Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2302482120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816050

RESUMEN

Myocardial infarction (MI) is a leading cause of heart failure (HF), associated with morbidity and mortality worldwide. As an essential part of gene expression regulation, the role of alternative polyadenylation (APA) in post-MI HF remains elusive. Here, we revealed a global, APA-mediated, 3' untranslated region (3' UTR)-lengthening pattern in both human and murine post-MI HF samples. Furthermore, the 3' UTR of apoptotic repressor gene, AVEN, is lengthened after MI, contributing to its downregulation. AVEN knockdown increased cardiomyocyte apoptosis, whereas restoration of AVEN expression substantially improved cardiac function. Mechanistically, AVEN 3' UTR lengthening provides additional binding sites for miR-30b-5p and miR-30c-5p, thus reducing AVEN expression. Additionally, PABPN1 (poly(A)-binding protein 1) was identified as a potential regulator of AVEN 3' UTR lengthening after MI. Altogether, our findings revealed APA as a unique mechanism regulating cardiac injury in response to MI and also indicated that the APA-regulated gene, AVEN, holds great potential as a critical therapeutic target for treating post-MI HF.


Asunto(s)
Lesiones Cardíacas , MicroARNs , Infarto del Miocardio , Animales , Humanos , Ratones , Regiones no Traducidas 3'/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Regulación hacia Abajo , Lesiones Cardíacas/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Proteína I de Unión a Poli(A)
2.
J Mol Cell Cardiol ; 192: 79-93, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761990

RESUMEN

Ferroptosis is an iron-dependent programmed cell death form resulting from lipid peroxidation damage, it plays a key role in organ damage and tumor development from various causes. Sepsis leads to severe host response after infection with high mortality. The long non-coding RNAs (LncRNAs) are involved in different pathophysiological mechanisms of multiple diseases. Here, we used cecal ligation and puncture (CLP) operation to mimic sepsis induced myocardial injury (SIMI) in mouse model, and LncRNAs and mRNAs were profiled by Arraystar mouse LncRNA Array V3.0. Based on the microarray results, 552 LncRNAs and 520 mRNAs were differentially expressed in the sham and CLP groups, among them, LncRNA Lcn2-204 was the highest differentially expressed up-regulated LncRNA. Iron metabolism disorder was involved in SIMI by bioinformatics analysis, meanwhile, myocardial iron content and lipocalin-2 (Lcn2) protein expressions were increased. The CNC network comprised 137 positive interactions and 138 negative interactions. Bioinformatics analysis showed several iron-related terms were enriched and six genes (Scara5, Tfrc, Lcn2, Cp, Clic5, Ank1) were closely associated with iron metabolism. Then, we constructed knockdown LncRNA Lcn2-204 targeting myocardium and found that it ameliorated cardiac injury in mouse sepsis model through modulating iron overload and ferroptosis. In addition, we found that LncRNA Lcn2-204 was involved in the regulation of Lcn2 expression in septic myocardial injury. Based on these findings, we conclude that iron overload and ferroptosis are the key mechanisms leading to myocardial injury in sepsis, knockdown of LncRNA Lcn2-204 plays the cardioprotective effect through inhibition of iron overload, ferroptosis and Lcn2 expression. It may provide a novel therapeutic approach to ameliorate sepsis-induced myocardial injury.


Asunto(s)
Ferroptosis , Técnicas de Silenciamiento del Gen , Sobrecarga de Hierro , Lipocalina 2 , Miocardio , ARN Largo no Codificante , Sepsis , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ferroptosis/genética , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo , Ratones , Lipocalina 2/metabolismo , Lipocalina 2/genética , Masculino , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/complicaciones , Miocardio/metabolismo , Miocardio/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hierro/metabolismo , Lesiones Cardíacas/etiología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/genética , Perfilación de la Expresión Génica
3.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33246928

RESUMEN

Heart regeneration in regeneration-competent organisms can be accomplished through the remodeling of gene expression in response to cardiac injury. This dynamic transcriptional response relies on the activities of tissue regeneration enhancer elements (TREEs); however, the mechanisms underlying TREEs are poorly understood. We dissected a cardiac regeneration enhancer in zebrafish to elucidate the mechanisms governing spatiotemporal gene expression during heart regeneration. Cardiac lepb regeneration enhancer (cLEN) exhibits dynamic, regeneration-dependent activity in the heart. We found that multiple injury-activated regulatory elements are distributed throughout the enhancer region. This analysis also revealed that cardiac regeneration enhancers are not only activated by injury, but surprisingly, they are also actively repressed in the absence of injury. Our data identified a short (22 bp) DNA element containing a key repressive element. Comparative analysis across Danio species indicated that the repressive element is conserved in closely related species. The repression mechanism is not operational during embryogenesis and emerges when the heart begins to mature. Incorporating both activation and repression components into the mechanism of tissue regeneration constitutes a new paradigm that might be extrapolated to other regeneration scenarios.


Asunto(s)
Elementos de Facilitación Genéticos , Lesiones Cardíacas/genética , Corazón/crecimiento & desarrollo , Regeneración/genética , Animales , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Lesiones Cardíacas/patología , Lesiones Cardíacas/rehabilitación , Humanos , Organogénesis/genética , Regeneración/fisiología , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
4.
J Cell Physiol ; 237(3): 1888-1901, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34958118

RESUMEN

Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Productos Finales de Glicación Avanzada , Lesiones Cardíacas , Complejo de la Endopetidasa Proteasomal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Productos Finales de Glicación Avanzada/metabolismo , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/genética , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
5.
Nature ; 534(7605): 119-23, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251288

RESUMEN

Myocardial infarction results in compromised myocardial function and heart failure owing to insufficient cardiomyocyte self-renewal. Unlike many vertebrates, mammalian hearts have only a transient neonatal renewal capacity. Reactivating primitive reparative ability in the mature mammalian heart requires knowledge of the mechanisms that promote early heart repair. By testing an established Hippo-deficient heart regeneration mouse model for factors that promote renewal, here we show that the expression of Pitx2 is induced in injured, Hippo-deficient ventricles. Pitx2-deficient neonatal mouse hearts failed to repair after apex resection, whereas adult mouse cardiomyocytes with Pitx2 gain-of-function efficiently regenerated after myocardial infarction. Genomic analyses indicated that Pitx2 activated genes encoding electron transport chain components and reactive oxygen species scavengers. A subset of Pitx2 target genes was cooperatively regulated with the Hippo pathway effector Yap. Furthermore, Nrf2, a regulator of the antioxidant response, directly regulated the expression and subcellular localization of Pitx2. Pitx2 mutant myocardium had increased levels of reactive oxygen species, while antioxidant supplementation suppressed the Pitx2 loss-of-function phenotype. These findings reveal a genetic pathway activated by tissue damage that is essential for cardiac repair.


Asunto(s)
Antioxidantes/metabolismo , Lesiones Cardíacas/metabolismo , Proteínas de Homeodominio/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Factores de Transcripción/metabolismo , Cicatrización de Heridas/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/genética , Femenino , Depuradores de Radicales Libres/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Vía de Señalización Hippo , Proteínas de Homeodominio/genética , Masculino , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Regeneración/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2
6.
Proc Natl Acad Sci U S A ; 116(37): 18455-18465, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451669

RESUMEN

The adult mammalian heart has limited capacity for regeneration following injury, whereas the neonatal heart can readily regenerate within a short period after birth. To uncover the molecular mechanisms underlying neonatal heart regeneration, we compared the transcriptomes and epigenomes of regenerative and nonregenerative mouse hearts over a 7-d time period following myocardial infarction injury. By integrating gene expression profiles with histone marks associated with active or repressed chromatin, we identified transcriptional programs underlying neonatal heart regeneration, and the blockade to regeneration in later life. Our results reveal a unique immune response in regenerative hearts and a retained embryonic cardiogenic gene program that is active during neonatal heart regeneration. Among the unique immune factors and embryonic genes associated with cardiac regeneration, we identified Ccl24, which encodes a cytokine, and Igf2bp3, which encodes an RNA-binding protein, as previously unrecognized regulators of cardiomyocyte proliferation. Our data provide insights into the molecular basis of neonatal heart regeneration and identify genes that can be modulated to promote heart regeneration.


Asunto(s)
Animales Recién Nacidos/fisiología , Corazón/fisiología , Código de Histonas/fisiología , Regeneración/fisiología , Transcriptoma/fisiología , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Lesiones Cardíacas/genética , Lesiones Cardíacas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Infarto del Miocardio/genética , Regeneración/genética , Transcriptoma/genética
7.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 102-111, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33128543

RESUMEN

Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Lesiones Cardíacas/prevención & control , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones Endogámicos C57BL , Isquemia Miocárdica/etiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Cultivo Primario de Células , Proteína X Asociada a bcl-2/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(52): E12245-E12254, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530645

RESUMEN

The significance of cardiac stem cell (CSC) populations for cardiac regeneration remains disputed. Here, we apply the most direct definition of stem cell function (the ability to replace lost tissue through cell division) to interrogate the existence of CSCs. By single-cell mRNA sequencing and genetic lineage tracing using two Ki67 knockin mouse models, we map all proliferating cells and their progeny in homoeostatic and regenerating murine hearts. Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of Fstl1 in cardiac fibroblasts results in postdamage cardiac rupture. We find no evidence for the existence of a quiescent CSC population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury.


Asunto(s)
Proliferación Celular , Lesiones Cardíacas/fisiopatología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Embarazo , Células Madre/citología , Células Madre/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(16): 4188-4193, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610343

RESUMEN

In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b- and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2-expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation.


Asunto(s)
Fibroblastos/fisiología , Corazón/fisiología , Regeneración/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Moléculas de Adhesión Celular/biosíntesis , Linaje de la Célula , Frío/efectos adversos , Colágeno Tipo XII/biosíntesis , Colágeno Tipo XII/genética , Endocardio/patología , Matriz Extracelular/metabolismo , Fibrosis , Regulación de la Expresión Génica , Genes Reporteros , Lesiones Cardíacas/genética , Lesiones Cardíacas/fisiopatología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , ARN Mensajero/biosíntesis , Transcriptoma , Pez Cebra , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
10.
Am J Physiol Cell Physiol ; 318(5): C1018-C1029, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293932

RESUMEN

Autophagy is a highly conserved self-protection mechanism that plays a crucial role in cardiovascular diseases. Cardiomyocyte hypoxic injury promotes oxidative stress and pathological alterations in the heart, although the interplay between these effects remains elusive. The transient receptor potential vanilloid 1 (TRPV1) ion channel is a nonselective cation channel that is activated in response to a variety of exogenous and endogenous physical and chemical stimuli. Here, we investigated the effects and mechanisms of action of TRPV1 on autophagy in hypoxic cardiomyocytes. In this study, primary cardiomyocytes isolated from C57 mice were subjected to hypoxic stress, and their expression of TRPV1 and adenosine 5'-monophosphate-activated protein kinase (AMPK) was regulated. The autophagy flux was assessed by Western blotting and immunofluorescence staining, and the cell viability was determined through Cell counting kit-8 assay and Lactate dehydrogenase assays. In addition, the calcium influx after the upregulation of TRPV1 expression in cardiomyocytes was examined. The results showed that the number of autophagosomes in cardiomyocytes was higher under hypoxic stress and that the blockade of autophagy flux aggravated hypoxic damage to cardiomyocytes. Moreover, the expression of TRPV1 was induced under hypoxic stress, and its upregulation by capsaicin improved the autophagy flux and protected cardiomyocytes from hypoxic damage, whereas the silencing of TRPV1 significantly attenuated autophagy. Our observations also revealed that AMPK signaling was activated and involved in TRPV1-induced autophagy in cardiomyocytes under hypoxic stress. Overall, this study demonstrates that TRPV1 activation mitigates hypoxic injury in cardiomyocytes by improving autophagy flux through the AMPK signaling pathway and highlights TRPV1 as a novel therapeutic target for the treatment of hypoxic cardiac disease.


Asunto(s)
Autofagia/genética , Lesiones Cardíacas/genética , Proteínas Quinasas/genética , Canales Catiónicos TRPV/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Calcio/metabolismo , Capsaicina/farmacología , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Lesiones Cardíacas/patología , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/patología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal/genética
11.
Biochem Biophys Res Commun ; 523(3): 580-587, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31941605

RESUMEN

Sepsis induces critical myocardial dysfunction, resulting in an increased mortality. Gracillin (GRA) is a natural steroidal saponin, showing strong capacities of anti-inflammation, but its pharmacological effects on lipopolysaccharide (LPS)-induced acute cardiac injury still remain unclear. In this study, we attempted to explore if GRA was effective to attenuate cardiac injury in LPS-challenged mice and the underlying mechanisms. First, we found that GRA treatments markedly up-regulated the expression of miR-29a in cardiomyocytes. LPS-induced cytotoxicity in cardiomyocytes was significantly alleviated by GRA treatment, as evidenced by the improved cell viability and reduced lactate dehydrogenase (LDH) release. In addition, LPS-triggered apoptotic cell death was clearly ameliorated in cardiomyocytes co-treated with GRA. Notably, LPS-exposed cells showed significantly reduced expression of miR-29a, while being rescued by GRA treatment. In vivo, LPS apparently impaired cardiac function in mice, which was, however, alleviated by GRA administration. In addition, GRA markedly attenuated apoptosis in hearts of LPS-challenged mice by decreasing the expression of cleaved Caspase-3. LPS-triggered inflammatory response in cardiac tissues was also suppressed by GRA through blocking nuclear factor κB (NF-κB) signaling pathway. We also found that miR-29a expression was highly reduced in hearts of LPS-treated mice but was rescued by GRA pretreatment. Besides, miR-29a mimic alleviated LPS-induced apoptosis and inflammation in cardiomyocytes; however, LPS-caused effects were further accelerated by miR-29a. Of note, the protective effects of GRA on LPS-injured cardiac tissues were significantly abrogated by miR-29a suppression. In conclusion, our findings demonstrated that GRA exerted an effective role against LPS-induced acute cardiac injury through impeding apoptosis and inflammation regulated by miR-29a.


Asunto(s)
Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Lesiones Cardíacas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , MicroARNs/genética , Espirostanos/uso terapéutico , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Lesiones Cardíacas/genética , Lesiones Cardíacas/inmunología , Inflamación/genética , Inflamación/inmunología , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/inmunología , Ratas
12.
Exp Mol Pathol ; 114: 104405, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32084395

RESUMEN

BACKGROUND: Obesity is associated with the impairment of cardiac fitness and consequent ventricular dysfunction and heart failure. Ghrelin has been largely documented to be cardioprotective against ischaemia/reperfusion injury. However, the role of ghrelin in obesity-induced myocardial injury is largely unknown. This study sought to determine the cardiac effect of ghrelin against obesity-induced injury and the underlying mechanisms. METHODS: The effect of ghrelin was evaluated in a mouse model of obesity and a palmitic acid (PA)-treated cardiomyocyte cell line with or without ghrelin transfection. Gene and protein expression levels were determined by real-time PCR and western blot, respectively. Cell apoptosis was measured by flow cytometry analysis. RESULTS: In the present study, we found that both a high-fat diet (HFD) and PA treatment caused myocardial injury by increasing apoptosis and the expression of inflammatory cytokines. Overexpression of ghrelin reversed the effects induced by HFD or PA treatment. Knockdown of lncRNA H19 or overexpression of miR-29a abrogated the cardioprotective effects of ghrelin against apoptosis and inflammation. We also found that IGF-1 was a target gene of miR-29a and that H19 regulated IGF-1 expression via miR-29a. Overexpression of IGF-1 partially reversed the apoptosis and inflammation promoting effects of miR-29a. CONCLUSIONS: Our findings suggested that ghrelin protected against obesity-induced myocardial injury by regulating the H19/miR-29a/IGF-1 signalling axis, providing further evidence for the clinical application of ghrelin.


Asunto(s)
Ghrelina/genética , Lesiones Cardíacas/genética , Factor I del Crecimiento Similar a la Insulina/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Animales , Apoptosis/genética , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Lesiones Cardíacas/etiología , Lesiones Cardíacas/patología , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Transducción de Señal/genética , Transfección
13.
Br J Anaesth ; 125(5): 661-671, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32718726

RESUMEN

BACKGROUND: Elevated plasma or serum troponin, indicating perioperative myocardial injury (PMI), is common after noncardiac surgery. However, underlying mechanisms remain unclear. Acute coronary syndrome (ACS) is associated with the early appearance of circulating microRNAs, which regulate post-translational gene expression. We hypothesised that if PMI and ACS share pathophysiological mechanisms, common microRNA signatures should be evident. METHODS: We performed a nested case control study of samples obtained before and after noncardiac surgery from patients enrolled in two prospective observational studies of PMI (postoperative troponin I/T>99th centile). In cohort one, serum microRNAs were compared between patients with or without PMI, matched for age, gender, and comorbidity. Real-time polymerase chain reaction quantified (qRT-PCR) relative microRNA expression (cycle quantification [Cq] threshold <37) before and after surgery for microRNA signatures associated with ACS, blinded to PMI. In cohort two, we analysed (EdgeR) microRNA from plasma extracellular vesicles using next-generation sequencing (Illumina HiSeq 500). microRNA-messenger RNA-function pathway analysis was performed (DIANA miRPath v3.0/TopGO). RESULTS: MicroRNAs were detectable in all 59 patients (median age 67 yr [61-75]; 42% male), who had similar clinical characteristics independent of developing PMI. In cohort one, serum microRNA expression increased after surgery (mean fold-change) hsa-miR-1-3p: 3.99 (95% confidence interval [CI: 1.95-8.19]; hsa-miR-133-3p: 5.67 [95% CI: 2.94-10.91]; P<0.001). These changes were not associated with PMI. Bioinformatic analysis of differentially expressed microRNAs from cohorts one (n=48) and two (n=11) identified pathways associated with adrenergic stress and calcium dysregulation, rather than ischaemia. CONCLUSIONS: Circulating microRNAs associated with cardiac ischaemia were universally elevated in patients after surgery, independent of development of myocardial injury.


Asunto(s)
Procedimientos Quirúrgicos Electivos/efectos adversos , Lesiones Cardíacas/sangre , MicroARNs/sangre , Complicaciones Posoperatorias/sangre , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/etiología , Síndrome Coronario Agudo/genética , Anciano , Estudios de Casos y Controles , Mapeo Cromosómico , Matriz Extracelular/química , Femenino , Lesiones Cardíacas/genética , Humanos , Masculino , Redes y Vías Metabólicas , MicroARNs/genética , Persona de Mediana Edad , Isquemia Miocárdica/sangre , Isquemia Miocárdica/genética , Complicaciones Posoperatorias/genética , Estudios Prospectivos
14.
J Nanobiotechnology ; 18(1): 157, 2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33129330

RESUMEN

BACKGROUND: The chemotherapy drug doxorubicin (Dox) is widely used for treating a variety of cancers. However, its high cardiotoxicity hampered its clinical use. Exosomes derived from stem cells showed a therapeutic effect against Dox-induced cardiomyopathy (DIC). Previous studies reported that exosomes derived from mesenchymal stem cells (MSCs) pretreated with macrophage migration inhibitory factor (MIF) (exosomeMIF) showed a cardioprotective effect through modulating long noncoding RNAs/microRNAs (lncRNAs/miRs). This study aimed to investigate the role of exosomeMIF in the treatment of DIC. RESULTS: Exosomes were isolated from control MSCs (exosome) and MIF-pretreated MSCs (exosomeMIF). Regulatory lncRNAs activated by MIF pretreatment were explored using genomics approaches. Fluorescence-labeled exosomes were tracked in vitro by fluorescence imaging. In vivo and in vitro, miR-221-3p mimic transfection enforced miR-221-3p overexpression, and senescence-associated ß-galactosidase assay was applied to test cellular senescence. Exosomal delivering LncRNA-NEAT1 induced therapeutic effect in vivo was confirmed by echocardiography. It demonstrated that exosomesMIF recovered the cardiac function and exerted the anti-senescent effect through LncRNA-NEAT1 transfer against Dox. TargetScan and luciferase assay showed that miR-221-3p targeted the Sirt2 3'-untranslated region. Silencing LncRNA-NEAT1 in MSCs, miR-221-3p overexpression or Sirt2 silencing in cardiomyocytes decreased the exosomeMIF-induced anti-senescent effect against Dox. CONCLUSIONS: The results indicated exosomeMIF serving as a promising anti-senescent effector against Dox-induced cardiotoxicity through LncRNA-NEAT1 transfer, thus inhibiting miR-221-3p and leading to Sirt2 activation. The study proposed that exosomeMIF might have the potential to serve as a cardioprotective therapeutic agent during cancer chemotherapy.


Asunto(s)
Cardiotoxicidad/prevención & control , Doxorrubicina/efectos adversos , Exosomas/química , Oxidorreductasas Intramoleculares/química , Factores Inhibidores de la Migración de Macrófagos/química , Células Madre Mesenquimatosas/química , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Doxorrubicina/farmacología , Regulación de la Expresión Génica , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/genética , Lesiones Cardíacas/prevención & control , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal , Sirtuina 2/metabolismo
15.
Nano Lett ; 19(3): 1883-1891, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30775924

RESUMEN

Stem cell therapies have shown promise in treating acute and chronic ischemic heart disease. However, current therapies are limited by the low retention and poor integration of injected cells in the injured tissue. Taking advantage of the natural infarct-homing ability of platelets, we engineered CD34 antibody-linked platelets (P-CD34) to capture circulating CD34-positive endogenous stem cells and direct them to the injured heart. In vitro, P-CD34 could bind to damaged aortas and capture endogenous stem cells in whole blood. In a mouse model of acute myocardial infarction, P-CD34 accumulated in the injured heart after intravenous administration, leading to a concentration of endogenous CD34 stem cells in the injured heart for effective heart repair. This represents a new technology for endogenous stem cell therapy.


Asunto(s)
Antígenos CD34/inmunología , Plaquetas/química , Tratamiento Basado en Trasplante de Células y Tejidos , Lesiones Cardíacas/terapia , Infarto del Miocardio/terapia , Animales , Plaquetas/inmunología , Modelos Animales de Enfermedad , Lesiones Cardíacas/genética , Lesiones Cardíacas/patología , Humanos , Ratones , Infarto del Miocardio/patología , Miocardio/inmunología , Miocardio/patología , Células Madre/inmunología , Células Madre/metabolismo
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(4): 439-446, 2020 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-32985156

RESUMEN

OBJECTIVE: To investigate the expression of transient receptor potential canonical channels (TRPCs) in the heart and kidney of rat model of obstructive sleep apnea hypopnea syndrome (OSAHS). METHODS: Eighteen male SD rats were randomly assigned to intermittent hypoxia (IH) group (n=9 ) and control group (n=9). In IH group, rats were placed in a chamber and exposed to intermittent hypoxia for 8h (10AM-6PM) daily. The expression of TRPC-related mRNA and protein in the heart and kidney tissue were detected by qRT-PCR and Western blotting, respectively. RESULTS: The mRNA expressions of TRPC3/TRPC4/TRPC5 in heart tissues of IH group were increased significantly compared with the control group (all P>0.05); while there were no significant differences in the mRNA expressions of TRPC1/TRPC3/TRPC4/TRPC5/TRPC6/TRPC7 in kidney tissue between two groups (all P<0.05). The mRNA expressions of TRPC4, TRPC5 and TRPC6 in kidney tissues of IH group were lower than that in heart tissues (all P<0.05). The mRNA expression of TRPC7 in kidney tissues of control group was significantly higher than that in heart tissues (P<0.05). The expression of TRPC5 protein in heart tissues of IH group was significantly higher than that in the control group (P<0.05); while there was no significant differences in the expression of TRPC5/TRPC6/TRPC7 protein in kidney tissue between two groups (all P>0.05). CONCLUSIONS: The IH rat model shows that TRPC5 channel is likely to be involved in the OSAHS induced pathophysiological changes in the myocardium and may become a target to prevent OSAHS related cardiac damage.


Asunto(s)
Lesiones Cardíacas , Riñón , Apnea Obstructiva del Sueño , Canales Catiónicos TRPC , Animales , Lesiones Cardíacas/genética , Riñón/lesiones , Masculino , ARN Mensajero/genética , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Apnea Obstructiva del Sueño/genética , Canales Catiónicos TRPC/genética
17.
J Cell Mol Med ; 23(1): 104-111, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396232

RESUMEN

Bmi-1 gene is well recognized as an oncogene, but has been recently demonstrated to play a role in the self-renewal of tissue-specific stem cells. By using Bmi-1GFP/+ mice, we investigated the role of Bmi-1 in cardiac stem/progenitor cells and myocardial repair. RT-PCR and flow cytometry analysis indicated that the expression of Bmi-1 was significantly higher in cardiac side population than the main population from CD45- Ter119- CD31- heart cells. More Sca-1+ cardiac stem/progenitor cells were found in Bmi-1 GFPhi subpopulation, and these Bmi-1 GFPhi heart cells showed the potential of differentiation into SMM+ smooth muscle-like cells and TnT+ cardiomyocyte-like cells in vitro. The silencing of Bmi-1 significantly inhibited the proliferation and differentiation of heart cells. Otherwise, myocardial infarction induced a significantly increase (2.7-folds) of Bmi-1 GFPhi population, mainly within the infarction and border zones. These preliminary data suggest that Bmi-1hi heart cells are enriched in cardiac stem/progenitor cells and may play a role in myocardial repair.


Asunto(s)
Lesiones Cardíacas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lesiones Cardíacas/genética , Lesiones Cardíacas/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/citología , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Células de Población Lateral/metabolismo
18.
J Cell Physiol ; 234(6): 8122-8133, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30417391

RESUMEN

Mitochondria play an important role in maintaining cardiac homeostasis by supplying the major energy required for cardiac excitation-contraction coupling as well as controlling the key intracellular survival and death pathways. Healthy mitochondria generate ATP molecules through an aerobic process known as oxidative phosphorylation (OXPHOS). Mitochondrial injury during myocardial infarction (MI) impairs OXPHOS and results in the excessive production of reactive oxygen species (ROS), bioenergetic insufficiency, and contributes to the development of cardiovascular diseases. Therefore, mitochondrial biogenesis along with proper mitochondrial quality control machinery, which removes unhealthy mitochondria is pivotal for mitochondrial homeostasis and cardiac health. Upon damage to the mitochondrial network, mitochondrial quality control components are recruited to segregate the unhealthy mitochondria and target aberrant mitochondrial proteins for degradation and elimination. Impairment of mitochondrial quality control and accumulation of abnormal mitochondria have been reported in the pathogenesis of various cardiac disorders and heart failure. Here, we provide an overview of the recent studies describing various mechanistic pathways underlying mitochondrial homeostasis with the main focus on cardiac cells. In addition, this review demonstrates the potential effects of mitochondrial quality control dysregulation in the development of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Lesiones Cardíacas/genética , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Humanos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Miocitos Cardíacos/patología , Especies Reactivas de Oxígeno/metabolismo
19.
J Cell Biochem ; 120(6): 10748-10755, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30719766

RESUMEN

The clinical use of doxorubicin (DOX) is limited by its toxic effect. However, there is no specific drug that can prevent DOX-related cardiac injury. C1qTNF-related protein-6 (CTRP6) is a newly identified adiponectin paralog with many protective functions on metabolism and cardiovascular diseases. However, little is known about the effect of CTRP6 on DOX-induced cardiac injury. The present study aimed to investigate whether CTRP6 could protect against DOX-related cardiotoxicity. To induce acute cardiotoxicity, the mice were intraperitoneally injected with a single dose of DOX (15 mg/kg). Cardiomyocyte-specific CTRP6 overexpression was achieved using an adenoassociated virus system at 4 weeks before DOX injection. The data in our study demonstrated that CTRP6 messenger RNA and protein expression were decreased in DOX-treated hearts. CTRP6 attenuated cardiac atrophy induced by DOX injection and inhibited cardiac apoptosis and improved cardiac function in vivo. CTRP6 also promoted the activation of protein kinase B (AKT/PKB) signaling pathway in DOX-treated mice. CTRP6 prevented cardiomyocytes from DOX-induced apoptosis and activated the AKT pathway in vitro. CTRP6 lost its protection against DOX-induced cardiac injury in mice with AKT inhibition. In conclusion, CTRP6 protected the heart from DOX-cardiotoxicity and improves cardiac function via activation of the AKT signaling pathway.


Asunto(s)
Adipoquinas/genética , Cardiotoxicidad/genética , Doxorrubicina/toxicidad , Lesiones Cardíacas/genética , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Adipoquinas/metabolismo , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/fisiopatología , Cardiotoxicidad/prevención & control , Línea Celular , Cromonas/farmacología , Dependovirus/genética , Dependovirus/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Pruebas de Función Cardíaca , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/fisiopatología , Lesiones Cardíacas/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
20.
BMC Complement Altern Med ; 19(1): 176, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315617

RESUMEN

BACKGROUND: Snake venoms contain various bioactive constituents which possess potential therapeutic effects. The aim of this work was to investigate the effect of the extract from Agkistrodon halys venom on lipopolysaccharide (LPS)-induced myocardial injury. METHODS: Thirty male Sprague-Dawley rats were randomly assigned to three groups (10 rats per group): control group, LPS group and LPS + extract group. Rats in control and the LPS groups were intravenously injected with sterile saline solution, and rats in the LPS + extract group with the extract. After 2 h, rats of the control group were intraperitoneally injected sterile saline solution, and rats in the LPS and the LPS + extract groups were treated with LPS (20 mg per kg body weight). Levels of creatine kinase (CK) and lactate dehydrogenase (LDH) in serum were determined. Anti-inflammation of the extract was analyzed via determination of TNF-α and IL-6 in serum, and expression of TNF-α, IL-6, COX-2 and p-ERK protein in hearts. Heme oxygenase-1 (HO-1) and p-NF-κB protein expression in hearts, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in serum were used to evaluate the anti-oxidative properties of the extract. RESULTS: Extract pretreatment significantly decreased the level of serum CK and LDH, reduced the generation of inflammatory cytokines such as TNF-α and IL-6, and also reduced serum level of MDA in the LPS + extract group compared with the LPS group. In addition, the extract increased SOD activity in serum, HO-1 protein expression in hearts, and decreased TNF-α, IL-6, COX-2, p-NF-κB and p-ERK1/2 protein expression. CONCLUSION: Our results suggested that beneficial effect of this extract might be associated with an improved anti-oxidation and anti-inflammatory effect via downregulation of NF-κB/COX-2 signaling by activating HO-1/CO in hearts.


Asunto(s)
Agkistrodon/metabolismo , Lesiones Cardíacas/prevención & control , Lipopolisacáridos/efectos adversos , Sustancias Protectoras/administración & dosificación , Venenos de Serpiente/administración & dosificación , Animales , Corazón/efectos de los fármacos , Lesiones Cardíacas/inducido químicamente , Lesiones Cardíacas/genética , Lesiones Cardíacas/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Malondialdehído/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA