Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
1.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37442136

RESUMEN

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Asunto(s)
Corteza Cerebral , Macaca , Análisis de la Célula Individual , Transcriptoma , Animales , Humanos , Ratones , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
2.
Nat Immunol ; 24(12): 2068-2079, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37919524

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.


Asunto(s)
COVID-19 , Interferón gamma , Animales , Interferón gamma/metabolismo , SARS-CoV-2/metabolismo , Linfocitos T CD8-positivos/metabolismo , Macrófagos Alveolares/metabolismo , Células Asesinas Naturales/metabolismo , Pulmón/metabolismo , Macaca/metabolismo
3.
FASEB J ; 38(7): e23602, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581236

RESUMEN

Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.


Asunto(s)
Células Endoteliales , Ovario , Femenino , Animales , Ovario/metabolismo , Células Endoteliales/metabolismo , Neurotensina/metabolismo , Uniones Adherentes/metabolismo , Permeabilidad Capilar , Cadherinas/genética , Cadherinas/metabolismo , Macaca/metabolismo , Permeabilidad , Endotelio Vascular/metabolismo , Mamíferos/metabolismo
4.
Synapse ; 78(1): e22284, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37996987

RESUMEN

Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.


Asunto(s)
Bencenoacetamidas , Hormona Liberadora de Corticotropina , Dopamina , Piperidonas , Humanos , Animales , Masculino , Femenino , Dopamina/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Macaca/metabolismo , Terminales Presinápticos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716270

RESUMEN

Mentalizing, the ability to infer the mental states of others, is a cornerstone of adaptive social intelligence. While functional brain mapping of human mentalizing has progressed considerably, its evolutionary signature in nonhuman primates remains debated. The discovery that the middle part of the macaque superior temporal sulcus (mid-STS) region has a connectional fingerprint most similar to the human temporoparietal junction (TPJ)-a crucial node in the mentalizing network-raises the possibility that these cortical areas may also share basic functional properties associated with mentalizing. Here, we show that this is the case in aspects of a preference for live social interactions and in a theoretical framework of predictive coding. Macaque monkeys were trained to perform a turn-taking choice task with another real monkey partner sitting directly face-to-face or a filmed partner appearing in prerecorded videos. We found that about three-fourths of task-related mid-STS neurons exhibited agent-dependent activity, most responding selectively or preferentially to the partner's action. At the population level, activities of these partner-type neurons were significantly greater under live-partner compared to video-recorded-partner task conditions. Furthermore, a subset of the partner-type neurons responded proactively when predictions about the partner's action were violated. This prediction error coding was specific to the action domain; almost none of the neurons signaled error in the prediction of reward. The present findings highlight unique roles of the macaque mid-STS at the single-neuron level and further delineate its functional parallels with the human TPJ in social cognitive processes associated with mentalizing.


Asunto(s)
Mentalización/fisiología , Lóbulo Temporal/fisiología , Teoría de la Mente/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Macaca/metabolismo , Macaca/fisiología , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Cognición Social , Interacción Social , Percepción Social , Lóbulo Temporal/metabolismo
6.
Alzheimers Dement ; 20(3): 1894-1912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148705

RESUMEN

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Asunto(s)
Enfermedad de Alzheimer , Priones , Animales , Humanos , Anciano , Enfermedad de Alzheimer/patología , Macaca/metabolismo , Proteómica , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología
7.
J Infect Dis ; 228(2): 122-132, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37162508

RESUMEN

BACKGROUND: People with human immunodeficiency virus (HIV) have heightened incidence/risk of diastolic dysfunction and heart failure. Women with HIV have elevated cardiac fibrosis, and plasma osteopontin (Opn) is correlated to cardiac pathology. Therefore, this study provides mechanistic insight into the relationship between osteopontin and cardiac fibrosis during HIV infection. METHODS: Mouse embryonic fibroblasts (MEFs) modeled cardiac fibroblasts in vitro. Simian immunodeficiency virus (SIV)-infected macaques with or without antiretroviral therapy and HIV-infected humanized mice modeled HIV-associated cardiac fibrosis. RESULTS: Lipopolysaccharide-stimulated MEFs were myofibroblast-like, secreted cytokines, and produced Opn transcripts. SIV-infected animals had elevated plasma Opn at necropsy, full-length Opn in the ventricle, and ventricular interstitial fibrosis. Regression modeling identified growth differentiation factor 15, CD14+CD16+ monocytes, and CD163 expression on CD14+CD16+ monocytes as independent predictors of plasma Opn during SIV infection. HIV-infected humanized mice showed increased interstitial fibrosis compared to uninfected/untreated animals, and systemic inhibition of osteopontin by RNA aptamer reduced left ventricle fibrosis in HIV-infected humanized mice. CONCLUSIONS: Since Opn is elevated in the plasma and left ventricle during SIV infection and systemic inhibition of Opn reduced cardiac fibrosis in HIV-infected mice, Opn may be a potential target for adjunctive therapies to reduce cardiac fibrosis in people with HIV.


Asunto(s)
Cardiomiopatías , Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Humanos , Animales , Femenino , Ratones , Infecciones por VIH/patología , Osteopontina/genética , Osteopontina/metabolismo , Fibroblastos , Corazón , Cardiomiopatías/patología , Virus de la Inmunodeficiencia de los Simios/fisiología , Fibrosis , Macaca/metabolismo , VIH
8.
Drug Metab Dispos ; 51(4): 521-531, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36623884

RESUMEN

Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.


Asunto(s)
Glucuronosiltransferasa , Infecciones por VIH , Humanos , Ratones , Animales , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Macaca/metabolismo , Proteómica , Ratones Endogámicos C57BL , Sistema Enzimático del Citocromo P-450/metabolismo , Biotransformación , Encéfalo/metabolismo , Uridina Difosfato/metabolismo
9.
Mov Disord ; 38(1): 143-147, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544385

RESUMEN

BACKGROUND: Dopamine system dysfunction and altered glucose metabolism are implicated in Huntington's disease (HD), a neurological disease caused by mutant huntingtin (mHTT) expression. OBJECTIVE: The aim was to characterize alterations in cerebral dopamine D2 /D3 receptor density and glucose utilization in a newly developed AAV-mediated NHP model of HD that expresses mHTT throughout numerous brain regions. METHODS: Positron emission tomography (PET) imaging was performed using [18 F]fallypride to quantify D2 /D3 receptor density and 2-[18 F]fluoro-2-deoxy-d-glucose ([18 F]FDG) to measure cerebral glucose utilization in these HD macaques. RESULTS: Compared to controls, HD macaques showed significantly reduced dopamine D2 /D3 receptor densities in basal ganglia (P < 0.05). In addition, HD macaques displayed significant glucose hypometabolism throughout the cortico-basal ganglia network (P < 0.05). CONCLUSIONS: [18 F]Fallypride and [18 F]FDG are PET imaging biomarkers of mHTT-mediated disease progression that can be used as noninvasive outcome measures in future therapeutic studies with this AAV-mediated HD macaque model. © 2022 International Parkinson and Movement Disorder Society.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedad de Huntington , Animales , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Receptores de Dopamina D3/metabolismo , Dopamina/metabolismo , Macaca/metabolismo , Tomografía de Emisión de Positrones , Glucosa/metabolismo
10.
Mol Biol Evol ; 37(2): 395-405, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31614365

RESUMEN

Proteins in saliva are needed for preprocessing food in the mouth, maintenance of tooth mineralization, and protection from microbial pathogens. Novel insights into human lineage-specific functions of salivary proteins and clues to their involvement in human disease can be gained through evolutionary studies, as recently shown for salivary amylase AMY1 and salivary agglutinin DMBT1/gp340. However, the entirety of proteins in saliva, the salivary proteome, has not yet been investigated from an evolutionary perspective. Here, we compared the proteomes of human saliva and the saliva of our closest extant evolutionary relatives, chimpanzees and gorillas, using macaques as an outgroup, with the aim to uncover features in saliva protein composition that are unique to each species. We found that humans produce a waterier saliva, containing less than half total protein than great apes and Old World monkeys. For all major salivary proteins in humans, we could identify counterparts in chimpanzee and gorilla saliva. However, we discovered unique protein profiles in saliva of humans that were distinct from those of nonhuman primates. These findings open up the possibility that dietary differences and pathogenic pressures may have shaped a distinct salivary proteome in the human lineage.


Asunto(s)
Primates/metabolismo , Saliva/química , Proteínas y Péptidos Salivales/análisis , Animales , Evolución Biológica , Gorilla gorilla/genética , Gorilla gorilla/metabolismo , Humanos , Macaca/genética , Macaca/metabolismo , Pan troglodytes/genética , Pan troglodytes/metabolismo
11.
Immunol Rev ; 267(1): 246-58, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26284482

RESUMEN

Natural killer (NK) cells play a central role in immune responses through direct cytotoxicity and the release of cytokines that prime adaptive immunity. In simian primates, NK cell responses are regulated by interactions between two highly polymorphic sets of molecules: the killer-cell immunoglobulin-like receptors (KIRs) and their major histocompatibility complex (MHC) class I ligands. KIR-MHC class I interactions in humans have been implicated in the outcome of a number viral diseases and cancers. However, studies to address the role of KIRs in animal models have been limited by the complex immunogenetics and lack of defined ligands for KIRs in non-human primates. Due to the rapid evolution of KIRs, there is little conservation among the KIR genes of different primate species and it is not possible to predict the specificity of KIRs from known KIR-MHC class I interactions in humans. Hence, the MHC class I ligands for KIRs in species other than humans are poorly defined. Here, we review the KIR genes of the rhesus macaque, an important animal model for human immunodeficiency virus infection and other infectious diseases, and the MHC class I ligands that have been identified for KIRs in this species.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Macaca/inmunología , Receptores KIR/inmunología , Animales , Evolución Molecular , Variación Genética/genética , Variación Genética/inmunología , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Macaca/genética , Macaca/metabolismo , Unión Proteica/inmunología , Receptores KIR/genética , Receptores KIR/metabolismo
12.
J Therm Biol ; 76: 139-146, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30143288

RESUMEN

Animals living in seasonal environments must adapt to a wide variation of temperature changes which requires flexible adjustments of time budget and metabolic processes for efficient thermoregulation. The Japanese macaque (Macaca fuscata) is one of only a handful of nonhuman primate species that experience seasonal climates over a wide temperature range. We used behavior observations, accelerometer sensors and the doubly-labelled water (DLW) method to measure activity and total daily energy expenditure (TDEE) of M. fuscata housed in captivity but exposed to natural seasonal variations at day lengths ranging from 10 to 12 h and temperature ranging from 0° to 32°C. Although overall activity was significantly lower in winter compared to summer and autumn, we found no effect of temperature on day-time activity. However nocturnal inactivity and mean length of sleeping bouts significantly increased along a gradient of decreasing temperatures from summer through winter, suggesting the importance of adaptive behavioral thermoregulation in this species. Energy expenditure that was unaccounted for by Basal Metabolic Rate (BMR) and physical activity i.e. expended through diet-induced thermogenesis or thermoregulation was between 14% and 32%. This residual energy expenditure differed between summer/autumn and winter and was relatively consistent across individuals (approximately 5-8% higher in winter). The percentage of body fat and residual energy expenditure were negatively correlated, supporting that fat storage was higher when less energy was required for thermoregulation. Our results suggest that physiological mechanisms like behavioral and autonomic thermoregulation enable M. fuscata to adapt to wide fluctuations in environmental conditions which provide insights into the evolutionary adaptations of nonhuman primates in seasonal climate.


Asunto(s)
Aclimatación , Metabolismo Energético , Macaca/metabolismo , Estaciones del Año , Animales , Regulación de la Temperatura Corporal , Peso Corporal , Femenino , Masculino , Temperatura
13.
PLoS Biol ; 12(5): e1001871, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24866127

RESUMEN

Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.


Asunto(s)
Macaca/metabolismo , Metaboloma , Músculo Esquelético/metabolismo , Pan troglodytes/metabolismo , Corteza Prefrontal/metabolismo , Animales , Evolución Biológica , Cognición/fisiología , Metabolismo Energético , Femenino , Humanos , Macaca/psicología , Masculino , Ratones , Fuerza Muscular/fisiología , Pan troglodytes/psicología , Especificidad de la Especie
14.
Horm Behav ; 78: 220-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26657779

RESUMEN

Sequence variations in genes of the monoamine neurotransmitter system and their common function in human and non-human primate species are an ongoing issue of investigation. However, the COMT gene, coding for the catechol-O-methyltransferase, has not yet attracted much scientific attention regarding its functional role in non-human primates. Considering that a polymorphism of the human COMT gene affects the enzyme activity and cortisol level in response to a social stressor, this study investigated the impact of COMT on endocrine stress and behavioural parameters in Japanese macaques (Macaca fuscata). The species exemplifies a despotic hierarchy in which males' social rank positions require an adaptation of behaviour strategies. During the mating period steroid secretion and the frequency of aggressive encounters between males increase. We addressed i) whether this species exhibits potential functional COMT variants, ii) whether these variants are associated with faecal cortisol excretion of males, iii) how they are distributed among different social rank positions and iv) whether they are associated with behavioural strategies during times of mate competition. By genotyping 26 males we identified three COMT haplotypes (HT), including a putative splice mutant (HT3). This variant was associated with increased cortisol excretion. Given the observed inverse correlation between cortisol and physical aggression, we assume that different COMT haplotypes may predispose individuals to pursue more or less aggressive strategies. How these gene-stress effects might favour a specific social role is discussed. Our study of non-invasive genotyping in combination with behavioural and endocrine parameters represents an important step towards the understanding of gene-stress effects in a hierarchically organised primate society.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Catecol O-Metiltransferasa/genética , Jerarquia Social , Hidrocortisona/metabolismo , Macaca/metabolismo , Alelos , Animales , Genotipo , Haplotipos , Humanos , Masculino , Polimorfismo de Nucleótido Simple
15.
Biol Lett ; 12(4)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27095269

RESUMEN

Selection is expected to favour the evolution of flexible metabolic strategies, in response to environmental conditions. Here, we use a non-invasive index of basal metabolic rate (BMR), faecal thyroid hormone (T3) levels, to explore metabolic flexibility in a wild mammal inhabiting a highly seasonal, challenging environment. T3 levels of adult male Barbary macaques in the Atlas Mountains, Morocco, varied markedly over the year; temporal patterns of variation differed between a wild-feeding and a provisioned group. Overall, T3 levels were related to temperature, foraging time (linked to food availability) and intensity of mating activity, and were higher in the provisioned than in the wild-feeding group. In both groups, T3 levels began to increase markedly one month before the start of the mating season, peaking four to six weeks into this period, and at a higher level in the wild-feeding group. Our results suggest that while both groups demonstrate marked metabolic flexibility, responding similarly to ecological and social challenges, such flexibility is affected by food availability. This study provides new insights into the way Barbary macaques respond to the multiple demands of their environment.


Asunto(s)
Heces/química , Macaca/metabolismo , Hormonas Tiroideas/análisis , Animales , Animales Salvajes , Conducta Apetitiva , Metabolismo Basal , Alimentos , Masculino , Marruecos , Estaciones del Año , Conducta Sexual Animal , Temperatura
16.
Dev Growth Differ ; 57(3): 200-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25703431

RESUMEN

Periostin (POSTN or osteoblast specific factor) is an extracellular matrix protein originally identified as a protein highly expressed in osteoblasts. Recently, periostin has been reported to function in axon regeneration and neuroprotection. In the present study, we focused on periostin function in cortical evolution. We performed a comparative gene expression analysis of periostin between rodents (mice) and primates (marmosets and macaques). Periostin was expressed at higher levels in the primate cerebral cortex compared to the mouse cerebral cortex. Furthermore, we performed overexpression experiments of periostin in vivo and in vitro. Periostin exhibited neurite outgrowth activity in cortical neurons. These results suggested the possibility that prolonged and increased periostin expression in the primate cerebral cortex enhances the cortical plasticity of the mammalian cerebral cortex.


Asunto(s)
Callithrix/metabolismo , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/metabolismo , Macaca/metabolismo , Neuritas/metabolismo , Plasticidad Neuronal/fisiología , Animales , Corteza Cerebral/citología , Cartilla de ADN/genética , Hipocampo/citología , Inmunohistoquímica , Hibridación in Situ , Ratones , Plásmidos/genética , Ratas , Especificidad de la Especie
17.
Drug Metab Dispos ; 42(1): 89-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24130369

RESUMEN

The blood-testis barrier (BTB) prevents the entry of many drugs into seminiferous tubules, which can be beneficial for therapy not intended for the testis but may decrease drug efficacy for medications requiring entry to the testis. Previous data have shown that some of the transporters in the multidrug resistance-associated protein (MRP) family (ABCC) are expressed in the testis. By determining the subcellular localization of these transporters, their physiologic function and effect on drug disposition may be better predicted. Using immunohistochemistry (IHC), we determined the site of expression of the MRP transporters expressed in the testis, namely, MRP1, MRP4, MRP5, and MRP8, from immature and mature rats, rhesus macaques, and adult humans. We determined that in all species MRP1 was restricted to the basolateral membrane of Sertoli cells, MRP5 is located in Leydig cells, and MRP8 is located in round spermatids, whereas MRP4 showed species-specific localization. MRP4 is expressed on the basolateral membrane of Sertoli cells in human and nonhuman primates, but on the apical membrane of Sertoli cells in immature and mature rats, representing a potential caution when using rat models as a means for studying drug disposition across the BTB. These data suggest that MRP1 may limit drug disposition into seminiferous tubules, as may MRP4 in human and nonhuman primates but not in rats. These data also suggest that MRP5 and MRP8 may not have a major impact on the penetration of drugs across the BTB.


Asunto(s)
Barrera Hematotesticular/metabolismo , Macaca/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Testículo/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Inmunohistoquímica/métodos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratas , Ratas Sprague-Dawley
18.
PLoS Genet ; 7(10): e1002327, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22022286

RESUMEN

Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica , Macaca/genética , MicroARNs/genética , Pan troglodytes/genética , Corteza Prefrontal/metabolismo , Animales , Línea Celular , Cerebelo/metabolismo , Cognición , Expresión Génica , Humanos , Macaca/metabolismo , MicroARNs/metabolismo , Análisis por Micromatrices , Neuronas/metabolismo , Pan troglodytes/metabolismo , Fenotipo , Filogenia , Selección Genética , Especificidad de la Especie
19.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310105

RESUMEN

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Obesidad , Ratones , Masculino , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Primates , Macaca/metabolismo
20.
Virology ; 594: 110052, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38507920

RESUMEN

SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Animales , COVID-19/metabolismo , Células Endoteliales/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NAD , SARS-CoV-2/metabolismo , Macaca/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA