Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 774
Filtrar
1.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711050

RESUMEN

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Asunto(s)
Vías Biosintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Ingeniería Metabólica/métodos , Glicoles/metabolismo , Lisina/metabolismo , Lisina/biosíntesis , Alcohol Deshidrogenasa/metabolismo , Transaminasas/metabolismo , Transaminasas/genética , Carboxiliasas/metabolismo
2.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668807

RESUMEN

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas , Histonas , Lisina , Familia de Multigenes , Penicillium , Metabolismo Secundario , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Histonas/genética , Lisina/metabolismo , Lisina/biosíntesis , Metilación , Penicillium/genética , Penicillium/enzimología , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Reproducción Asexuada/genética , Metabolismo Secundario/genética
3.
Proc Natl Acad Sci U S A ; 117(48): 30328-30334, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199604

RESUMEN

There is increasing industrial demand for five-carbon platform chemicals, particularly glutaric acid, a widely used building block chemical for the synthesis of polyesters and polyamides. Here we report the development of an efficient glutaric acid microbial producer by systems metabolic engineering of an l-lysine-overproducing Corynebacterium glutamicum BE strain. Based on our previous study, an optimal synthetic metabolic pathway comprising Pseudomonas putida l-lysine monooxygenase (davB) and 5-aminovaleramide amidohydrolase (davA) genes and C. glutamicum 4-aminobutyrate aminotransferase (gabT) and succinate-semialdehyde dehydrogenase (gabD) genes, was introduced into the C. glutamicum BE strain. Through system-wide analyses including genome-scale metabolic simulation, comparative transcriptome analysis, and flux response analysis, 11 target genes to be manipulated were identified and expressed at desired levels to increase the supply of direct precursor l-lysine and reduce precursor loss. A glutaric acid exporter encoded by ynfM was discovered and overexpressed to further enhance glutaric acid production. Fermentation conditions, including oxygen transfer rate, batch-phase glucose level, and nutrient feeding strategy, were optimized for the efficient production of glutaric acid. Fed-batch culture of the final engineered strain produced 105.3 g/L of glutaric acid in 69 h without any byproduct. The strategies of metabolic engineering and fermentation optimization described here will be useful for developing engineered microorganisms for the high-level bio-based production of other chemicals of interest to industry.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Glutaratos/metabolismo , Lisina/biosíntesis , Ingeniería Metabólica , Biología de Sistemas , Técnicas de Cultivo Celular por Lotes , Vías Biosintéticas , Fermentación , Análisis de Flujos Metabólicos , Transcriptoma/genética
4.
Am J Hum Genet ; 104(2): 287-298, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661771

RESUMEN

Hypusine is formed post-translationally from lysine and is found in a single cellular protein, eukaryotic translation initiation factor-5A (eIF5A), and its homolog eIF5A2. Biosynthesis of hypusine is a two-step reaction involving the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). eIF5A is highly conserved throughout eukaryotic evolution and plays a role in mRNA translation, cellular proliferation, cellular differentiation, and inflammation. DHPS is also highly conserved and is essential for life, as Dhps-null mice are embryonic lethal. Using exome sequencing, we identified rare biallelic, recurrent, predicted likely pathogenic variants in DHPS segregating with disease in five affected individuals from four unrelated families. These individuals have similar neurodevelopmental features that include global developmental delay and seizures. Two of four affected females have short stature. All five affected individuals share a recurrent missense variant (c.518A>G [p.Asn173Ser]) in trans with a likely gene disrupting variant (c.1014+1G>A, c.912_917delTTACAT [p.Tyr305_Ile306del], or c.1A>G [p.Met1?]). cDNA studies demonstrated that the c.1014+1G>A variant causes aberrant splicing. Recombinant DHPS enzyme harboring either the p.Asn173Ser or p.Tyr305_Ile306del variant showed reduced (20%) or absent in vitro activity, respectively. We co-transfected constructs overexpressing HA-tagged DHPS (wild-type or mutant) and GFP-tagged eIF5A into HEK293T cells to determine the effect of these variants on hypusine biosynthesis and observed that the p.Tyr305_Ile306del and p.Asn173Ser variants resulted in reduced hypusination of eIF5A compared to wild-type DHPS enzyme. Our data suggest that rare biallelic variants in DHPS result in reduced enzyme activity that limits the hypusination of eIF5A and are associated with a neurodevelopmental disorder.


Asunto(s)
Genes Recesivos/genética , Lisina/análogos & derivados , Mutación , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Alelos , Secuencia de Aminoácidos , Niño , Preescolar , Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Femenino , Haplotipos , Humanos , Lisina/biosíntesis , Masculino , Errores Innatos del Metabolismo/enzimología , Errores Innatos del Metabolismo/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Linaje , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Convulsiones/enzimología , Convulsiones/genética , Adulto Joven , Factor 5A Eucariótico de Iniciación de Traducción
5.
FASEB J ; 35(5): e21473, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811703

RESUMEN

Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function.


Asunto(s)
Lisina/análogos & derivados , Organogénesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/fisiología , Páncreas Exocrino/citología , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Animales , Proliferación Celular , Femenino , Lisina/biosíntesis , Masculino , Ratones , Ratones Noqueados , Páncreas Exocrino/metabolismo , Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Factor 5A Eucariótico de Iniciación de Traducción
6.
Microb Cell Fact ; 20(1): 109, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34049541

RESUMEN

BACKGROUND: Plant-based milk alternatives are more popular than ever, and chickpea-based milks are among the most commercially relevant products. Unfortunately, limited nutritional value because of low levels of the essential amino acid L-lysine, low digestibility and unpleasant taste are challenges that must be addressed to improve product quality and meet consumer expectations. RESULTS: Using in-silico screening and food safety classifications, 31 strains were selected as potential L-lysine producers from approximately 2,500 potential candidates. Beneficially, 30% of the isolates significantly accumulated amino acids (up to 1.4 mM) during chickpea milk fermentation, increasing the natural level by up to 43%. The best-performing strains, B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511, were tested further. De novo lysine biosynthesis was demonstrated in both strains by 13C metabolic pathway analysis. Spiking small amounts of citrate into the fermentation significantly activated L-lysine biosynthesis in NCC 156 and stimulated growth. Both microbes revealed additional benefits in eliminating indigestible sugars such as stachyose and raffinose and converting off-flavour aldehydes into the corresponding alcohols and acids with fruity and sweet notes. CONCLUSIONS: B. amyloliquefaciens NCC 156 and L. paracasei subsp. paracasei NCC 2511 emerged as multi-benefit microbes for chickpea milk fermentation with strong potential for industrial processing of the plant material. Given the high number of L-lysine-producing isolates identified in silico, this concept appears promising to support strain selection for food fermentation.


Asunto(s)
Vías Biosintéticas , Aromatizantes/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lisina/biosíntesis , Sustitutos de la Leche/metabolismo , Azúcares/metabolismo , Cicer/metabolismo , Fermentación , Microbiología de Alimentos , Genoma Bacteriano , Lactobacillales/aislamiento & purificación , Gusto
7.
J Nat Prod ; 84(10): 2744-2748, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34623817

RESUMEN

Myxobacteria are a prolific source of structurally diverse natural products, and one of the best-studied myxobacterial products is the siderophore myxochelin. Herein, we report two new compounds, myxochelins N (1) and O (2), that are nicotinic paralogs of myxochelin A, from the terrestrial myxobacterium Archangium sp. SDU34; 2 is functionalized with a rare 2-oxazolidinone. A precursor-feeding experiment implied that the biosynthesis of 1 or 2 was due to altered substrate specificity of the loading module of MxcE, which likely accepts nicotinic acid and benzoic acid instead of more conventional 2,3-dihydroxybenzoic acid. We also employed a phylogenomic approach to map the evolutionary relationships of the myxochelin biosynthetic gene clusters (BGCs) in all the available myxobacterial genomes, to pave the way for the future discovery of potentially hidden myxochelin derivatives. Although the biological function of 1 and 2 is unclear yet, this work underpins that even extensively studied BGCs in myxobacteria can still produce new chemistry.


Asunto(s)
Productos Biológicos/química , Lisina/análogos & derivados , Myxococcales/química , Lisina/biosíntesis , Estructura Molecular , Familia de Multigenes , Myxococcales/genética
8.
Biotechnol Lett ; 43(12): 2273-2281, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34669078

RESUMEN

OBJECTIVES: Corynebacterium glutamicum (C. glutamicum) has been harnessed for multi-million-ton scale production of glutamate and lysine. To further increase its amino acid production for fermentation industry, there is an acute need to develop next-generation genome manipulation tool for its metabolic engineering. All reported methods for genome editing triggered with CRISPR-Cas are based on the homologous recombination. While, it requires the generation of DNA repair template, which is a bottle-neck for its extensive application. RESULTS: In this study, we developed a method for gene knockout in C. glutamicum via CRISPR-Cpf1-coupled non-homologous end-joining (CC-NHEJ). Specifically, CRISPR-Cpf1 introduced double-strand breaks in the genome of C. glutamicum, which was further repaired by ectopically expressed two NHEJ key proteins (Mycobacterium tuberculosis Ku and ligase D). We provide the proof of concept, for CC-NHEJ, by the successful knockout of the crtYf/e gene in C. glutamicum with the efficiency of 22.00 ± 5.56%, or something like that. CONCLUSION: The present study reported a novel genome manipulation method for C. glutamicum.


Asunto(s)
Sistemas CRISPR-Cas/genética , Corynebacterium glutamicum/genética , Reparación del ADN por Unión de Extremidades/genética , Ingeniería Metabólica , Corynebacterium glutamicum/metabolismo , Edición Génica , Técnicas de Inactivación de Genes , Genoma Bacteriano/genética , Ácido Glutámico/biosíntesis , Autoantígeno Ku/genética , Lisina/biosíntesis , Mycobacterium tuberculosis/genética
9.
Mol Genet Metab ; 131(1-2): 14-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32768327

RESUMEN

Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Epilepsia/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Lisina/metabolismo , Mitocondrias/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Citosol/metabolismo , Epilepsia/metabolismo , Epilepsia/patología , Glutaril-CoA Deshidrogenasa/genética , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/biosíntesis , Redes y Vías Metabólicas/genética , Mitocondrias/genética , Mitocondrias/patología , Especificidad de Órganos/genética , Peroxisomas/genética , Peroxisomas/metabolismo
10.
J Nutr ; 150(Suppl 1): 2548S-2555S, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000162

RESUMEN

Lysine cannot be synthesized by most higher organisms and, therefore, is an indispensable amino acid (IAA) that must be consumed in adequate amounts to maintain protein synthesis. Although lysine is an abundant amino acid in body proteins, lysine is limited in abundance in many important food sources (e.g. grains). Older observations assigned importance to lysine because animals fed a lysine-deficient diet did not lose weight as fast as animals placed upon other IAA-deficient diets, leading to the theory that there may be a special pool of lysine or metabolites that could be converted to lysine. The first step in the lysine catabolic pathway is the formation of saccharopine and then 2-aminoadipic acid, processes that are mitochondrial. The catabolism of 2-aminoadipic acid proceeds via decarboxylation to a series of CoA esters ending in acetyl-CoA. In mammals, the liver appears to be the primary site of lysine catabolism. In humans, the metabolic and oxidative response of lysine to diets either restricted in protein or in lysine is consistent with what has been measured for other IAAs with isotopically labeled tracers. Intestinal microflora are known to metabolize urea to ammonia and scavenge nitrogen (N) for the synthesis of amino acids. Studies feeding 15N-ammonium chloride or 15N-urea to animals and to humans, demonstrate the appearance of 15N-lysine in gut microbial lysine and in host lysine. However, the amount of 15N-lysine transferred to the host is difficult to assess directly using current methods. It is important to understand the role of the gut microflora in human lysine metabolism, especially in conditions where dietary lysine intake may be limited, but better methods need to be devised.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Lisina/metabolismo , Necesidades Nutricionales , Estado Nutricional , Ácido 2-Aminoadípico/metabolismo , Acetilcoenzima A/metabolismo , Amoníaco/metabolismo , Animales , Bacterias/metabolismo , Peso Corporal , Enfermedades Carenciales/metabolismo , Humanos , Lisina/análogos & derivados , Lisina/biosíntesis , Lisina/deficiencia , Nitrógeno/metabolismo , Proteínas/metabolismo , Urea/metabolismo
11.
Microb Cell Fact ; 19(1): 39, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32070345

RESUMEN

The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of L-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum. L-lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTSGlc and PTSFru) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and L-lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L L-lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of L-lysine production from mixed sugar. This is also the first report for improving the efficiency of L-lysine production by systematic modification of carbohydrate metabolism systems.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Fructosa/metabolismo , Lisina/biosíntesis , Ingeniería Metabólica , Sacarosa/metabolismo , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Fermentación
12.
World J Microbiol Biotechnol ; 36(6): 82, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32458148

RESUMEN

Lysine is widely used in food, medical and feed industries. The biosynthesis of L-lysine is closely related to NADPH level, but the regulation mechanism between the biosynthesis of L-lysine in C. glutamicum and the cofactor NADPH is still not clear. Here, a high intracellular NADPH level strain C. glutamicum XQ-5Δpgi::(zwf-gnd) was constructed by blocking the glycolytic pathway and overexpressing the pentose phosphate pathway in the lysine-producing strain C. glutamicum XQ-5, and the intracellular NADPH level in strain XQ-5Δpgi::(zwf-gnd) was increased from 3.57 × 10-5 nmol/(104 cells) to 1.8 × 10-4 nmol/(104 cell). Transcriptome analyses pointed to Cgl2680 as an important regulator of NADPH levels and L-lysine biosynthesis in C. glutamicum. By knocking out the gene Cgl2680, the intracellular NADPH level of the recombinant C. glutamicum lysCfbr ΔCgl2680 was raised from 7.95 × 10-5 nmol/(104 cells) to 2.04 × 10-4 nmol/(104 cells), consequently leading to a 2.3-fold increase in the NADPH/NADP+ ratio. These results indicated that the regulator Cgl2680 showed the negative regulation for NADPH regeneration. In addition, Cgl2680-deficient strain C. glutamicum lysCfbr ΔCgl2680 showed the increase of yield of both L-lysine and L-leucine as well as the increase of H2O2 tolerance. Collectively, our data demonstrated that Cgl2680 plays an important role in negatively regulating NADPH regeneration, and these results provides new insights for breeding L-lysine or L-leucine high-yielding strain.


Asunto(s)
Factor de Transcripción de AraC/metabolismo , Corynebacterium glutamicum , Lisina/biosíntesis , NADP/metabolismo , Factor de Transcripción de AraC/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Ingeniería Genética/métodos , Glucólisis , Peróxido de Hidrógeno/metabolismo , Leucina/biosíntesis , Vía de Pentosa Fosfato
13.
Metab Eng ; 52: 77-86, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30458240

RESUMEN

Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance during lysine overproduction. To achieve such a goal, enzyme mining was used in this study to quickly identify a full set of NADH-utilizing dehydrogenases, namely aspartate dehydrogenase from Pseudomonas aeruginosa (PaASPDH), aspartate-semialdehyde dehydrogenase from Tistrella mobilis (TmASADH), dihydrodipicolinate reductase from Escherichia coli (EcDHDPR), and diaminopimelate dehydrogenase from Pseudothermotoga thermarum (PtDAPDH). This allowed us to systematically perturb cofactor utilization of lysine synthesis pathway of C. glutamicum for the first time. Individual overexpression of PaASPDH, TmASADH, EcDHDPR, and PtDAPDH in C. glutamicum LC298, a basic lysine producer, increased the production of lysine by 30.7%, 32.4%, 17.4%, and 36.8%, respectively. Combinatorial replacement of NADPH-dependent dehydrogenases in C. glutamicum ATCC 21543, a lysine hyperproducer, also resulted in significantly improved lysine production. The highest increase of lysine production (30.7%) was observed for a triple-mutant strain (27.7 g/L, 0.35 g/g glucose) expressing PaASPDH, TmASADH, and EcDHDPR. A quadruple-mutant strain expressing all of the four NADH-utilizing enzymes allowed high lysine production (24.1 g/L, 0.30 g/g glucose) almost independent of the oxidative pentose phosphate pathway. Collectively, our results demonstrated that a combination of enzyme mining and cofactor engineering was a highly efficient approach to improve lysine production. Similar strategies can be applied for the production of other amino acids or their derivatives.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Lisina/biosíntesis , Ingeniería Metabólica/métodos , NAD/biosíntesis , Medios de Cultivo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Mutación/genética , NADH Deshidrogenasa/metabolismo , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Vía de Pentosa Fosfato , Plásmidos/genética
14.
Crit Rev Biotechnol ; 39(8): 1031-1055, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31544527

RESUMEN

L-lysine is an essential amino acid used in various industrial sectors but mainly in food and animal feed. Intense research has been directed toward increasing its productivity. This literature review presents the state of the art and patent landscape of the industrial production of L-lysine, with a focus on the strain development and fermentation technologies, through geographic, social, and chronological analysis, using the text mining technique. The geographic analysis showed a greater tendency for countries with industrial plants with large production capacity to submit patents or publish articles, while the social analysis reflected the close relationship between educational units and companies. The technologies of each document were divided into optimization of fermentation parameters, conventional mutation, and genetic engineering. Corynebacterium glutamicum and Escherichia coli present the most attractive industrial phenotypes, and their cultivation occurs mainly in fed-batch processes with control parameters carefully selected to enhance metabolism. These strains are generally modified by conventional approaches (e.g., mutagenesis and selection of auxotrophic and/or regulatory mutants) or by genetic engineering technologies. The combination of both these approaches enables genomic breeding and the construction of strains with industrial potential, capable of accumulating more than 120 g/L of L-lysine. From the analysis of these approaches, we developed a descriptive flow of substrate uptake, amino acid metabolism, and mechanisms of excretion of a lysine-producing model cell. It is expected that the various mechanisms of L-lysine production, here shown and described, will become a guide that aids in increasing amino acid productivity without interfering with the strain stability.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Microbiología Industrial , Lisina/biosíntesis , Corynebacterium glutamicum/genética , Escherichia coli/genética , Fermentación , Ingeniería Metabólica , Patentes como Asunto
15.
Microb Cell Fact ; 18(1): 65, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943966

RESUMEN

BACKGROUND: NAD(H/+) and NADP(H/+) are the most important redox cofactors in bacteria. However, the intracellular redox balance is in advantage of the cell growth and production of NAD(P)H-dependent products. RESULTS: In this paper, we rationally engineered glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and isocitrate dehydrogenase (IDH) to switch the nucleotide-cofactor specificity resulting in an increase in final titer [from 85.6 to 121.4 g L-1] and carbon yield [from 0.33 to 0.46 g (g glucose)-1] of L-lysine in strain RGI in fed-batch fermentation. To do this, we firstly analyzed the production performance of original strain JL-6, indicating that the imbalance of intracellular redox was the limiting factor for L-lysine production. Subsequently, we modified the native GAPDH and indicated that recombinant strain RG with nonnative NADP-GAPDH dramatically changed the intracellular levels of NADH and NADPH. However, L-lysine production did not significantly increase because cell growth was harmed at low NADH level. Lastly, the nonnative NAD-IDH was introduced in strain RG to increase the NADH availability and to equilibrate the intracellular redox. The resulted strain RGI showed the stable ratio of NADPH/NADH at about 1.00, which in turn improved cell growth (µmax. = 0.31 h-1) and L-lysine productivity (qLys, max. = 0.53 g g-1 h-1) as compared with strain RG (µmax. = 0.14 h-1 and qLys, max. = 0.42 g g-1 h-1). CONCLUSIONS: This is the first report of balancing the intracellular redox state by switching the nucleotide-cofactor specificity of GAPDH and IDH, thereby improving cell growth and L-lysine production.


Asunto(s)
Coenzimas/metabolismo , Corynebacterium glutamicum/crecimiento & desarrollo , Corynebacterium glutamicum/metabolismo , Lisina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Fermentación , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Cinética , Ingeniería Metabólica , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción
16.
Biochem J ; 475(1): 137-150, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29187521

RESUMEN

Dihydrodipicolinate reductase (DHDPR) catalyses the second reaction in the diaminopimelate pathway of lysine biosynthesis in bacteria and plants. In contrast with the tetrameric bacterial DHDPR enzymes, we show that DHDPR from Vitis vinifera (grape) and Selaginella moellendorffii are dimeric in solution. In the present study, we have also determined the crystal structures of DHDPR enzymes from the plants Arabidopsis thaliana and S. moellendorffii, which are the first dimeric DHDPR structures. The analysis of these models demonstrates that the dimer forms through the intra-strand interface, and that unique secondary features in the plant enzymes block tetramer assembly. In addition, we have also solved the structure of tetrameric DHDPR from the pathogenic bacteria Neisseria meningitidis Measuring the activity of plant DHDPR enzymes showed that they are much more prone to substrate inhibition than the bacterial enzymes, which appears to be a consequence of increased flexibility of the substrate-binding loop and higher affinity for the nucleotide substrate. This higher propensity to substrate inhibition may have consequences for ongoing efforts to increase lysine biosynthesis in plants.


Asunto(s)
Proteínas Bacterianas/química , Dihidrodipicolinato-Reductasa/química , Ácidos Picolínicos/química , Proteínas de Plantas/química , Vitis/enzimología , Secuencias de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Coenzimas/química , Coenzimas/metabolismo , Cristalografía por Rayos X , Dihidrodipicolinato-Reductasa/genética , Dihidrodipicolinato-Reductasa/metabolismo , Expresión Génica , Cinética , Lisina/biosíntesis , Modelos Moleculares , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Ácidos Picolínicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/química , Selaginellaceae/enzimología , Especificidad de la Especie , Especificidad por Sustrato , Vitis/química
17.
J Ind Microbiol Biotechnol ; 46(7): 937-949, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30937555

RESUMEN

Traditional amino acid producers typically exhibit the low glucose uptake rate and growth deficiency, resulting in a long fermentation time because of the accumulation of side mutations in breeding of strains. In this study, we demonstrate that the efficiency of L-lysine production in traditional L-lysine producer Corynebacterium glutamicum ZL-9 can be improved by rationally engineering glucose uptake systems. To do this, different bypasses for glucose uptake were investigated to reveal the best glucose uptake system for L-lysine production in traditional L-lysine producer. This study showed that overexpression of the key genes in PTSGlc or non-PTSGlc increased the glucose consumption, growth rate, and L-lysine production. However, increasing the function of PTSGlc in glucose uptake led to the increase of by-products, especially for plasmid-mediated expression system. Increasing the participation of non-PTSGlc in glucose utilization showed the best glucose uptake system for L-lysine production. The final strain ZL-92 with increasing the expression level of iolT1, iolT2 and ppgK could produce 201.6 ± 13.8 g/L of L-lysine with a productivity of 5.04 g/L/h and carbon yield of 0.65 g/(g glucose) in fed-batch culture. This is the first report of a rational modification of glucose uptake systems that improve the efficiency of L-lysine production through increasing the participation of non-PTSGlc in glucose utilization in traditional L-lysine producer. Similar strategies can be also used for producing other amino acids or their derivatives.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Glucosa/metabolismo , Lisina/biosíntesis , Técnicas de Cultivo Celular por Lotes , Transporte Biológico , Corynebacterium glutamicum/genética , Ingeniería Metabólica/métodos
18.
J Basic Microbiol ; 59(9): 890-900, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31318074

RESUMEN

Saccharopine dehydrogenase (EC 1.5.1.7) regulates the last step of fungal lysine biosynthesis. The gene (Fvsdh) encoding saccharopine dehydrogenase was identified and cloned from the whole genome of Flammulina velutipes. The genomic DNA of Fvsdh is 1257 bp, comprising three introns and four exons. The full-length complementary DNA of Fvsdh comprises 1107 bp with a deduced amino acid sequence of 368 residues. A 1,000-bp promoter sequence containing the TATA box, CAAT box, and several putative cis-acting elements was also identified. The results of tissue expression analysis showed that the expression level of the Fvsdh gene was higher in the pileus than in the stipe whether in the elongation or maturation stage. Further research showed that the lysine contents were 3.03 and 2.95 mg/g in maturation-pileus and elongation-pileus, respectively. In contrast, the lysine contents were 2.49 and 2.07 mg/g in elongation-stipe and maturation-stipe, respectively. To study the function of Fvsdh, we overexpressed Fvsdh in F. velutipes and found that Fvsdh gene expression was increased from 1.1- to 3-fold in randomly selected transgenic strains. The lysine contents were also increased from 1.12- to 1.3-fold in these five transformants, except for strain T3, in which the lysine contents were the same as the control. These results indicate that the expression of the Fvsdh gene can affect the lysine content of F. velutipes.


Asunto(s)
Flammulina/genética , Flammulina/metabolismo , Proteínas Fúngicas/genética , Lisina/biosíntesis , Sacaropina Deshidrogenasas/genética , Secuencia de Bases , Vías Biosintéticas/genética , Clonación Molecular , Flammulina/clasificación , Flammulina/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Filogenia , Regiones Promotoras Genéticas , Sacaropina Deshidrogenasas/metabolismo
19.
Biochem Biophys Res Commun ; 495(2): 1815-1821, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29233695

RESUMEN

l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5'-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carboxiliasas/química , Carboxiliasas/metabolismo , Corynebacterium glutamicum/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Carboxiliasas/genética , Dominio Catalítico , Corynebacterium glutamicum/genética , Cristalografía por Rayos X , Lisina/biosíntesis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína , Fosfato de Piridoxal/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
Metab Eng ; 47: 230-242, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29601856

RESUMEN

Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO2, light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion.


Asunto(s)
Biomasa , Reactores Biológicos , Ácido Láctico/biosíntesis , Luz , Lisina/biosíntesis , Synechococcus/crecimiento & desarrollo , Lisina/genética , Ingeniería Metabólica , Synechococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA