Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 512-518, 2024 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-38864138

RESUMEN

OBJECTIVE: To investigate the characteristics of the CD8+ T cells infiltration from the 4 subtypes in medulloblastoma (MB), to analyze the relationship between CD8+ T cells infiltration and prognosis, to study the function of C-X-C motif chemokine ligand 11 (CXCL11) and its receptor in CD8+ T cells infiltration into tumors and to explore the potential mechanism, and to provide the necessary clinicopathological basis for exploring the immunotherapy of MB. METHODS: In the study, 48 clinical MB samples (12 cases in each of 4 subtypes) were selected from the multiple medical center from 2012 to 2019. The transcriptomics analysis for the tumor of 48 clinical samples was conducted on the NanoString PanCancer IO360TM Panel (NanoString Technologies). Immunohistochemistry (IHC) staining of formalin-fixed, paraffin-embedded sections from MB was carried out using CD8 primary antibody to analyze diffe-rential quantities of CD8+ T cells in the MB four subtypes. Through bioinformatics analysis, the relationship between CD8+T cells infiltration and prognosis of the patients and the expression differences of various chemokines in the different subtypes of MB were investigated. The expression of CXCR3 receptor on the surface of CD8+T cells in MB was verified by double immunofluorescence staining, and the underlying molecular mechanism of CD8+T cells infiltration into the tumor was explored. RESULTS: The characteristic index of CD8+T cells in the WNT subtype of MB was relatively high, suggesting that the number of CD8+T cells in the WNT subtype was significantly higher than that in the other three subtypes, which was confirmed by CD8 immunohistochemical staining and Gene Expression Omnibus (GEO) database analysis by using R2 online data analysis platform. And the increase of CD8+T cells infiltration was positively correlated with the patient survival. The expression level of CXCL11 in the WNT subtype MB was significantly higher than that of the other three subtypes. Immunofluorescence staining showed the presence of CXCL11 receptor, CXCR3, on the surface of CD8+T cells, suggesting that the CD8+T cells might be attracted to the MB microenvironment by CXCL11 through CXCR3. CONCLUSION: The CD8+T cells infiltrate more in the WNT subtype MB than other subtypes. The mechanism may be related to the activation of CXCL11-CXCR3 chemokine system, and the patients with more infiltration of CD8+T cells in tumor have better prognosis. This finding may provide the necessary clinicopathological basis for the regulatory mechanism of CD8+T cells infiltration in MB, and give a new potential therapeutic target for the future immunotherapy of MB.


Asunto(s)
Linfocitos T CD8-positivos , Quimiocina CXCL11 , Meduloblastoma , Receptores CXCR3 , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Meduloblastoma/inmunología , Meduloblastoma/patología , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/genética , Pronóstico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/metabolismo , Masculino , Femenino
2.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585856

RESUMEN

Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Heterocromatina/genética , Inflamación/patología , Meduloblastoma/patología , ARN Mensajero/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Meduloblastoma/genética , Meduloblastoma/inmunología , Meduloblastoma/metabolismo , ARN Mensajero/genética , Células Tumorales Cultivadas , Proteína 1 de Unión a la Caja Y/genética
3.
J Transl Med ; 17(1): 321, 2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547819

RESUMEN

BACKGROUND: Medulloblastoma (MB), the most common pediatric brain cancer, presents with a poor prognosis in a subset of patients with high risk disease, or at recurrence, where current therapies are ineffective. Cord blood (CB) natural killer (NK) cells may be promising off-the-shelf effector cells for immunotherapy due to their recognition of malignant cells without the need for a known target, ready availability from multiple banks, and their potential to expand exponentially. However, they are currently limited by immune suppressive cytokines secreted in the MB tumor microenvironment including Transforming Growth Factor ß (TGF-ß). Here, we address this challenge in in vitro models of MB. METHODS: CB-derived NK cells were modified to express a dominant negative TGF-ß receptor II (DNRII) using retroviral transduction. The ability of transduced CB cells to maintain function in the presence of medulloblastoma-conditioned media was then assessed. RESULTS: We observed that the cytotoxic ability of nontransduced CB-NK cells was reduced in the presence of TGF-ß-rich, medulloblastoma-conditioned media (21.21 ± 1.19% killing at E:T 5:1 in the absence vs. 14.98 ± 2.11% in the presence of medulloblastoma-conditioned media, n = 8, p = 0.02), but was unaffected in CB-derived DNRII-transduced NK cells (21.11 ± 1.84% killing at E:T 5:1 in the absence vs. 21.81 ± 3.37 in the presence of medulloblastoma-conditioned media, n = 8, p = 0.85. We also observed decreased expression of CCR2 in untransduced NK cells (mean CCR2 MFI 826 ± 117 in untransduced NK + MB supernatant from mean CCR2 MFI 1639.29 ± 215 in no MB supernatant, n = 7, p = 0.0156), but not in the transduced cells. Finally, we observed that CB-derived DNRII-transduced NK cells may protect surrounding immune cells by providing a cytokine sink for TGF-ß (decreased TGF-ß levels of 610 ± 265 pg/mL in CB-derived DNRII-transduced NK cells vs. 1817 ± 342 pg/mL in untransduced cells; p = 0.008). CONCLUSIONS: CB NK cells expressing a TGF-ß DNRII may have a functional advantage over unmodified NK cells in the presence of TGF-ß-rich MB, warranting further investigation on its potential applications for patients with medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/inmunología , Células Asesinas Naturales/inmunología , Meduloblastoma/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Sangre Fetal/citología , Humanos , Células Asesinas Naturales/trasplante , Pruebas de Neutralización , Receptores CCR2/metabolismo , Trasplante Homólogo
4.
Cytotherapy ; 21(9): 973-986, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31351799

RESUMEN

BACKGROUND: Medulloblastoma is the most common malignant brain tumor in childhood and adolescence. Although some patients present with distinct genetic alterations, such as mutated TP53 or MYC amplification, pediatric medulloblastoma is a tumor entity with minimal mutational load and low immunogenicity. METHODS: We identified tumor-specific mutations using next-generation sequencing of medulloblastoma DNA and RNA derived from primary tumor samples from pediatric patients. Tumor-specific mutations were confirmed using deep sequencing and in silico analyses predicted high binding affinity of the neoantigen-derived peptides to the patients' human leukocyte antigen molecules. Tumor-specific peptides were synthesized and used to induce a de novo T-cell response characterized by interferon gamma and tumor necrosis factor alpha release of CD8+ cytotoxic T cells in vitro. RESULTS: Despite low mutational tumor burden, at least two immunogenic tumor-specific peptides were identified in each patient. T cells showed a balanced CD4/CD8 ratio and mostly effector memory phenotype. Induction of a CD8-specific T-cell response was achieved for the neoepitopes derived from Histidine Ammonia-Lyase (HAL), Neuraminidase 2 (NEU2), Proprotein Convertase Subtilisin (PCSK9), Programmed Cell Death 10 (PDCD10), Supervillin (SVIL) and tRNA Splicing Endonuclease Subunit 54 (TSEN54) variants. CONCLUSION: Detection of patient-specific, tumor-derived neoantigens confirms that even in tumors with low mutational load a molecular design of targets for specific T-cell immunotherapy is possible. The identified neoantigens may guide future approaches of adoptive T-cell transfer, transgenic T-cell receptor transfer or tumor vaccination.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoterapia , Meduloblastoma/genética , Meduloblastoma/terapia , Mutación/genética , Linfocitos T/inmunología , Adolescente , Secuencia de Aminoácidos , Niño , Epítopos/inmunología , Femenino , Humanos , Lactante , Masculino , Meduloblastoma/inmunología , Péptidos/química
5.
J Neurooncol ; 142(3): 395-407, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30788681

RESUMEN

PURPOSE: Medulloblastoma (MB) is the most common malignant brain tumor in children. Recent studies have shown the ability of natural killer (NK) cells to lyse MB cell lines in vitro, but in vivo successes remain elusive and the efficacy and fate of NK cells in vivo remain unknown. METHODS: To address these questions, we injected MB cells into the cerebellum of immunodeficient mice and examined tumor growth at various days after tumor establishment via bioluminescence imaging. NK cells were labeled with a fluorine-19 (19F) MRI probe and subsequently injected either intratumorally or contralaterally to the tumor in the cerebellum and effect on tumor growth was monitored. RESULTS: The 19F probe efficiently labeled the NK cells and exhibited little cytotoxicity. Fluorine-19 MRI confirmed the successful and accurate delivery of the labeled NK cells to the cerebellum of the mice. Administration of 19F-labeled NK cells suppressed MB growth, with the same efficacy as unlabeled cells. Immunohistochemistry confirmed the presence of NK cells within the tumor, which was associated with induction of apoptosis in tumor cells. NK cell migration to the tumor from a distal location as well as activation of apoptosis was also demonstrated by immunohstochemistry. CONCLUSIONS: Our results show that NK cells present a novel opportunity for new strategies in MB treatment. Further, 19F-labeled NK cells can suppress MB growth while enabling 19F MRI to provide imaging feedback that can facilitate study and optimization of therapeutic paradigms.


Asunto(s)
Neoplasias Cerebelosas/prevención & control , Monitoreo de Drogas/métodos , Radioisótopos de Flúor/uso terapéutico , Células Asesinas Naturales/trasplante , Imagen por Resonancia Magnética/métodos , Meduloblastoma/prevención & control , Animales , Apoptosis , Proliferación Celular , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Humanos , Meduloblastoma/inmunología , Meduloblastoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
BMC Cancer ; 18(1): 535, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739450

RESUMEN

BACKGROUND: Recent progress in molecular analysis has advanced the understanding of medulloblastoma (MB) and is anticipated to facilitate management of the disease. MB is composed of 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Macrophages play a crucial role in the tumor microenvironment; however, the functional role of their activated phenotype (M1/M2) remains controversial. Herein, we investigate the correlation between tumor-associated macrophage (TAM) recruitment within the MB subgroups and prognosis. METHODS: Molecular subgrouping was performed by a nanoString-based RNA assay on retrieved snap-frozen tissue samples. Immunohistochemistry (IHC) and immunofluorescence (IF) assays were performed on subgroup identified samples, and the number of polarized macrophages was quantified from IHC. Survival analyses were conducted on collected clinical data and quantified macrophage data. RESULTS: TAM (M1/M2) recruitment in SHH MB was significantly higher compared to that in other subgroups. A Kaplan-Meier survival curve and multivariate Cox regression demonstrated that high M1 expressers showed worse overall survival (OS) and progression-free survival (PFS) than low M1 expressers in SHH MB, with relative risk (RR) values of 11.918 and 6.022, respectively. CONCLUSION: M1 rather than M2 correlates more strongly with worse outcome in SHH medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/inmunología , Proteínas Hedgehog/metabolismo , Macrófagos/inmunología , Meduloblastoma/inmunología , Microambiente Tumoral/inmunología , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Pronóstico , Supervivencia sin Progresión , Análisis de Supervivencia , Proteínas Wnt/metabolismo
7.
J Neurooncol ; 136(3): 541-544, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29143922

RESUMEN

The presence of tumor-induced systemic immune suppression, including lymphopenia, has been recognized in adult patients with glioblastoma for several decades, and pre-treatment neutrophil-to-lymphocyte count ratio (NLCR) is associated with inferior clinical outcome in patients with glioblastoma. Whether tumor-induced systemic immune suppression is also present in children with malignant brain tumors is not known. We performed a retrospective analysis of pretreatment neutrophil and lymphocyte counts in pediatric patients with medulloblastoma (MB) compared to a control group of children with posterior fossa pilocytic astrocytoma (PA). Compared to the control group, we observed statistically significantly lower absolute lymphocyte counts (ALCs) and higher NLCRs in the medulloblastoma group. Our findings suggest the presence of tumor-induced systemic immune suppression in MB patients already present at the time of diagnosis, with potential implications for the development of immune therapies in this population.


Asunto(s)
Neoplasias Cerebelosas/sangre , Neoplasias Cerebelosas/inmunología , Tolerancia Inmunológica , Linfopenia/inmunología , Meduloblastoma/sangre , Meduloblastoma/inmunología , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Recuento de Linfocitos , Masculino , Estudios Retrospectivos
8.
Cancer Immunol Immunother ; 66(12): 1589-1595, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28825123

RESUMEN

BACKGROUND: We evaluated circulating levels of immunosuppressive regulatory T cells (Tregs) and other lymphocyte subsets in patients with newly diagnosed medulloblastoma (MBL) undergoing surgery compared to a control cohort of patients undergo craniectomy for correction of Chiari malformation (CM) and further determined the impact of standard irradiation and chemotherapy on this cell population. METHODS: Eligibility criteria for this biologic study included age 4-21 years, patients with CM undergoing craniectomy (as non-malignant surgical controls) and receiving dexamethasone for prevention of post-operative nausea, and those with newly diagnosed posterior fossa tumors (PFT) undergoing surgical resection and receiving dexamethasone as an anti-edema measure. Patients with confirmed MBL were also followed for longitudinal blood collection and analysis during radiotherapy and chemotherapy. RESULTS: A total of 54 subjects were enrolled on the study [22-CM, 18-MBL, and 14-PFT]. Absolute number and percentage Tregs (defined as CD4+CD25+FoxP3+CD127low/-) at baseline were decreased in MBL and PFT compared to CM [p = 0.0016 and 0.001, respectively). Patients with MBL and PFT had significantly reduced overall CD4+ T cell count (p = 0.0014 and 0.0054, respectively) compared to those with CM. Radiation and chemotherapy treatment in patients with MBL reduced overall lymphocyte counts; however, within the CD4+ T cell compartment, Tregs increased during treatment but gradually declined post therapy. CONCLUSIONS: Our results demonstrate that patients with MBL and PFT exhibit overall reduced CD4+ T cell counts at diagnosis but not an elevated proportion of Tregs. Standard treatment exacerbates lymphopenia in those with MBL while enriching for immunosuppressive Tregs over time.


Asunto(s)
Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/terapia , Meduloblastoma/inmunología , Meduloblastoma/terapia , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Neoplasias Cerebelosas/sangre , Quimioradioterapia , Niño , Preescolar , Craneotomía , Femenino , Humanos , Masculino , Meduloblastoma/sangre , Adulto Joven
9.
Pharm Res ; 32(3): 1072-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25236341

RESUMEN

PURPOSE: Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to animal testing according to replacement-reduction-refinement principles. In this work, in vitro BBB-medulloblastoma 3-D-co-culture models were established using immortalized human primary brain endothelial cells (hCMEC/D3). METHODS: hCMEC/D3 cells were cultured in presence and in absence of two human medulloblastoma cell lines on Transwell membranes. In vitro models were characterized for BBB formation, zonula occludens-1 expression and permeability to dextran. Transferrin receptors (Tfr) expressed on hCMEC/D3 were exploited to facilitate arsonoliposome (ARL) permeability through the BBB to the tumor by covalently attaching an antibody specific to human Tfr. The effect of anticancer ARLs on hCMEC/D3 was assessed. RESULTS: In vitro BBB and BBB-tumor co-culture models were established successfully. BBB permeability was affected by the presence of tumor aggregates as suggested by increased permeability of ARLs. There was a 6-fold and 8-fold increase in anti-Tfr-ARL uptake into VC312R and BBB-DAOY co-culture models, respectively, compared to plain ARLs. CONCLUSION: The three-dimensional models might be appropriate models to study the transport of various drugs and nanocarriers (liposomes and immunoarsonoliposomes) through the healthy and diseased BBB. The immunoarsonoliposomes can be potentially used as anticancer agents due to good tolerance of the in vitro BBB model to their toxic effect.


Asunto(s)
Anticuerpos/metabolismo , Antineoplásicos/metabolismo , Arsenicales/metabolismo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Neoplasias Cerebelosas/metabolismo , Células Endoteliales/metabolismo , Inmunoconjugados/metabolismo , Meduloblastoma/metabolismo , Polietilenglicoles/química , Anticuerpos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Arsenicales/química , Arsenicales/farmacología , Transporte Biológico , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/inmunología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Química Farmacéutica , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Liposomas , Meduloblastoma/inmunología , Meduloblastoma/patología , Receptores de Transferrina/inmunología , Receptores de Transferrina/metabolismo , Tecnología Farmacéutica/métodos
10.
J Immunol ; 191(9): 4880-8, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24078694

RESUMEN

Despite increasing evidence that antitumor immune control exists in the pediatric brain, these findings have yet to be exploited successfully in the clinic. A barrier to development of immunotherapeutic strategies in pediatric brain tumors is that the immunophenotype of these tumors' microenvironment has not been defined. To address this, the current study used multicolor FACS of disaggregated tumor to systematically characterize the frequency and phenotype of infiltrating immune cells in the most common pediatric brain tumor types. The initial study cohort consisted of 7 pilocytic astrocytoma (PA), 19 ependymoma (EPN), 5 glioblastoma (GBM), 6 medulloblastoma (MED), and 5 nontumor brain (NT) control samples obtained from epilepsy surgery. Immune cell types analyzed included both myeloid and T cell lineages and respective markers of activated or suppressed functional phenotypes. Immune parameters that distinguished each of the tumor types were identified. PA and EPN demonstrated significantly higher infiltrating myeloid and lymphoid cells compared with GBM, MED, or NT. Additionally, PA and EPN conveyed a comparatively activated/classically activated myeloid cell-skewed functional phenotype denoted in particular by HLA-DR and CD64 expression. In contrast, GBM and MED contained progressively fewer infiltrating leukocytes and more muted functional phenotypes similar to that of NT. These findings were recapitulated using whole tumor expression of corresponding immune marker genes in a large gene expression microarray cohort of pediatric brain tumors. The results of this cross-tumor comparative analysis demonstrate that different pediatric brain tumor types exhibit distinct immunophenotypes, implying that specific immunotherapeutic approaches may be most effective for each tumor type.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/inmunología , Inmunofenotipificación , Células Mieloides/inmunología , Linfocitos T/inmunología , Adolescente , Astrocitoma/inmunología , Encéfalo/inmunología , Neoplasias Encefálicas/genética , Niño , Estudios de Cohortes , Ependimoma/inmunología , Epilepsia/inmunología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/inmunología , Antígenos HLA-DR/metabolismo , Humanos , Meduloblastoma/inmunología , Receptores de IgG/metabolismo , Microambiente Tumoral
11.
Biochem Biophys Res Commun ; 450(1): 555-60, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24928387

RESUMEN

Leptomeningeal metastasis is a cause of morbidity and mortality in medulloblastoma, but the understanding of molecular mechanisms driving this process is nascent. In this study, we examined the secretory chemokine profile of medulloblastoma cells (DAOY) and a meningothelial cell line (BMEN1). Conditioned media (CM) of meningothelial cells increased adhesion, spreading and migration of medulloblastoma. VEGFA was identified at elevated levels in the CM from BMEN1 cells (as compared to DAOY CM); however, recombinant VEGFA alone was insufficient to enhance medulloblastoma cell migration. In addition, bevacizumab, the VEGFA scavenging monoclonal antibody, did not block the migratory phenotype induced by the CM. These results reveal that paracrine factors secreted by meningothelial cells can influence migration and adherence of medulloblastoma tumor cells, but VEGFA may not be a specific target for therapeutic intervention in this context.


Asunto(s)
Quimiocinas/inmunología , Quimiocinas/metabolismo , Meduloblastoma/inmunología , Meninges/inmunología , Meninges/metabolismo , Meninges/patología , Factor A de Crecimiento Endotelial Vascular/inmunología , Comunicación Celular/inmunología , Línea Celular Tumoral , Movimiento Celular/inmunología , Humanos , Meduloblastoma/patología
12.
Clin Cancer Res ; 30(11): 2545-2557, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551501

RESUMEN

PURPOSE: Medulloblastoma (MB), the most common childhood malignant brain tumor, has a poor prognosis in about 30% of patients. The current standard of care, which includes surgery, radiation, and chemotherapy, is often responsible for cognitive, neurologic, and endocrine side effects. We investigated whether chimeric antigen receptor (CAR) T cells directed toward the disialoganglioside GD2 can represent a potentially more effective treatment with reduced long-term side effects. EXPERIMENTAL DESIGN: GD2 expression was evaluated on primary tumor biopsies of MB children by flow cytometry. GD2 expression in MB cells was also evaluated in response to an EZH2 inhibitor (tazemetostat). In in vitro and in vivo models, GD2+ MB cells were targeted by a CAR-GD2.CD28.4-1BBζ (CAR.GD2)-T construct, including the suicide gene inducible caspase-9. RESULTS: GD2 was expressed in 82.68% of MB tumors. The SHH and G3-G4 subtypes expressed the highest levels of GD2, whereas the WNT subtype expressed the lowest. In in vitro coculture assays, CAR.GD2 T cells were able to kill GD2+ MB cells. Pretreatment with tazemetostat upregulated GD2 expression, sensitizing GD2dimMB cells to CAR.GD2 T cells cytotoxic activity. In orthotopic mouse models of MB, intravenously injected CAR.GD2 T cells significantly controlled tumor growth, prolonging the overall survival of treated mice. Moreover, the dimerizing drug AP1903 was able to cross the murine blood-brain barrier and to eliminate both blood-circulating and tumor-infiltrating CAR.GD2 T cells. CONCLUSIONS: Our experimental data indicate the potential efficacy of CAR.GD2 T-cell therapy. A phase I/II clinical trial is ongoing in our center (NCT05298995) to evaluate the safety and therapeutic efficacy of CAR.GD2 therapy in high-risk MB patients.


Asunto(s)
Gangliósidos , Inmunoterapia Adoptiva , Meduloblastoma , Receptores Quiméricos de Antígenos , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Meduloblastoma/terapia , Meduloblastoma/inmunología , Meduloblastoma/patología , Meduloblastoma/genética , Meduloblastoma/metabolismo , Animales , Ratones , Gangliósidos/metabolismo , Gangliósidos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Línea Celular Tumoral , Niño , Femenino , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias Cerebelosas/terapia , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Morfolinas/farmacología , Masculino , Preescolar , Benzamidas , Compuestos de Bifenilo , Piridonas
13.
Int J Cancer ; 132(10): 2339-48, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23115013

RESUMEN

Our study demonstrates the glioma tumor antigen podoplanin to be present at very high levels (>90%) in both glioblastoma (D2159MG, D08-0308MG and D08-0493MG) and medulloblastoma (D283MED, D425MED and DAOY) xenografts and cell line. We constructed a novel recombinant single-chain antibody variable region fragment (scFv), NZ-1, specific for podoplanin from the NZ-1 hybridoma. NZ-1-scFv was then fused to Pseudomonas exotoxin A, carrying a C-terminal KDEL peptide (NZ-1-PE38KDEL). The immunotoxin (IT) was further stabilized by a disulfide (ds) bond between the heavy-chain and light-chain variable regions as the construct NZ-1-(scdsFv)-PE38KDEL. NZ-1-(scdsFv)-PE38KDEL exhibited significant reactivity to glioblastoma and medulloblastoma cells. The affinity of NZ-1-(scdsFv), NZ-1-(scdsFv)-PE38KDEL and NZ-1 antibody for podoplanin peptide was 2.1 × 10(-8) M, 8.0 × 10(-8) M and 3.9 × 10(-10) M, respectively. In a protein stability assay, NZ-1-(scdsFv)-PE38KDEL retained 33-98% of its activity, whereas that of NZ-1-PE38KDEL declined to 13% of its initial levels after incubation at 37°C for 3 days. In vitro cytotoxicity of the NZ-1-(scdsFv)-PE38KDEL was measured in cells isolated from glioblastoma xenografts, D2159MG, D08-0308MG and D08-0493MG, and in the medulloblastoma D283MED, D425MED and DOAY xenografts and cell line. The NZ-1-(scdsFv)-PE38KDEL IT was highly cytotoxic, with an 50% inhibitory concentration in the range of 1.6-29 ng/ml. Significantly, NZ-1-(scdsFv)-PE38KDEL demonstrated tumor growth delay, averaging 24 days (p < 0.001) and 21 days (p < 0.001) in D2159MG and D283MED in vivo tumor models, respectively. Crucially, in the D425MED intracranial tumor model, NZ-1-(scdsFv)-PE38KDEL caused a 41% increase in survival (p ≤ 0.001). In preclinical studies, NZ-1-(scdsFv)-PE38KDEL exhibited significant potential as a targeting agent for malignant brain tumors.


Asunto(s)
ADP Ribosa Transferasas/inmunología , Toxinas Bacterianas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Exotoxinas/inmunología , Glioblastoma/tratamiento farmacológico , Glioblastoma/inmunología , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/inmunología , Glicoproteínas de Membrana/inmunología , Anticuerpos de Cadena Única/inmunología , Factores de Virulencia/inmunología , ADP Ribosa Transferasas/uso terapéutico , Toxinas Bacterianas/uso terapéutico , Línea Celular Tumoral , Exotoxinas/uso terapéutico , Femenino , Humanos , Masculino , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Factores de Virulencia/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Exotoxina A de Pseudomonas aeruginosa
14.
Clin Immunol ; 149(1): 55-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23891738

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor of childhood. Current therapies are toxic and not always curative that necessitates development of targeted immunotherapy. However, little is known about immunobiology of this tumor. In this study, we show that MB cells in 9 of 20 primary tumors express CD1d, an antigen-presenting molecule for Natural Killer T cells (NKTs). Quantitative RT-PCR analysis of 61 primary tumors revealed an elevated level of CD1d mRNA expression in a molecular subgroup characterized by an overactivation of Sonic Hedgehog (SHH) oncogene compared with Group 4. CD1d-positive MB cells cross-presented glycolipid antigens to activate NKT-cell cytotoxicity. Intracranial injection of NKTs resulted in regression of orthotopic MB xenografts in NOD/SCID mice. Importantly, the numbers and function of peripheral blood type-I NKTs were preserved in MB patients. Therefore, CD1d is expressed on tumor cells in a subset of MB patients and represents a novel target for immunotherapy.


Asunto(s)
Antígenos CD1d/inmunología , Inmunoterapia , Meduloblastoma/terapia , Células T Asesinas Naturales/inmunología , Adolescente , Animales , Antígenos CD1d/genética , Línea Celular Tumoral , Niño , Preescolar , Humanos , Masculino , Meduloblastoma/inmunología , Ratones , Ratones SCID , ARN Mensajero/metabolismo
15.
Front Immunol ; 13: 911260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967388

RESUMEN

Medulloblastoma, a common pediatric malignant tumor, has been recognized to have four molecular subgroups [wingless (WNT), sonic hedgehog (SHH), group 3, group 4], which are defined by the characteristic gene transcriptomic and DNA methylomic profiles, and has distinct clinical features within each subgroup. The tumor immune microenvironment is integral in tumor initiation and progression and might be associated with therapeutic responses. However, to date, the immune infiltrative landscape of medulloblastoma has not yet been elucidated. Thus, we proposed MethylCIBERSORT to estimate the degree of immune cell infiltration and weighted correlation network analysis (WGCNA) to find modules of highly correlated genes. Synthesizing the hub genes in the protein-protein interaction (PPI) network and modules of the co-expression network, we identify three candidate biomarkers [GRB2-associated-binding protein 1 (GAB1), Abelson 1 (ABL1), and CXC motif chemokine receptor type 4 (CXCR4)] via the molecular profiles of medulloblastoma. Given this, we investigated the correlation between these three immune hub genes and immune checkpoint blockade response and the potential of drug prediction further. In addition, this study demonstrated a higher presence of endothelial cells and infiltrating immune cells in Group 3 tumor bulk. The above results will be conducive to better comprehending the immune-related pathogenesis and treatment of medulloblastoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias Cerebelosas , Meduloblastoma , Proteínas Proto-Oncogénicas c-abl , Receptores CXCR4 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Niño , Células Endoteliales/inmunología , Proteínas Hedgehog/inmunología , Humanos , Meduloblastoma/genética , Meduloblastoma/inmunología , Meduloblastoma/patología , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/inmunología , Receptores CXCR4/genética , Receptores CXCR4/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
16.
Cancer Immunol Immunother ; 60(5): 693-703, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21327638

RESUMEN

Medulloblastoma, a primitive neuro-ectodermal tumor that arises in the posterior fossa, is the most common malignant brain tumor occurring in childhood. Even though 60-70% of children with medulloblastoma will be cured with intensive multimodal therapy, including surgery, radiotherapy, and chemotherapy, a significant proportion of surviving patients may suffer from long-term treatment-related sequelae. Therapeutic success is limited especially in younger children by radiotherapy-induced neurocognitive longterm deficits. In order to avoid or delay craniospinal radiotherapy, high-dose chemotherapy followed by autologous stem cell transplantation (HSCT) has become an established treatment modality. Data on the host immunologic environment in medulloblastoma patients are rare, notably data on cytokine expression and immune reconstitution in patients with medulloblastoma undergoing HSCT are lacking. In this present study, we therefore decided to prospectively assess immune function following 24 consecutive autologous HSCT in 17 children with medulloblastoma treated according to the German-Austrian-Swiss HIT-2000-protocol. TH1 predominance was found to be the most important factor for probability of survival. Already before HSCT, survivors showed higher IFNγ levels in sera as well as higher numbers of IFNγ-positive T-cells. After transplantation, this effect was even more pronounced. Patients with higher numbers of IFNγ- and TNFα-positive T-cells had a more favorable outcome at all analyzed time points. In addition, patients in complete remission (CR) before transplantation, known to have a better prognosis a priori, showed higher expression of IFNγ in T-cells. Taken together, this is the first report to demonstrate that high expression of IFNγ and TNFα in T-cells of medulloblastoma patients in the early post-transplant period correlates with a better prognosis. Our data point toward a potentially important influence of TH1-cytokine expression before and after transplantation on the survival of pediatric medulloblastoma patients.


Asunto(s)
Neoplasias Encefálicas/inmunología , Meduloblastoma/inmunología , Linfocitos T/inmunología , Células TH1/inmunología , Adolescente , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/terapia , Niño , Preescolar , Terapia Combinada , Femenino , Humanos , Lactante , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/terapia , Pronóstico , Trasplante de Células Madre , Tasa de Supervivencia , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
17.
J Neurooncol ; 103(2): 197-206, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20811766

RESUMEN

Although known for the important function in the immune system, MHC class I molecules are increasingly ascribed an alternative role in modifying signal transduction. In medulloblastoma, HLA class I molecules are associated with poor prognosis, and can induce ERK1/2 activation upon engagement with ligands that bind to incompletely assembled complexes (so called open conformers). We here demonstrate that ERK1/2 activation in medulloblastoma can occur in the absence of endogenously synthesized ß2m, formally excluding involvement of closed HLA class conformation. In addition, several experimental observations suggest that heterogeneity of HLA class I expression may be a reflection of the status of original cells before transformation, rather than a consequence of immune-based selection of HLA-loss mutants. These results contribute to our understanding of an immune system-independent role of HLA class I in the pathology of medulloblastoma, and cancer in general.


Asunto(s)
Neoplasias Cerebelosas/inmunología , Cerebelo/crecimiento & desarrollo , Antígenos de Histocompatibilidad Clase I/inmunología , Meduloblastoma/inmunología , Transducción de Señal/fisiología , Western Blotting , Separación Celular , Neoplasias Cerebelosas/metabolismo , Cerebelo/metabolismo , Preescolar , Feto , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/biosíntesis , Humanos , Inmunohistoquímica , Lactante , Meduloblastoma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
J Immunol ; 182(5): 3310-7, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19234230

RESUMEN

Germ cell tumors are a heterogeneous group of neoplasms derived from residual primordial tissue. These tumors are commonly found in the brain, testes, or ovaries, where they are termed germinomas, seminomas, or dysgerminomas, respectively. Like several other tumor types, germ cell tumors often harbor an immune cell infiltrate that can include substantial numbers of B cells. Yet little is known about whether the humoral immune response affects germ cell tumor biology. To gain a deeper understanding of the role B cells play in this tumor family, we characterized the immune cell infiltrate of all three germ cell tumor subtypes and defined the molecular characteristics of the B cell Ag receptor expressed by tumor-associated B cells. Immunohistochemistry revealed a prominent B cell infiltrate in the microenvironment of all tumors examined and clear evidence of extranodal lymphoid follicles with germinal center-like architecture in a subset of specimens. Molecular characterization of the Ig variable region from 320 sequences expressed by germ cell tumor-infiltrating B cells revealed clear evidence of Ag experience, in that the cardinal features of an Ag-driven B cell response were present: significant somatic mutation, isotype switching, and codon insertion/deletion. This characterization also revealed the presence of both B cell clonal expansion and variation, suggesting that local B cell maturation most likely occurs within the tumor microenvironment. In contrast, sequences from control tissues and peripheral blood displayed none of these characteristics. Collectively, these data strongly suggest that an adaptive and specific humoral immune response is occurring within the tumor microenvironment.


Asunto(s)
Anticuerpos Antineoplásicos/biosíntesis , Antígenos de Neoplasias/inmunología , Neoplasias de Células Germinales y Embrionarias/inmunología , Neoplasias de Células Germinales y Embrionarias/metabolismo , Anticuerpos Antineoplásicos/genética , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Subgrupos de Linfocitos B/patología , Movimiento Celular/inmunología , Células Clonales , Disgerminoma/inmunología , Disgerminoma/metabolismo , Disgerminoma/patología , Germinoma/inmunología , Germinoma/metabolismo , Germinoma/patología , Humanos , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/biosíntesis , Región Variable de Inmunoglobulina/genética , Meduloblastoma/inmunología , Meduloblastoma/metabolismo , Meduloblastoma/patología , Datos de Secuencia Molecular , Neoplasias de Células Germinales y Embrionarias/patología , Seminoma/inmunología , Seminoma/metabolismo , Seminoma/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología
19.
Biosci Rep ; 41(1)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33345275

RESUMEN

Medulloblastoma (MB) is one of the most common central nervous system tumors in children. At present, the vital role of immune abnormalities has been proved in tumorigenesis and progression. However, the immune mechanism in MB is still poorly understood. In the present study, 51 differentially expressed immune-related genes (DE-IRGs) and 226 survival associated immune-related genes (Sur-IRGs) were screened by an integrated analysis of multi-array. Moreover, the potential pathways were enriched by functional analysis, such as 'cytokine-cytokine receptor interaction', 'Ras signaling pathway', 'PI3K-Akt signaling pathway' and 'pathways in cancer'. Furthermore, 10 core IRGs were identified from DE-IRGs and Sur-IRGs. And the potential regulatory mechanisms of core IRGs were also explored. Additionally, a new prognostic model, including 7 genes (HDGF, CSK, PNOC, S100A13, RORB, FPR1, and ICAM2) based on IRGs, was established by multivariable COX analysis. In summary, our study revealed the underlying immune mechanism of MB. Moreover, we developed a prognostic model associated with clinical characteristics and could reflect the infiltration of immune cells.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/inmunología , Meduloblastoma/genética , Meduloblastoma/inmunología , Modelos Biológicos , Neoplasias Cerebelosas/patología , Redes Reguladoras de Genes , Humanos , Meduloblastoma/patología , Pronóstico , Factores de Transcripción/genética
20.
Int J Radiat Oncol Biol Phys ; 111(2): 479-490, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974888

RESUMEN

PURPOSE: Radiation therapy (RT) modulates immune cells and cytokines, resulting in both clinically beneficial and detrimental effects. The changes in peripheral blood T lymphocyte subsets and cytokines during RT for pediatric brain tumors and the association of these changes with therapeutic outcomes have not been well described. METHODS AND MATERIALS: The study population consisted of children (n = 83, aged 3~18) with primary brain tumors (medulloblastoma, glioma, germ cell tumors (GCT), and central nervous system embryonal tumor-not otherwise specified), with or without residual or disseminated (R/D) diseases who were starting standard postoperative focal or craniospinal irradiation (CSI). Peripheral blood T lymphocyte subsets collected before and 4 weeks after RT were enumerated by flow cytometry. Plasma levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A were measured by cytometric bead array. RESULTS: Patients with R/D lesions receiving CSI (n = 32) had a post-RT increase in the frequency of CD3+T and CD8+T cells, a decrease in CD4+T cells, and an increase in regulatory T cells (Tregs) and CD8+CD28- suppressor cells, which was more predominantly seen in these patients than in other groups. In the CSI group with such R/D lesions, consisting of patients with medulloblastoma and germ cell tumors, 19 experienced a complete response (CR) and 13 experienced a partial response (PR) on imaging at 4 weeks after RT. The post/pre-RT ratio of Tregs (P = .0493), IL-6 (P = .0111), and IL-10 (P = .0070) was lower in the CR group than in the PR group. Multivariate analysis revealed that the post/pre-RT ratios of Treg, IL-6, and IL-10 were independent predictors of CR (P < .0001, P = .018, P < .0001, respectively). The areas under the receiver operating curves and confidence intervals were 0.7652 (0.5831-0.8964), 0.7794 (0.5980-0.9067), and 0.7085 (0.5223-0.8552) for IL-6, IL-10, and Treg, respectively. The sensitivities of IL-6, IL-10, and Treg to predict radiotherapeutic responses were 100%, 92.3%, and 61.5%, and specificity was 52.6%, 57.9%, and 84.2%, respectively. CONCLUSIONS: CSI treatment to those with R/D lesions predominantly exerted an effect on antitumor immune response compared with both R/D lesion-free but exposed to focal or CSI RT and with R/D lesions and exposed to focal RT. Such CSI with R/D lesions group experiencing CR is more likely to have a decrease in immunoinhibitory molecules and cells than patients who only achieve PR. Measuring peripheral blood Treg, IL-6, and IL-10 levels could be valuable for predicting radiotherapeutic responses of pediatric brain tumors with R/D lesions to CSI for medulloblastoma and intracranial germ cell tumors.


Asunto(s)
Neoplasias Cerebelosas/radioterapia , Irradiación Craneoespinal , Interleucina-10/sangre , Interleucina-6/sangre , Meduloblastoma/radioterapia , Neoplasias de Células Germinales y Embrionarias/radioterapia , Linfocitos T Reguladores/inmunología , Adolescente , Neoplasias Cerebelosas/inmunología , Niño , Preescolar , Femenino , Humanos , Modelos Logísticos , Masculino , Meduloblastoma/inmunología , Meduloblastoma/patología , Neoplasias de Células Germinales y Embrionarias/inmunología , Neoplasias de Células Germinales y Embrionarias/patología , Subgrupos de Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA