Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Plant Physiol ; 195(1): 518-533, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38365203

RESUMEN

Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Medicago sativa , Proteínas de Plantas , Brotes de la Planta , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Acético/metabolismo , Plantas Modificadas Genéticamente , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regiones Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología
2.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
3.
Plant Cell Environ ; 47(6): 2178-2191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481026

RESUMEN

Understanding crop responses to elevated CO2 is necessary to meet increasing agricultural demands. Crops may not achieve maximum potential yields at high CO2 due to photosynthetic downregulation, often associated with nitrogen limitation. Legumes have been proposed to have an advantage at elevated CO2 due to their ability to exchange carbon for nitrogen. Here, the effects of biological nitrogen fixation (BNF) on the physiological and gene expression responses to elevated CO2 were examined at multiple nitrogen levels by comparing alfalfa mutants incapable of nitrogen fixation to wild-type. Elemental analysis revealed a role for BNF in maintaining shoot carbon/nitrogen (C/N) balance under all nitrogen treatments at elevated CO2, whereas the effect of BNF on biomass was only observed at elevated CO2 and the lowest nitrogen dose. Lower photosynthetic rates at were associated with the imbalance in shoot C/N. Genome-wide transcriptional responses were used to identify carbon and nitrogen metabolism genes underlying the traits. Transcription factors important to C/N signalling were identified from inferred regulatory networks. This work supports the hypothesis that maintenance of C/N homoeostasis at elevated CO2 can be achieved in plants capable of BNF and revealed important regulators in the underlying networks including an alfalfa (Golden2-like) GLK ortholog.


Asunto(s)
Dióxido de Carbono , Carbono , Medicago sativa , Fijación del Nitrógeno , Nitrógeno , Fotosíntesis , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Medicago sativa/genética , Medicago sativa/fisiología , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/fisiología
4.
Ecotoxicol Environ Saf ; 278: 116411, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714085

RESUMEN

Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.


Asunto(s)
Cadmio , Perfilación de la Expresión Génica , Medicago sativa , Melatonina , Medicago sativa/efectos de los fármacos , Medicago sativa/genética , Cadmio/toxicidad , Melatonina/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/efectos de los fármacos
5.
Pestic Biochem Physiol ; 201: 105908, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685229

RESUMEN

The inclination toward natural products has led to the onset of the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. Despite increasing knowledge coming to light of plant-derived materials as leads for new herbicides, relatively little is known about the mode of action on herbicide-resistant weeds. Cyanamide (CA) is a naturally occurring herbicide synthesized by hairy vetch (Vicia villosa Roth.). However, it has not been experimentally verified whether CA suppresses target plants via sustained discharge at low concentrations, as is often the case with most plant-derived materials. This study aimed to detect the toxicity and the mode of action of CA to alfalfa (Medicago sativa L.) and redroot pigweed (Amaranthus retroflexus L.). The toxicity of CA toward the alfalfa and redroot pigweed by three different exposure patterns was compared: low-concentration repeated exposure with 0.3 g/L CA (LRE), high-concentration single exposure with 1.2 g/L CA (HSE), and distilled water spray as control. The results showed that CA had a stronger inhibitory effect on redroot pigweed growth compared to alfalfa under both LRE and HSE exposure modes, with leaves gradually turning yellow and finally wilting. Beyond that, field trials were conducted to corroborate the toxicity of CA to alfalfa and redroot pigweed. The results have also shown that CA could inhibit the growth of redroot pigweed without significant adverse effects on alfalfa. The outcomes concerning electrolyte permeability, root activity, and malondialdehyde (MDA) content indicated that CA suppressed the growth of redroot pigweed by interfering with the structure of the cell membrane and impacting cellular osmotic potential. CA could destroy the cell membrane structure to inhibit the growth of the redroot pigweed by both LRE and HSE exposure modes, which provides a theoretical basis for preventing and controlling redroot pigweed in alfalfa fields.


Asunto(s)
Amaranthus , Cianamida , Herbicidas , Medicago sativa , Medicago sativa/efectos de los fármacos , Herbicidas/toxicidad , Herbicidas/farmacología , Amaranthus/efectos de los fármacos , Cianamida/farmacología , Malondialdehído/metabolismo , Malezas/efectos de los fármacos
6.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891967

RESUMEN

BBX protein is a class of zinc finger transcription factors that have B-box domains at the N-terminus, and some of these proteins contain a CCT domain at the C-terminus. It plays an important role in plant growth, development, and metabolism. However, the expression pattern of BBX genes in alfalfa under hormonal and salt stresses is still unclear. In this study, we identified a total of 125 BBX gene family members by the available Medicago reference genome in diploid alfalfa (Medicago sativa spp. Caerulea), a model plant (M. truncatula), and tetraploid alfalfa (M. sativa), and divided these members into five subfamilies. We found that the conserved motifs of BBXs of the same subfamily reveal similarities. We analyzed the collinearity relationship and duplication mode of these BBX genes and found that the expression pattern of BBX genes is specific in different tissues. Analysis of the available transcriptome data suggests that some members of the BBX gene family are involved in multiple abiotic stress responses, and the highly expressed genes are often clustered together. Furthermore, we identified different expression patterns of some BBX genes under salt, ethylene, salt and ethylene, salicylic acid, and salt and salicylic acid treatments, verified by qRT-PCR, and analyzed the subcellular localization of MsBBX2, MsBBX17, and MsBBX32 using transient expression in tobacco. The results showed that BBX genes were localized in the nucleus. This study systematically analyzed the BBX gene family in Medicago plants, which provides a basis for the study of BBX gene family tolerance to abiotic stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efectos de los fármacos , Medicago/genética , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Estrés Fisiológico/genética
7.
Plant J ; 108(2): 441-458, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363255

RESUMEN

A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.


Asunto(s)
Aluminio/toxicidad , Medicago sativa/efectos de los fármacos , Oxalatos/metabolismo , Exudados de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aluminio/farmacocinética , Acuaporinas/genética , Acuaporinas/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago sativa/genética , Medicago sativa/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Nicotiana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Cell Rep ; 41(2): 493-495, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34994854

RESUMEN

KEYMESSAGE: We present the first report on base editing in alfalfa. Specifically, we showed edited alfalfa with tolerance to both sulfonylurea- and imidazolinone-type herbicides.


Asunto(s)
Edición Génica/métodos , Herbicidas/farmacología , Medicago sativa/efectos de los fármacos , Medicago sativa/genética , Resistencia a los Herbicidas/genética , Herbicidas/química , Plantas Modificadas Genéticamente , Compuestos de Sulfonilurea/farmacología
9.
Ecotoxicol Environ Saf ; 220: 112348, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015633

RESUMEN

The phytotoxicity of nanoparticles has attracted considerable interest, given the broad applications of nanomaterials in different fields. Alfalfa (Medicago sativa L.) is a major forage crop grown worldwide with a high protein content. The molecular regulation mechanisms involved in nanomaterial-treated alfalfa were examined in this research. In our lab, 18 cDNA libraries of Golden Empress (GE) and Bara 310SC (SC) under control (CK), middle (10 g kg-1)- and high (20 g kg-1)-graphene stress treatments were constructed in 2019. All clean reads were matched to the reference Medicago_truncatula genome, the mapping ratio was higher than 50%, and a total of 3946 differentially expressed genes (DEGs) were obtained. The number of DEGs that reflect transcriptional activity is proportional to the degree of stress. For example, 1241/610 and 1794/1422 DEGs were identified as significant in the leaves of GE/SC under mid- and high-graphene treatment, respectively. Furthermore, GO analysis of the DEGs annotated in some significant biochemical process terms included 'response to abiotic stimulus', 'oxidation-reduction process', 'protein kinase activity', and 'oxidoreductase activity'. KEGG pathway analysis of the DEGs revealed strongly mediated graphene-responsive genes in alfalfa mainly linked to the 'biosynthesis of amino acids', 'isoflavonoid biosynthesis', 'linoleic acid metabolism', and 'phenylpropanoid biosynthesis' pathways. In addition, hundreds of DEGs, including photosynthetic, antioxidant enzyme, nitrogen metabolism, and metabolic sucrose and starch genes, have been identified as potentially involved in the response to graphene. Physiological findings revealed that enzymes related to the metabolism of nitrogen play a crucial role in the adaptation of graphene stress to alfalfa. Ultimately, in response to graphene stress, a preliminary regulatory mechanism was proposed for the self-protective mechanism of alfalfa, which helps to explain the phytotoxicity of the molecular mechanism of nanoparticle-treated crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Grafito/toxicidad , Medicago sativa/efectos de los fármacos , Nanopartículas/toxicidad , Transcriptoma/efectos de los fármacos , Medicago sativa/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo
10.
Chem Biodivers ; 18(2): e2000897, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410569

RESUMEN

The chemical profile and phytotoxic action of Hibiscus trionum essential oil (EO) was studied. In total 17 compounds were identified via GC/MS, representing 94.18 % of the entire oil, with phytol (40.37 %) being the dominant constituent. Bioassay revealed that the EO inhibited root elongation of Medicago sativa and Amaranthus retroflexus by 32.66 % and 61.86 % at 5 mg/mL, respectively; meanwhile, the major component phytol also exhibited significant phytotoxic activity, suppressing radical elongation of Pennisetum alopecuroides, M. sativa and A. retroflexus by 26.08 %, 27.55 % and 43.96 % at 1 mg/mL, respectively. The fact that the EO showed weaker activity than phytol implied that some constituents might trigger antagonistic action to decrease the oil's activity. Our study is the first on the chemical profile and phytotoxic effect of H. trionum EO.


Asunto(s)
Hibiscus/química , Aceites Volátiles/química , Fitol/química , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Hibiscus/toxicidad , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Aceites Volátiles/toxicidad , Fitol/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Pruebas de Toxicidad
11.
Molecules ; 26(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802449

RESUMEN

Seven-day-old sprouts of fenugreek (Trigonella foenum-graecum L.), lentil (Lens culinaris L.), and alfalfa (Medicagosativa L.) were studied. The legume seeds and then sprouts were soaked each day for 30 min during 6 days with water (control) or mixture of Fe-EDTA and sodium silicate (Optysil), or sodium silicate (Na-Sil) alone. Germination and sprout growing was carried out at temperature 20 ± 2 °C in 16/8 h (day/night) conditions. Phenolic compounds (free, ester, and glycosides) content were determined by HPLC-ESI-MS/MS using a multiple reaction monitoring of selected ions. Flavonoids and phenolic acids were released from their esters after acid hydrolysis and from glycosides by alkaline hydrolysis. The presence and high content of (-)-epicatechin (EC) in fenugreek sprouts was demonstrated for the first time. Applied elicitors decreased the level of free EC in fenugreek and alfalfa sprouts but enhanced the content of its esters. Besides, elicitors decreased the content of quercetin glycosides in lentil and fenugreek sprouts but increased the content of quercetin and apigenin glycosides in alfalfa sprouts. The applied elicitors decreased the glycoside levels of most phenolic acids in lentil and p-hydroxybenzoic acid in fenugreek, while they increased the content of this acid in alfalfa. The mixture of iron chelate and sodium silicate had less effect on changes in flavonoid and phenolic acid content in legume sprouts than silicate alone. In general, the used elicitors increased the content of total phenolic compounds in fenugreek and alfalfa sprouts and decreased the content in lentil sprouts. Among the evaluated elicitors, Optysil seems to be worth recommending due to the presence of iron chelate, which can be used to enrich sprouts with this element.


Asunto(s)
Quelantes del Hierro/farmacología , Lens (Planta)/metabolismo , Medicago sativa/metabolismo , Fenoles/análisis , Semillas/metabolismo , Silicatos/farmacología , Trigonella/metabolismo , Flavonoides/análisis , Germinación , Lens (Planta)/efectos de los fármacos , Lens (Planta)/crecimiento & desarrollo , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Trigonella/efectos de los fármacos , Trigonella/crecimiento & desarrollo
12.
BMC Plant Biol ; 20(1): 433, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948141

RESUMEN

BACKGROUND: In acidic soils, aluminum (Al) competing with Zn results in Zn deficiency in plants. Zn is essential for auxin biosynthesis. Zn-mediated alleviation of Al toxicity has been rarely studied, the mechanism of Zn alleviation on Al-induced photoinhibition in photosystems remains unclear. The objective of this study was to investigate the effects of Zn and IAA on photosystems of Al-stressed alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or100 µM AlCl3 combined with 0 or 50 µM ZnCl2, and then foliar spray with water or 6 mg L- 1 IAA. RESULTS: Our results showed that Al stress significantly decreased plant growth rate, net photosynthetic rate (Pn), quantum yields and electron transfer rates of PSI and PSII. Exogenous application of Zn and IAA significantly alleviated the Al-induced negative effects on photosynthetic machinery, and an interaction of Zn and IAA played an important role in the alleviative effects. After removing apical buds of Al-stressed alfalfa seedlings, the values of pmf, gH+ and Y(II) under exogenous spraying IAA were significantly higher, and ΔpHpmf was significantly lower in Zn addition than Al treatment alone, but the changes did not occur under none spraying IAA. The interaction of Zn and IAA directly increased Y(I), Y(II), ETRI and ETRII, and decreased O2- content of Al-stressed seedlings. In addition, the transcriptome analysis showed that fourteen functionally noted genes classified into functional category of energy production and conversion were differentially expressed in leaves of alfalfa seedlings with and without apical buds. CONCLUSION: Our results suggest that the interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via increasing pmf and decreasing ΔpHpmf between lumen and stroma.


Asunto(s)
Aluminio/toxicidad , Ácidos Indolacéticos/metabolismo , Medicago sativa/metabolismo , Fotosíntesis/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Zinc/metabolismo , Clorofila/metabolismo , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/fisiología , Medicago sativa/efectos de los fármacos , Complejo de Proteína del Fotosistema I/efectos de los fármacos , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Complejo de Proteína del Fotosistema II/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Brotes de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Zinc/fisiología
13.
BMC Plant Biol ; 20(1): 267, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517649

RESUMEN

BACKGROUND: Soil and water pollution due to nitrate are becoming increasingly serious worldwide. The government also put forward relevant governance policies, and a large number of scholars studied chemical physics and other methods to remove nitrate in water, but the cost was substantial. Studies have found that planting systems including grasses have the potential to remove nitrates. However, there are few studies on nitrate linked pathway and nitrate assimilation during its early growth. RESULTS: We have evaluated three different feed-plant species with three levels of overnight seed nitrate treatments along with a control. The activity of different enzymes from 2 weeks old shoots was measured to get a comprehension of proline-associated pentose phosphate pathway coupled with nitrate assimilation and phenolic-linked antioxidant response system in these species under nitrate treatments. All three feed-plant species showed high nitrate tolerance during germination and early growth stages. It is perceived that the accumulation of total soluble phenolics and total antioxidant activity was high in all three feed-plant species under high nitrate treatments. In terms of high G6PDH activity along with low SDH activity in alfalfa, there may be a shift of carbon flux in this species under high nitrate treatments. Higher activity of these enzymes along with higher SOD and GPX activity was observed in alfalfa. The efficient mechanism of nitrate stress tolerance of alfalfa also correlated with higher photochemical efficiency. Perennial ryegrass also showed excellent potential under high nitrate treatments by adopting an efficient mechanism to counter nitrate-induced oxidative stress. CONCLUSIONS: Under the condition of nitrate treatment, the germination rates of the three feed-plant species are still ideal, and they have good enzyme activity and have the potential to remove nitrate.


Asunto(s)
Antioxidantes/farmacología , Festuca/metabolismo , Lolium/metabolismo , Medicago sativa/metabolismo , Nitratos/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Semillas/metabolismo , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Festuca/efectos de los fármacos , Germinación/efectos de los fármacos , Glucosafosfato Deshidrogenasa/metabolismo , Lolium/efectos de los fármacos , Medicago sativa/efectos de los fármacos , Nitrato-Reductasa/metabolismo , Nitratos/farmacología , Peroxidasa/metabolismo , Fenoles/farmacología , Fotosíntesis/efectos de los fármacos , Prolina/metabolismo , Prolina Oxidasa/metabolismo , Semillas/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Superóxido Dismutasa/metabolismo
14.
Planta ; 252(2): 22, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32676756

RESUMEN

MAIN CONCLUSION: In Medicago sativa nodulated roots, NR-dependent NO production is involved in maintaining energy state, presumably through phytoglobin NO respiration, under both salinity and hypoxia stress. The response to low and average salinity stress and to a 5 day-long flooding period was analyzed in M. sativa nodulated roots. The two treatments result in a decrease in the biological nitrogen fixation capacity and the energy state (evaluated by the ATP/ADP ratio), and conversely in an increase nitric oxide (NO) production. Under salinity and hypoxia treatments, the use of either sodium tungstate, an inhibitor of nitrate reductase (NR), or carboxy-PTIO, a NO scavenger, results in a decrease in NO production and ATP/ADP ratio, meaning that NR-dependent NO production participates to the maintenance of the nodulated roots energy state.


Asunto(s)
Metabolismo Energético , Medicago sativa/fisiología , Nitrato-Reductasa/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Fijación del Nitrógeno , Oxígeno/metabolismo , Medicago sativa/efectos de los fármacos , Medicago sativa/enzimología , Proteínas de Plantas/antagonistas & inhibidores , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/fisiología , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/fisiología , Salinidad , Compuestos de Tungsteno/farmacología , Agua/fisiología
16.
Ecotoxicol Environ Saf ; 191: 110206, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31954923

RESUMEN

Heat stress is found to be a detrimental factor for growth and development of alfalfa (Medicago sativa L.) which is tremendously invaluable forage due to its high feed value and yield potential. Salicylic acid (SA) has been reported to play a pivotal role in the regulation of plants biotic and abiotic stress response. However, the role of exogenous SA in protecting alfalfa from heat-induced damage has rarely been studied. In this study, four-week-old alfalfa seedlings were treated with 0.25 mM or 0.5 mM SA five days prior to high stress treatment (three day), and various growth and physiological traits were measured. The results showed that exogenous SA pretreatment could improve leaf morphology, plant height, biomass, chlorophyll content, and photosynthetic efficiency of alfalfa under heat stress. Meanwhile, SA could alleviate heat-induced membrane damage by reducing electrolyte leakage (EL) and malondialdehyde (MDA) content, and regulate the activities of antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). The results revealed that exogenous SA application enhanced alfalfa heat tolerance by modulating various morphological and physiological characteristics under heat stress, with more prominent effect at lower concentration (0.25 mM). Overall, this study provides fundamental insights into the SA-mediated physiological adaptation of alfalfa plants to heat stress, which could have useful implication in managing other plants which are suffering global warming.


Asunto(s)
Respuesta al Choque Térmico/efectos de los fármacos , Medicago sativa/efectos de los fármacos , Ácido Salicílico/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Peroxidasa/metabolismo , Fotosíntesis/efectos de los fármacos , Superóxido Dismutasa/metabolismo
17.
Ecotoxicol Environ Saf ; 190: 110176, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31927358

RESUMEN

Jasmonic acid (JA) is an important phytohormone, which among others may be involved in the regulation of plant accumulating heavy metal. This experiment was designed to explore the effects of exogenous JA on the responses of alfalfa to Cu stress (100 µM) in Hoagland solution. When 1, 5 or 10 mM JA was added to the treatment with Cu addition, Cu concentrations in roots and leaves of alfalfa were significantly decreased (p < 0.05) to some extents compared to the treatment without JA addition. The biomasses of roots and leaves of alfalfa in treatments of JA additions were significantly increased (p < 0.05) compared to the Cu stress treatment. Similarly, the concentrations of Chlorophyll, antioxidant enzyme activities, MDA and H2O2 were improved accordingly. But these factors of JA were not improved further when its concentration added in media was the highest (10 mM), indicating its improvement roles were limited. These results suggested that there were positive roles of exogenous JA on alfalfa decreased its Cu accumulation and toxicities might via reduced oxidative stress.


Asunto(s)
Cobre/toxicidad , Ciclopentanos/farmacología , Medicago sativa/efectos de los fármacos , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Medicago sativa/metabolismo , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
18.
Ecotoxicol Environ Saf ; 196: 110537, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32272346

RESUMEN

The objective of the study was to explore the influences of arbuscular mycorrhizae (AM), phosphorus (P) fertiliser, biochar application (BC) and their interactions on Medicago sativa growth, nutrient, Cd content and AM fungi-plant symbioses. Applications of both P fertiliser and BC significantly increased total biomass and P and potassium (K) uptake, regardless of AM. When no P fertiliser or BC was used, the shoot biomass and nitrogen (N), P, and K contents in the +AM treatments were 1.39, 1.54, 4.53 and 2.06 times higher than those in the -AM treatments, respectively. AM fungi only elevated the total P uptake by 44.03% when P fertiliser was applied at a rate of 30 mg P kg-1 in the absence of BC addition. With BC application or high-P fertiliser input (100 mg P kg-1), the soil available P was significantly higher than that in the other treatments, and AM fungi significantly reduced the shoot biomass. The minimum Cd concentration occurred in the shoots of alfalfas treated with BC and high-P fertiliser inputs; this concentration was lower than the maximum permitted concentration in China. Although the BC and high-P inputs could eliminate the positive mycorrhizal response, the results suggested that BC application in combination with high-P fertiliser input could not only increase forage yields but also lower Cd concentrations to meet the forage safety standards by the dilution effect.


Asunto(s)
Cadmio/metabolismo , Carbón Orgánico/farmacología , Medicago sativa/crecimiento & desarrollo , Micorrizas/fisiología , Fósforo/farmacología , Biomasa , Carbón Orgánico/análisis , Fertilizantes/análisis , Medicago sativa/efectos de los fármacos , Medicago sativa/metabolismo , Medicago sativa/microbiología , Nutrientes/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Contaminantes del Suelo/metabolismo , Simbiosis/efectos de los fármacos
19.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824876

RESUMEN

Albendazole (ABZ), a widely used anthelmintic drug, enters the environment mainly via livestock excrements. To evaluate the environmental impact of ABZ, the knowledge of its uptake, effects and metabolism in all non-target organisms, including plants, is essential. The present study was designed to identify the metabolic pathway of ABZ and to test potential ABZ phytotoxicity in fodder plant alfalfa, with seeds and in vitro regenerants used for these purposes. Alfalfa was chosen, as it may meet manure from ABZ-treated animals in pastures and fields. Alfalfa is often used as a feed of livestock, which might already be infected with helminths. The obtained results showed that ABZ did not inhibit alfalfa seed germination and germ growth, but evoked stress and a toxic effect in alfalfa regenerants. Alfalfa regenerants were able to uptake ABZ and transform it into 21 metabolites. UHPLC-MS/MS analysis revealed three new ABZ metabolites that have not been described yet. The discovery of the parent compound ABZ together with the anthelmintically active and instable metabolites in alfalfa leaves shows that the contact of fodder plants with ABZ-containing manure might represent not only a danger for herbivorous invertebrates, but also may cause the development of ABZ resistance in helminths.


Asunto(s)
Albendazol/farmacología , Antihelmínticos/farmacología , Medicago sativa/efectos de los fármacos , Metaboloma , Alimentación Animal , Germinación , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo
20.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019165

RESUMEN

Alfalfa is the most extensively cultivated forage legume worldwide, and salinity constitutes the main environmental scourge limiting its growth and productivity. To unravel the potential molecular mechanism involved in salt tolerance in alfalfa, we accomplished a combined analysis of parallel reaction monitoring-based proteomic technique and targeted metabolism. Based on proteomic analysis, salt stress induced 226 differentially abundant proteins (DAPs). Among them, 118 DAPs related to the antioxidant system, including glutathione metabolism and oxidation-reduction pathways, were significantly up-regulated. Data are available via ProteomeXchange with identifier PXD017166. Overall, 107 determined metabolites revealed that the tricarboxylic acid (TCA) cycle, especially the malate to oxaloacetate conversion step, was strongly stimulated by salt stress. This leads to an up-regulation by about 5 times the ratio of NADPH/NADP+, as well as about 3 to 5 times in the antioxidant enzymes activities, including those of catalase and peroxidase and proline contents. However, the expression levels of DAPs related to the Calvin-Benson-Bassham (CBB) cycle and photorespiration pathway were dramatically inhibited following salt treatment. Consistently, metabolic analysis showed that the metabolite amounts related to carbon assimilation and photorespiration decreased by about 40% after exposure to 200 mM NaCl for 14 d, leading ultimately to a reduction in net photosynthesis by around 30%. Our findings highlighted also the importance of the supplied extra reducing power, thanks to the TCA cycle, in the well-functioning of glutathione to remove and scavenge the reactive oxygen species (ROS) and mitigate subsequently the oxidative deleterious effect of salt on carbon metabolism including the CBB cycle.


Asunto(s)
Antioxidantes/farmacología , Medicago sativa/efectos de los fármacos , Metaboloma/efectos de los fármacos , Fotosíntesis , Proteínas de Plantas/metabolismo , Proteoma/análisis , Estrés Salino , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA