathogens such as Leishmania major can hijack these cells as a niche for replication. Thus, NO might exert containment by restricting the availability of the cellular niche required for efficient pathogen proliferation. However, such indirect modes of action remain to be established. By combining mathematical modeling with intravital 2-photon biosensors of pathogen viability and proliferation, we show that low L. major proliferation results not from direct NO impact on the pathogen but from reduced availability of proliferation-permissive host cells. Although inhibiting NO production increases recruitment of these cells, and thus pathogen proliferation, blocking cell recruitment uncouples the NO effect from pathogen proliferation. Therefore, NO fulfills two distinct functions for L. major containment: permitting direct killing and restricting the supply of proliferation-permissive host cells.


Asunto(s)
Leishmania major/fisiología , Leishmaniasis/inmunología , Macrófagos/inmunología , Óxido Nítrico/metabolismo , Animales , Procesos de Crecimiento Celular , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Microscopía Intravital , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos
2.
PLoS Pathog ; 20(10): e1012598, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39383180

RESUMEN

In canine leishmaniosis endemic areas, Leishmania infantum may occur in sympatry with the non-pathogenic Leishmania tarentolae, which is associated to reptiles. The potential infectivity of L. tarentolae for mammals raises questions about the interactions between the two Leishmania species, and the potential cross-immune protection in dogs. This study aimed to assess the outcome of experimental L. tarentolae infection in dogs, determining: i) the anti-L. tarentolae antibody production, ii) the duration of the immunity and cytokine expression, and iii) the possible pathogenic effect in the canine host. Twelve purpose-bred beagle dogs were randomly allocated to three groups (intravenous inoculation, G1; intradermal inoculation, G2; negative control, G3). G1 and G2 dogs were inoculated twice (day 0, day 28) with 108 promastigotes of L. tarentolae strain (RTAR/IT/21/RI-325) isolated from a Tarentola mauritanica gecko. The animals were followed until day 206. Blood, serum, conjunctival swabs and lymph node aspirate samples were collected monthly and bone marrow, liver and spleen biopsies on day 91. Hematological and biochemical parameters were assessed monthly, as well as serology (IFAT and ELISA) and molecular identification of L. tarentolae. Mononuclear cells (PBMC) were obtained to assess the cytokine expression through in vitro stimulation or (re-) infection. Data from this study demonstrated that DNA from L. tarentolae is detectable up to 3 months post-infection, with seroconversion after day 28. Moreover, the non-pathogenic nature of L. tarentolae was confirmed, with a neutral Th1/Th2 polarization, and a possible shift to Th1 phenotype after derived macrophages (re-) infection, as demonstrated by the expression of IFN-gamma. Therefore, L. tarentolae demonstrated a great potential as a surrogate pathogen and/or immune-prophylaxis/immune-therapy against Leishmania infections in dogs and humans.


Asunto(s)
Enfermedades de los Perros , Leishmania , Animales , Perros , Leishmania/inmunología , Leishmania/patogenicidad , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/parasitología , Lagartos/inmunología , Lagartos/parasitología , Anticuerpos Antiprotozoarios/inmunología , Modelos Animales de Enfermedad , Leishmaniasis/inmunología , Leishmaniasis/parasitología , Citocinas/metabolismo , Citocinas/inmunología , Femenino , Masculino
3.
Mol Microbiol ; 121(1): 53-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010644

RESUMEN

Leishmania are flagellated eukaryotic parasites that cause leishmaniasis and are closely related to the other kinetoplastid parasites such as Trypanosoma brucei. In all these parasites there is a cell membrane invagination at the base of the flagellum called the flagellar pocket, which is tightly associated with and sculpted by cytoskeletal structures including the flagellum attachment zone (FAZ). The FAZ is a complex interconnected structure linking the flagellum to the cell body and has critical roles in cell morphogenesis, function and pathogenicity. However, this structure varies dramatically in size and organisation between these different parasites, suggesting changes in protein localisation and function. Here, we screened the localisation and function of the Leishmania orthologues of T. brucei FAZ proteins identified in the genome-wide protein tagging project TrypTag. We identified 27 FAZ proteins and our deletion analysis showed that deletion of two FAZ proteins in the flagellum, FAZ27 and FAZ34 resulted in a reduction in cell body size, and flagellum loss in some cells. Furthermore, after null mutant generation, we observed distinct and reproducible changes to cell shape, demonstrating the ability of the parasite to adapt to morphological perturbations resulting from gene deletion. This process of adaptation has important implications for the study of Leishmania mutants.


Asunto(s)
Leishmania , Leishmaniasis , Trypanosoma brucei brucei , Humanos , Leishmania/genética , Leishmania/metabolismo , Flagelos/metabolismo , Citoesqueleto/metabolismo , Leishmaniasis/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
4.
J Cell Sci ; 136(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37357611

RESUMEN

Leishmania spp. are obligate intracellular parasites that must be internalized by phagocytic cells to evade immune responses and cause disease. The uptake of both Leishmania promastigotes (insect-stage parasites) and amastigotes (proliferative-stage parasites in humans and mice) by phagocytes is thought to be mainly host cell driven, not parasite driven. Our previous work indicates that host Src- and Abl-family kinases facilitate Leishmania entry into macrophages and pathogenesis in murine cutaneous leishmaniasis. Here, we demonstrate that host spleen tyrosine kinase (SYK) is required for efficient uptake of Leishmania promastigotes and amastigotes. A Src-family kinase-Abl-family kinase-SYK signaling cascade induces Leishmania amastigote internalization. Finally, lesion size and parasite burden during Leishmania infection is significantly decreased in mice lacking SYK in monocytes or by treatment with the SYK inhibitor entospletinib. In summary, SYK is required for maximal Leishmania uptake by macrophages and disease in mice. Our results suggest potential for treating leishmaniasis using host cell-directed agents.


Asunto(s)
Leishmania , Leishmaniasis , Parásitos , Humanos , Animales , Ratones , Quinasa Syk , Fagocitosis , Leishmaniasis/parasitología , Macrófagos
5.
Antimicrob Agents Chemother ; 68(4): e0155923, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497616

RESUMEN

Leishmaniasis remains one of the main public health problems worldwide, with special incidence in the poorest populations. Selenium and its derivatives can be potent therapeutic options against protozoan parasites. In this work, 17 aryl selenoates were synthesized and screened against three species of Leishmania (Leishmania major, Leishmania amazonensis, and Leishmania infantum). Initial screening in promastigotes showed L. infantum species was more sensitive to selenoderivatives than the others. The lead Se-(2-selenocyanatoethyl) thiophene-2-carboselenoate (16) showed a half-maximal effective concentration of 3.07 µM and a selectivity index > 32.57 against L. infantum promastigotes. It was also the most effective of all 17 compounds, decreasing the infection ratio by 90% in L. infantum-infected macrophages with amastigotes at 10 µM. This aryl selenoate did not produce a hemolytic effect on human red blood cells at the studied doses (10-100 µM). Furthermore, the gene expression of infected murine macrophages related to cell death, the cell cycle, and the selenoprotein synthesis pathway in amastigotes was altered, while no changes were observed in their murine homologs, supporting the specificity of Compound 16 against the parasite. Therefore, this work reveals the possible benefits of selenoate derivatives for the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania mexicana , Leishmaniasis , Animales , Ratones , Humanos , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Expresión Génica , Ratones Endogámicos BALB C
6.
Antimicrob Agents Chemother ; 68(3): e0112723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349159

RESUMEN

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmaniasis , Parásitos , Animales , Humanos , Células Endoteliales , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico
7.
Antimicrob Agents Chemother ; 68(1): e0050923, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38063403

RESUMEN

The main challenges associated with leishmaniasis chemotherapy are drug toxicity, the possible emergence of resistant parasites, and a limited choice of therapeutic agents. Therefore, new drugs and assays to screen and detect novel active compounds against leishmaniasis are urgently needed. We thus validated Leishmania braziliensis (Lb) and Leishmania infantum (Li) that constitutively express the tandem tomato red fluorescent protein (tdTomato) as a model for large-scale screens of anti-Leishmania compounds. Confocal microscopy of Lb and Li::tdTomato revealed red fluorescence distributed throughout the entire parasite, including the flagellum, and flow cytometry confirmed that the parasites emitted intense fluorescence. We evaluated the infectivity of cloned promastigotes and amastigotes constitutively expressing tdTomato, their growth profiles in THP-1 macrophages, and susceptibility to trivalent antimony, amphotericin, and miltefosine in vitro. The phenotypes of mutant and wild-type parasites were similar, indicating that the constitutive expression of tdTomato did not interfere with the evaluated parameters. We applied our validated model to a repositioning strategy and assessed the susceptibility of the parasites to eight commercially available drugs. We also screened 32 natural plant and fungal extracts and 10 pure substances to reveal new active compounds. The infectivity and Glucantime treatment efficacy of BALB/c mice and golden hamsters infected with Lb and Li::tdTomato mutant lines, respectively, were very similar compared to animals infected with wild-type parasites. Standardizing our methodology would offer more rapid, less expensive, and easier assays to screen of compounds against L. braziliensis and L. infantum in vitro and in vivo. Our method could also enhance the discovery of active compounds for treating leishmaniasis.


Asunto(s)
Antiprotozoarios , Leishmania braziliensis , Leishmania infantum , Leishmaniasis , Cricetinae , Animales , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Fluorescencia , Leishmaniasis/tratamiento farmacológico , Leishmania infantum/genética , Leishmania braziliensis/genética , Mesocricetus , Ratones Endogámicos BALB C
8.
Curr Opin Infect Dis ; 37(5): 342-348, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39012806

RESUMEN

PURPOSE OF REVIEW: The number of cases of visceral leishmaniasis associated with transplant-associated immunosuppression has increased in recent years. Reviewing and updating the latest developments in its diagnostic management, treatment, and follow-up is necessary and relevant. RECENT FINDINGS: Visceral leishmaniasis cases associated with non-HIV immunosuppression are a growing cause of the parasitic infections, and the transplant patients are included in this context. These have been described especially in kidney transplantation. Liposomal amphotericin B is the first-line treatment. Due to immunosuppression, these patients often suffer from recurrent infections. The use of markers that indicate whether the patient has developed an adequate cellular response against Leishmania after treatment seems to be good biomarkers of cure and useful for monitoring and guiding secondary prophylaxis. SUMMARY: There is a lack of consensus regarding the need for leishmaniasis screening in donors and recipients and the indications for secondary prophylaxis. The study of new biomarkers of cure may be useful in all three contexts.


Asunto(s)
Anfotericina B , Antiprotozoarios , Leishmaniasis Visceral , Humanos , Antiprotozoarios/uso terapéutico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/diagnóstico , Anfotericina B/uso terapéutico , Huésped Inmunocomprometido , Receptores de Trasplantes , Trasplante de Órganos/efectos adversos , Trasplante de Riñón/efectos adversos , Leishmaniasis/diagnóstico
9.
PLoS Pathog ; 18(2): e1010364, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202447

RESUMEN

Leishmaniasis is an infectious disease caused by protozoan parasites belonging to the genus Leishmania for which there are no approved human vaccines. Infections localise to different tissues in a species-specific manner with the visceral form of the disease caused by Leishmania donovani and L. infantum being the most deadly in humans. Although Leishmania spp. parasites are predominantly intracellular, the visceral disease can be prevented in dogs by vaccinating with a complex mixture of secreted products from cultures of L. infantum promastigotes. With the logic that extracellular parasite proteins make good subunit vaccine candidates because they are directly accessible to vaccine-elicited host antibodies, here we attempt to discover proteins that are essential for in vitro growth and host infection with the goal of identifying subunit vaccine candidates. Using an in silico analysis of the Leishmania donovani genome, we identified 92 genes encoding proteins that are predicted to be secreted or externally anchored to the parasite membrane by a single transmembrane region or a GPI anchor. By selecting a transgenic L. donovani parasite that expresses both luciferase and the Cas9 nuclease, we systematically attempted to target all 92 genes by CRISPR genome editing and identified four that were required for in vitro growth. For fifty-five genes, we infected cohorts of mice with each mutant parasite and by longitudinally quantifying parasitaemia with bioluminescent imaging, showed that nine genes had evidence of an attenuated infection although all ultimately established an infection. Finally, we expressed two genes as full-length soluble recombinant proteins and tested them as subunit vaccine candidates in a murine preclinical infection model. Both proteins elicited significant levels of protection against the uncontrolled development of a splenic infection warranting further investigation as subunit vaccine candidates against this deadly infectious tropical disease.


Asunto(s)
Leishmania donovani , Leishmania infantum , Leishmaniasis Visceral , Leishmaniasis , Parásitos , Animales , Perros , Leishmania donovani/genética , Ratones
10.
PLoS Pathog ; 18(8): e1010696, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35925884

RESUMEN

As effector innate immune cells and as a host to the protozoan parasite Leishmania, macrophages play a dual role in antileishmanial immunoregulation. The 2 key players in this immunoregulation are the macrophage-expressed microRNAs (miRNAs) and the macrophage-secreted cytokines. miRNAs, as small noncoding RNAs, play vital roles in macrophage functions including cytokines and chemokines production. In the reverse direction, Leishmania-regulated cytokines alter miRNAs expression to regulate the antileishmanial functions of macrophages. The miRNA patterns vary with the time and stage of infection. The cytokine-regulated macrophage miRNAs not only help parasite elimination or persistence but also regulate cytokine production from macrophages. Based on these observations, we propose a novel immunoregulatory framework as a scientific rationale for antileishmanial therapy.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , MicroARNs , Parásitos , Animales , Antiprotozoarios/metabolismo , Citocinas/metabolismo , Humanos , Leishmania/metabolismo , Leishmaniasis/metabolismo , Macrófagos , MicroARNs/metabolismo , Parásitos/metabolismo
11.
Cell Immunol ; 399-400: 104826, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669897

RESUMEN

Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.


Asunto(s)
Leishmania , Vacunas contra la Leishmaniasis , Leishmaniasis , Desarrollo de Vacunas , Humanos , Vacunas contra la Leishmaniasis/inmunología , Animales , Leishmania/inmunología , Leishmaniasis/inmunología , Leishmaniasis/prevención & control , Desarrollo de Vacunas/métodos , Antígenos de Protozoos/inmunología , Ensayos Clínicos como Asunto
12.
Cytometry A ; 105(5): 382-387, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38410875

RESUMEN

Finding novel methodologies that enhance the precision, agility, and standardization of drug discovery is crucial for studying leishmaniasis. The slide count is the technique most used to assess the leishmanicidal effect of a given drug in vitro. Despite being consolidated in the scientific environment, it presents several difficulties in its execution, assessment, and results. In addition to being laborious, this technique takes time, both for the preparation of the material for analysis and for the counting itself. Our research group suggests a fresh approach to address this requirement, which involves utilizing nuclear labeling with propidium iodide and flow cytometry to determine the quantity of Leishmania sp. parasites present in macrophages in vitro. Our results show that the fluorescence of infected samples increases as the infection rate increases. Using Pearson's Correlation analysis, it was possible to establish a correlation coefficient (Pearson r = 0.9473) that was strongly positive, linear, and directly proportional to the fluorescence and infection rate variables. Thus, it is possible to infer a mathematical equation through linear regression to estimate the number of parasites in each sample using the Relative Fluorescence Units (RFU) values. This new methodology opens space for the possibility of using this methodological resource in the in vitro quantification of Leishmania in macrophages.


Asunto(s)
Citometría de Flujo , Leishmania , Macrófagos , Carga de Parásitos , Citometría de Flujo/métodos , Macrófagos/parasitología , Animales , Ratones , Carga de Parásitos/métodos , Leishmaniasis/parasitología , Propidio , Ratones Endogámicos BALB C
13.
Cytokine ; 177: 156543, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373365

RESUMEN

Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.


Asunto(s)
Benzaldehídos , Leishmaniasis Visceral , Leishmaniasis , Ratones , Animales , Micelas , Interleucina-12 , Ratones Endogámicos BALB C
14.
Arch Microbiol ; 206(10): 408, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299989

RESUMEN

Leishmaniasis is a complex vector-borne disease caused by intracellular protozoan parasites of the Leishmania genus. It presents a significant public health challenge in tropical and subtropical regions globally. As resistance to treatment increases, managing and controlling Leishmaniasis becomes more challenging, necessitating innovative approaches. To address this challenge, our study utilized subtractive genomics and structure-based approaches to identify common drug targets and combat antimicrobial resistance (AMR) across five Leishmania species strains. The subtractive genomics approach unraveled Glutamate Dehydrogenase (GDH) as a promising drug target for treating Leishmania infections. The investigation considered established methodologies observed in analogous studies, orthologous group, and druggability tests. Multiple sequence alignment revealed conserved sequences in GDH, while phylogenetic tree analysis provided insights into the evolutionary origin and close relationships of GDH across Leishmania species. Conserved sequences in GDH along with its function in pathogenicity provided insights into the close relationships of GDH across Leishmania species. Using a structure-based approach, our study showed the molecular interactions between GDH and three ligands-Bithionol, GW5074, and Hexachlorophene-through molecular docking and 100 ns molecular dynamics (MD) simulations. GW5074 exhibited a significant affinity for GDH, as indicated by stable RMSD values, a more compact conformation, and a higher number of hydrogen bonds than Bithionol. MMPBSA analysis confirmed the superior binding energy of the GW5074-GDH complex, emphasizing its potential as a potent ligand for drug development. This comprehensive analysis identified GW5074 as a promising candidate for inhibiting GDH activities in Leishmania species, contributing to the development of effective therapeutics against Leishmania infections.


Asunto(s)
Antiprotozoarios , Genómica , Leishmania , Simulación del Acoplamiento Molecular , Filogenia , Leishmania/efectos de los fármacos , Leishmania/genética , Leishmania/enzimología , Antiprotozoarios/farmacología , Simulación de Dinámica Molecular , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/química , Glutamato Deshidrogenasa/antagonistas & inhibidores , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Humanos , Ligandos , Alineación de Secuencia
15.
Parasite Immunol ; 46(1): e13018, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37987175

RESUMEN

Inducing long-term immunity is the primary goal of vaccination. Leishmanisation using non-pathogenic to human Leishmania spp. could be considered a reliable approach to immunising subjects against Leishmania infection. Here, we evaluated the long-term immune responses (14 weeks) after immunisation with either live- or killed-Iranian Lizard Leishmania (ILL) mixed with chitin microparticles (CMPs) against L. major infection in BALB/c mice. In total, nine groups of mice were included in the study. To evaluate short-term immunity, mice were immunised with live-ILL and CMPs and 3 weeks later were challenged with L. majorEGFP . To evaluate the long-term immunity, mice were immunised with either live- or killed-ILL both mixed with CMPs, and 14 weeks after immunisation, mice were challenged with L. majorEGFP . A group of healthy mice who received no injection was also included in the study. Eight weeks after the challenge with L. majorEGFP , all subjects were sacrificed and the parasite burden (quantitative real-time PCR and in vivo imaging), cytokines levels (IFN-γ, IL-4 and IL-10), Leishmania-specific antibody concentration, and total levels of IgG1 and IgG2a were measured. In addition, nitric oxide concentration and arginase activity were evaluated. Results showed that in mice that were immunised using live-ILL+CMP, the induced protective immune response lasted at least 14 weeks; since they were challenged with L. majorEGFP at the 14th -week post-immunisation, no open lesion was formed during the 8-week follow-up, and the footpad swelling was significantly lower than controls. They also showed a significant reduction in the parasite burden in splenocytes, compared to the control groups including the group that received killed-ILL+CMP. The observed protection was associated with a higher IFN-γ and a lower IL-10 production by splenocytes. Additionally, the results demonstrated that arginase activity was decreased in the ILL+CMP group compared to other groups. Immunisation with ILL alone reduced the parasite burden compared to non-immunised control; however, it was still significantly higher than the parasite burden in the ILL+CMP groups. In conclusion, the long-term immune response against L. major infection induced by Live-ILL+CMP was more competent than the response elicited by killed-ILL+CMP to protect mice against infection with L. majorEGFP .


Asunto(s)
Leishmania major , Leishmaniasis Cutánea , Leishmaniasis , Lagartos , Parásitos , Humanos , Animales , Ratones , Interleucina-10 , Irán , Quitina , Arginasa , Vacunación , Ratones Endogámicos BALB C
16.
BMC Infect Dis ; 24(1): 551, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824500

RESUMEN

BACKGROUND: Leishmaniasis, an illness caused by protozoa, accounts for a substantial number of human fatalities globally, thereby emerging as one of the most fatal parasitic diseases. The conventional methods employed for detecting the Leishmania parasite through microscopy are not only time-consuming but also susceptible to errors. Therefore, the main objective of this study is to develop a model based on deep learning, a subfield of artificial intelligence, that could facilitate automated diagnosis of leishmaniasis. METHODS: In this research, we introduce LeishFuNet, a deep learning framework designed for detecting Leishmania parasites in microscopic images. To enhance the performance of our model through same-domain transfer learning, we initially train four distinct models: VGG19, ResNet50, MobileNetV2, and DenseNet 169 on a dataset related to another infectious disease, COVID-19. These trained models are then utilized as new pre-trained models and fine-tuned on a set of 292 self-collected high-resolution microscopic images, consisting of 138 positive cases and 154 negative cases. The final prediction is generated through the fusion of information analyzed by these pre-trained models. Grad-CAM, an explainable artificial intelligence technique, is implemented to demonstrate the model's interpretability. RESULTS: The final results of utilizing our model for detecting amastigotes in microscopic images are as follows: accuracy of 98.95 1.4%, specificity of 98 2.67%, sensitivity of 100%, precision of 97.91 2.77%, F1-score of 98.92 1.43%, and Area Under Receiver Operating Characteristic Curve of 99 1.33. CONCLUSION: The newly devised system is precise, swift, user-friendly, and economical, thus indicating the potential of deep learning as a substitute for the prevailing leishmanial diagnostic techniques.


Asunto(s)
Aprendizaje Profundo , Leishmania , Leishmaniasis , Microscopía , Telemedicina , Humanos , Leishmaniasis/parasitología , Leishmaniasis/diagnóstico , Leishmania/aislamiento & purificación , Microscopía/métodos , COVID-19 , SARS-CoV-2/aislamiento & purificación
17.
BMC Infect Dis ; 24(1): 786, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103794

RESUMEN

BACKGROUND: Multidimensional strategies can promote preventive behaviors to prevent cutaneous leishmaniosis. WhatsApp, the popular messenger of Iranians, can be used as a platform to provide health education interventions. This study aimed to investigate the effect of using an educational intervention in WhatsApp based on social cognitive theory (SCT) on the preventive behaviors of health ambassadors. METHODS: A randomized clinical trial was conducted from September 2020 to April 2021 on 220 people living in endemic areas of leishmaniosis in Mashhad Province, Iran. By the cluster method sampling, the samples were randomly divided into two intervention and control groups. The intervention was performed for the intervention group over two weeks. Data were collected using a researcher-made questionnaire based on the constructs of SCT before and after the intervention. SPSS 16 was implemented to test multiple statistical analyses. RESULTS: Findings from the intervention group compared with the control group showed that the scores of SCT constructs and preventive behaviors were significantly changed (P < 0.001) across time during baseline through follow-up. These changes were not significant in the control group. CONCLUSIONS: The educational intervention based on the SCT model to promote leishmaniosis preventive behaviors is effective. This intervention module can be tested in other targeted populations in endemic areas to prevent and control leishmaniosis. TRIAL REGISTRATION: Iranian Registry of Clinical Trials Registry IRCT20200615047784N1, registered 02/09/2020.


Asunto(s)
Educación en Salud , Aplicaciones Móviles , Humanos , Masculino , Femenino , Irán , Adulto , Educación en Salud/métodos , Persona de Mediana Edad , Encuestas y Cuestionarios , Adulto Joven , Leishmaniasis Cutánea/prevención & control , Conductas Relacionadas con la Salud , Conocimientos, Actitudes y Práctica en Salud , Leishmaniasis/prevención & control
18.
Med Vet Entomol ; 38(1): 13-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37642138

RESUMEN

Sand flies (Diptera: Psychodidae, Phlebotominae; Newstead, 1911) are widespread in Europe, being particularly common in the Mediterranean region but rare north of the Alps. Thus, Switzerland is an opportune place to investigate the sand fly fauna on both sides of the Alpine crest, in southern sub-Mediterranean climate and northern oceanic temperate climate. We reinvestigated the Swiss sand fly fauna with the aim to assess changes in composition, altitudinal distribution, abundance and seasonality. Thirty-eight sites were investigated with light traps and/or interception sticky traps in 4 years. Ninety and 380 specimens were caught by light traps and sticky traps, respectively, at 15 collecting sites. Four species were identified. Phlebotomus mascittii (Grassi, 1908), Phlebotomus perniciosus (Newstead, 1911) and Sergentomyia minuta (Rondani, 1843) were confirmed in Ticino, and P. mascittii for the first time in neighbouring Grisons. Also, Phlebotomus neglectus (Tonnoir, 1921) is for the first time reported, though at a very low density compared to P. perniciosus at the same site. Its presence in Ticino supports the northward spread observed in Italy. Sand flies were detected north of the Alps at one site only, endorsing a historical report. Overall, the low density of P. perniciosus and very low density of P. neglectus suggest that canine leishmaniosis may not be an important disease risk in Switzerland.


Asunto(s)
Enfermedades de los Perros , Leishmaniasis , Phlebotomus , Psychodidae , Animales , Perros , Suiza , Leishmaniasis/veterinaria , Italia
19.
BMC Med Imaging ; 24(1): 152, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890604

RESUMEN

BACKGROUND: Leishmaniasis is a vector-born neglected parasitic disease belonging to the genus Leishmania. Out of the 30 Leishmania species, 21 species cause human infection that affect the skin and the internal organs. Around, 700,000 to 1,000,000 of the newly infected cases and 26,000 to 65,000 deaths are reported worldwide annually. The disease exhibits three clinical presentations, namely, the cutaneous, muco-cutaneous and visceral Leishmaniasis which affects the skin, mucosal membrane and the internal organs, respectively. The relapsing behavior of the disease limits its diagnosis and treatment efficiency. The common diagnostic approaches follow subjective, error-prone, repetitive processes. Despite, an ever pressing need for an accurate detection of Leishmaniasis, the research conducted so far is scarce. In this regard, the main aim of the current research is to develop an artificial intelligence based detection tool for the Leishmaniasis from the Geimsa-stained microscopic images using deep learning method. METHODS: Stained microscopic images were acquired locally and labeled by experts. The images were augmented using different methods to prevent overfitting and improve the generalizability of the system. Fine-tuned Faster RCNN, SSD, and YOLOV5 models were used for object detection. Mean average precision (MAP), precision, and Recall were calculated to evaluate and compare the performance of the models. RESULTS: The fine-tuned YOLOV5 outperformed the other models such as Faster RCNN and SSD, with the MAP scores, of 73%, 54% and 57%, respectively. CONCLUSION: The currently developed YOLOV5 model can be tested in the clinics to assist the laboratorists in diagnosing Leishmaniasis from the microscopic images. Particularly, in low-resourced healthcare facilities, with fewer qualified medical professionals or hematologists, our AI support system can assist in reducing the diagnosing time, workload, and misdiagnosis. Furthermore, the dataset collected by us will be shared with other researchers who seek to improve upon the detection system of the parasite. The current model detects the parasites even in the presence of the monocyte cells, but sometimes, the accuracy decreases due to the differences in the sizes of the parasite cells alongside the blood cells. The incorporation of cascaded networks in future and the quantification of the parasite load, shall overcome the limitations of the currently developed system.


Asunto(s)
Colorantes Azulados , Aprendizaje Profundo , Microscopía , Humanos , Microscopía/métodos , Leishmaniasis/diagnóstico por imagen , Leishmaniasis/parasitología , Leishmania/aislamiento & purificación
20.
Exp Parasitol ; 260: 108747, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518969

RESUMEN

Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.


Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Leishmania/efectos de los fármacos , Animales , Humanos , Evaluación Preclínica de Medicamentos , Flavonoides/farmacología , Flavonoides/química , Flavonoides/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA