Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791121

RESUMEN

Melanoma, arguably the deadliest form of skin cancer, is responsible for the majority of skin-cancer-related fatalities. Innovative strategies concentrate on new therapies that avoid the undesirable effects of pharmacological or medical treatment. This article discusses the chemical structures of [(MTZ)2AgNO3], [(MTZ)2Ag]2SO4, [Ag(MCZ)2NO3], [Ag(MCZ)2BF4], [Ag(MCZ)2SbF6] and [Ag(MCZ)2ClO4] (MTZ-metronidazole; MCZ-miconazole) silver(I) compounds and the possible relationship between the molecules and their cytostatic activity against melanoma cells. Molecular Hirshfeld surface analysis and computational methods were used to examine the possible association between the structure and anticancer activity of the silver(I) complexes and compare the cytotoxicity of the silver(I) complexes of metronidazole and miconazole with that of silver(I) nitrate, cisplatin, metronidazole and miconazole complexes against A375 and BJ cells. Additionally, these preliminary biological studies found the greatest IC50 values against the A375 line were demonstrated by [Ag(MCZ)2NO3] and [(MTZ)2AgNO3]. The compound [(MTZ)2AgNO3] was three-fold more toxic to the A375 cells than the reference (cisplatin) and 15 times more cytotoxic against the A375 cells than the normal BJ cells. Complexes of metronidazole with Ag(I) are considered biocompatible at a concentration below 50 µmol/L.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Melanoma , Metronidazol , Miconazol , Plata , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Miconazol/farmacología , Miconazol/química , Plata/química , Antineoplásicos/farmacología , Antineoplásicos/química , Metronidazol/química , Metronidazol/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Supervivencia Celular/efectos de los fármacos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología
2.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731651

RESUMEN

The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.


Asunto(s)
Espectrometría de Masas , Miconazol , Microsomas Hepáticos , Miconazol/química , Miconazol/metabolismo , Humanos , Cromatografía Líquida de Alta Presión/métodos , Microsomas Hepáticos/metabolismo , Espectrometría de Masas/métodos , Técnicas Electroquímicas/métodos , Antifúngicos/química , Antifúngicos/metabolismo , Biotransformación
3.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164432

RESUMEN

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Asunto(s)
Antifúngicos , Candidiasis Bucal , Liberación de Fármacos , Miconazol , Impresión Tridimensional , Miconazol/administración & dosificación , Miconazol/química , Miconazol/farmacocinética , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/farmacocinética , Administración Bucal , Candidiasis Bucal/tratamiento farmacológico , Humanos , Zeína/química , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Povidona/química , Permeabilidad , Sistemas de Liberación de Medicamentos/métodos , Animales , Química Farmacéutica/métodos , Niño
4.
Pak J Pharm Sci ; 37(1): 95-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741405

RESUMEN

Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze-thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in-vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.


Asunto(s)
Dimetilsulfóxido , Liberación de Fármacos , Geles , Miconazol , Permeabilidad , Miconazol/administración & dosificación , Miconazol/química , Miconazol/farmacocinética , Dimetilsulfóxido/química , Viscosidad , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Absorción Cutánea/efectos de los fármacos , Química Farmacéutica , Composición de Medicamentos , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/farmacocinética , Administración Cutánea
5.
Microb Pathog ; 184: 106312, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652266

RESUMEN

People with immune deficiency are at risk of developing infections caused by several bacterial and fungal species. In this work, chitosan-coated miconazole was developed by a simple sol-gel method. Miconazole is considered an effective drug to treat vaginal infection-causing bacteria and fungi. The coating of chitosan with miconazole nitrate showed the highest drug loading efficiency (62.43%) and mean particle size (2 µm). FTIR spectroscopic analysis confirmed the entrapment of miconazole nitrate into chitosan polymer. The antifungal result demonstrated that MN@CS microgel possessed notable anti-Aspergillus fumigatus and Candida albicans activity in lower doses. Antibacterial activity results revealed excellent bacterial growth inhibition of MN@CS microgel towards human skin infectious pathogens Escherichia coli and Staphylococcus aureus. The biocompatibility studies of In vitro cell viability and Artemia salina lethality assay suggested that MN@CS microgel is more biosafe and suitable for human external applications. In the future, it will be an efficient anti-inflammatory agent for the treatment of vaginal infections.


Asunto(s)
Candidiasis Vulvovaginal , Quitosano , Microgeles , Femenino , Humanos , Miconazol/farmacología , Miconazol/química , Miconazol/uso terapéutico , Candidiasis Vulvovaginal/tratamiento farmacológico , Quitosano/química , Microgeles/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Candida albicans , Complicaciones Posoperatorias
6.
J Clin Lab Anal ; 35(12): e24085, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34773716

RESUMEN

BACKGROUND: Metabolic abnormalities in patients with gastric adenocarcinoma lead to drug resistance and poor prognosis. Therefore, this study aimed to explore biomarkers that can predict the prognostic risk of gastric adenocarcinoma by analyzing drug metabolism-related genes. METHODS: The RNA-seq and clinical information on gastric adenocarcinoma were downloaded from the UCSC and gene expression omnibus databases. Univariate and least absolute shrinkage and selection operator regression analyses were used to identify the prognostic gene signature of gastric adenocarcinoma. The relationships between gastric adenocarcinoma prognostic risk and tumor microenvironment were assessed using CIBERSORT, EPIC, QUANTISEQ, MCPCounter, xCell, and TIMER algorithms. The potential drugs that could target the gene signatures were predicted in WebGestalt, and molecular docking analysis verified their binding stabilities. RESULTS: Combined with clinical information, an eight-gene signature, including GPX3, ABCA1, NNMT, NOS3, SLCO4A1, ADH4, DHRS7, and TAP1, was identified from the drug metabolism-related gene set. Based on their expressions, risk scores were calculated, and patients were divided into high- and low-risk groups, which had significant differences in survival status and immune infiltrations. Risk group was also identified as an independent prognostic factor of gastric adenocarcinoma, and the established prognostic and nomogram models exhibited excellent capacities for predicting prognosis. Finally, miconazole and niacin were predicted as potential therapeutic drugs for gastric adenocarcinoma that bond stably with NOS3 and NNMT through hydrogen interactions. CONCLUSIONS: This study proposed a drug metabolism-related eight-gene signature as a potential biomarker to predict the gastric adenocarcinoma prognosis risks.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Inactivación Metabólica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Adenocarcinoma/tratamiento farmacológico , Adulto , Anciano , Biomarcadores de Tumor/genética , Gliburida/química , Gliburida/metabolismo , Gliburida/farmacocinética , Humanos , Miconazol/química , Miconazol/farmacocinética , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Nomogramas , Pronóstico , Mapas de Interacción de Proteínas/genética , Proteínas/química , Proteínas/genética , Reproducibilidad de los Resultados , Factores de Riesgo , Neoplasias Gástricas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
7.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546211

RESUMEN

In a previous article, we reported on the higher toxicity of silver(I) complexes of miconazole [Ag(MCZ)2NO3 (1)] and [Ag(MCZ)2ClO4 (2)] in HepG2 tumor cells compared to the corresponding salts of silver, miconazole and cisplatin. Here, we present the synthesis of two silver(I) complexes of miconazole containing two new counter ions in the form of Ag(MCZ)2X (MCZ = 1-[2-(2,4-dichlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl]-1H-imidazole]; X = BF4- (3), SbF6- (4)). The novel silver(I) complexes were characterized by elemental analysis, 1H NMR, 13C NMR and infrared (IR) spectroscopy, electrospray ionization (ESI)-MS spectrometry and X-ray-crystallography. In the present study, the antimicrobial activity of all obtained silver(I) complexes of miconazole against six strains of Gram-positive bacteria, five strains of Gram-negative bacteria and yeasts was evaluated. The results were compared with those of a silver sulfadiazine drug, the corresponding silver salts and the free ligand. Silver(I) complexes exhibited significant activity against Gram-positive bacteria, which was much better than that of silver sulfadiazine and silver salts. The highest antimicrobial activity was observed for the complex containing the nitrate counter ion. All Ag(I) complexes of miconazole resulted in much better inhibition of yeast growth than silver sulfadiazine, silver salts and miconazole. Moreover, the synthesized silver(I) complexes showed good or moderate activity against Gram-negative bacteria compared to the free ligand.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Complejos de Coordinación/síntesis química , Miconazol/química , Plata/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Levaduras/efectos de los fármacos
8.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769486

RESUMEN

We previously reported that conjugates of antimicrobial peptide fragment analogues and poly (lactic-co-glycolic) acid (PLGA) enhance antimicrobial activity and that the conjugated micelle structure is an effective tool for antimicrobial drug delivery. In recent years, the delivery of antimicrobial peptides to targets for antimicrobial activity has attracted attention. In this study, we targeted Candida albicans, a causative organism of catheter-related bloodstream infections, which is refractory to antimicrobial agents and is currently a problem in medical practice. We evaluated the antifungal activity of CKR12 (a mutant fragment of the human cathelicidin peptide, LL-37)-PLGA-miconazole (MCZ) micelles using nanotechnology with MCZ delivery. The prepared CKR12-PLGA-MCZ micelles were characterised by measuring dynamic light scattering, zeta potential, dilution stability, and drug release. CKR12-PLGA-MCZ micelles showed higher antifungal activity than CKR12-PLGA micelles and MCZ solution. Furthermore, scanning and transmission electron microscopy suggested that CKR12-PLGA-MCZ micelles disrupted both cell wall and cell membrane of C. albicans. Our results revealed a synergistic effect of antifungal activity using a combination of antimicrobial peptide fragment analogues and MCZ, and that MCZ is a promising tool for the delivery to target microorganisms.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Miconazol/farmacología , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Candidiasis/metabolismo , Candidiasis/microbiología , Micelas , Miconazol/química , Catelicidinas
9.
AAPS PharmSciTech ; 21(7): 278, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033939

RESUMEN

People with weakened immune systems are at risk of developing candidiasis which is a fungal infection caused by several species of Candida genus. In this work, polymeric nanoparticles containing miconazole nitrate and the anesthetic lidocaine clorhydrate were developed. Miconazole was chosen as a typical drug to treat buccopharyngeal candidiasis whereas lidocaine may be useful in the management of the pain burning, and pruritus caused by the infection. Nanoparticles were synthesized using chitosan and gelatin at different ratios ranging from 10:90 to 90:10. The nano-systems presented nanometric size (between 80 and 300 nm in water; with polydispersion index ranging from 0.120 to 0.596), and positive Z potential (between 20.11 and 37.12 mV). The determined encapsulation efficiency ranges from 65 to 99% or 34 to 91% for miconazole nitrate and lidocaine clorhydrate, respectively. X-ray diffraction and DSC analysis suggested that both drugs were in amorphous state in the nanoparticles. Finally, the systems fitted best the Korsmeyer-Peppas model showing that the release from the nanoparticles was through diffusion allowing a sustained release of both drugs and prolonged the activity of miconazole nitrate over time against Candida albicans for at least 24 h.


Asunto(s)
Candida albicans/aislamiento & purificación , Candidiasis/tratamiento farmacológico , Lidocaína/administración & dosificación , Miconazol/administración & dosificación , Nanopartículas/química , Polímeros/química , Antifúngicos/administración & dosificación , Antifúngicos/química , Rastreo Diferencial de Calorimetría , Quitosano , Humanos , Lidocaína/química , Miconazol/química , Nanopartículas/administración & dosificación , Difracción de Rayos X
10.
Pak J Pharm Sci ; 33(1(Special)): 449-457, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32173643

RESUMEN

Topical candidiasis is a known skin fungal infection which is usually treated by conventional dosage forms such as cream, gel, emulgel which are having numerous adverse effects on skin. To overcome such disadvantages, different novel drug delivery systems have been considered. Polymer based nano-particulate systems have shown good skin penetration after topical application. Therefore, in the present study the main focus was on the pathology, pathogenesis, and consequently topical treatment of candidiasis. Nanogel containing miconazole have been prepared from the natural polymers i.e. gelatin and chitosan. The nanogel of miconazole (100 mg) nitrate was formulated by modified emulsification-diffusion technique and characterized for different parameters. From all the seven nanogel formulations named as F1 to F7, F1 (Gelatin and Chitosan in the percentage of 82.85 and 17.15 respectively) have been selected as model formulations. The reason behind that was as per ICH stability guideline, the formulations F1 was found optimum and stable. Miconazole nanogel formulations F1 also showed the maximum release i.e. 78 % approximately. XRD showed the formulated nanogel was in crystalline shape. In summary, the miconazole nanogel drug delivery systems have two main advantages i.e. they are topical preparation as well as nano sized. It can be postulated that nanogel may be a best approach to treat the fungal skin diseases.


Asunto(s)
Antifúngicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Miconazol/administración & dosificación , Animales , Composición de Medicamentos , Estabilidad de Medicamentos , Femenino , Ratones , Miconazol/química , Nanogeles , Polímeros/química , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
11.
Med Mycol ; 57(1): 52-62, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361177

RESUMEN

Vulvovaginal candidiasis (VVC) is caused mainly by the opportunistic fungus Candida albicans, and its yeast to hyphae transition is considered a major virulence factor. Farnesol is a molecule that inhibits yeast to hyphae transition. The increased incidence of VVC has influenced a need for developing new therapeutic strategies. The objective was to develop a mucoadhesive nanostructured system composed of miconazole and farnesol co-encapsulated within chitosan nanoparticles. The miconazole presented a minimal inhibitory concentration (MIC) of 1 µg/ml against C. albicans. The farnesol was capable of inhibiting yeast to hyphae transition at levels greater or equal to 300 µM. The combination of miconazole and farnesol showed no change in miconazole MIC. Chitosan nanoparticles containing miconazole and farnesol were prepared by ionic gelation and showed favorable characteristics for use on mucous membranes. They showed size variation and polydispersion index (PDI) after 30 days, but the efficiency of drug encapsulation was maintained. Regarding toxicity in cultured fibroblasts (BALB/c 3T3) the nanoparticles were considered nontoxic. The nanoparticles showed antifungal activity against the C. albicans strain used with MICs of 2.5 µg/ml and 2 µg/ml for nanoparticles containing miconazole or miconazole/farnesol, respectively. Nanoparticles containing farnesol inhibited yeast to hyphae transition at concentrations greater than or equal to 240 µM. The in vivo antifungal activity was assessed in the murine model for VVC. The results suggested that chitosan nanoparticles containing miconazole and farnesol were effective at inhibiting fungal proliferation. Additionally, chitosan nanoparticles containing farnesol were capable of decreasing the pathogenicity of infection, demonstrated through the absence of inflammation.


Asunto(s)
Candida albicans/efectos de los fármacos , Candidiasis Vulvovaginal/tratamiento farmacológico , Farnesol , Miconazol , Nanopartículas/química , Animales , Antifúngicos/síntesis química , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Células 3T3 BALB , Candida albicans/crecimiento & desarrollo , Candidiasis Vulvovaginal/patología , Cápsulas , Quitosano/química , Modelos Animales de Enfermedad , Farnesol/química , Farnesol/farmacología , Farnesol/uso terapéutico , Femenino , Ratones , Ratones Endogámicos BALB C , Miconazol/química , Miconazol/farmacología , Miconazol/uso terapéutico , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nanopartículas/uso terapéutico
12.
Chem Pharm Bull (Tokyo) ; 67(2): 106-111, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713269

RESUMEN

The purpose of this study was to prepare poly(lactide-co-glycolide) (PLGA) microspheres (MS) loaded with itraconazole (ITCZ) or miconazole (MCZ) under different evaporation temperatures (25 or 40°C) using an oil-in-water emulsion solvent evaporation method in order to evaluate the initial burst release of drug. Loading efficiencies were comparatively good and the diameters of prepared drug-loaded PLGA MS were around 20 µm in all formulations. The release rates of ITCZ-PLGA MS prepared at 40°C showed a significantly restricted release profile compared with the corresponding ITCZ-PLGA MS prepared at 25°C. This difference in release rate of ITCZ was thought to be caused by the self-healing effect of PLGA, as the glass transition temperature of PLGA is around 40°C. With respect to the MCZ-PLGA MS, the initial burst release was similar in formulations prepared at both 25 and 40°C. Scanning electron microscope results suggested that the initial burst release was due to the localization of MCZ on the surface of MCZ-PLGA MS at higher concentrations. Differential scanning calorimetry measurements suggested complete amorphization of MCZ in MCZ-PLGA MS, whereas crystalline ITCZ was detected in the ITCZ-PLGA MS. This complete amorphization of MCZ is considered to be one of the reasons for the initial burst release.


Asunto(s)
Portadores de Fármacos/química , Itraconazol , Miconazol , Microesferas , Poliglactina 910 , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Itraconazol/química , Miconazol/química
13.
Mol Pharm ; 15(1): 40-52, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29202237

RESUMEN

Approximately 50% of solid oral dosage forms utilize salt forms of the active pharmaceutical ingredient (API). A major challenge with the salt form is its tendency to disproportionate to produce the un-ionized API form, decreasing the solubility and negatively impacting product stability. However, many of the factors dictating the tendency of a given salt to undergo disproportionation remain to be elucidated. In particular, the role of the solid-state properties of the salt on the disproportionation reaction is unknown. Herein, various solid forms of a model salt, miconazole mesylate (MM), were evaluated for their tendency to undergo disproportionation when mixed with basic excipients, namely tribasic sodium phosphate dodecahydrate (TSPd) and croscarmellose sodium (CCS), and exposed to moderate relative humidity storage conditions. It was observed that the rate and extent of salt disproportionation were significantly different for the various solid forms of MM. As expected, the amorphous salt was highly susceptible to disproportionation, while the dihydrate salt form was resistant to conversion under the conditions tested. In addition, binary excipient blends of amorphous and anhydrous forms exhibited a reduced extent of disproportionation at a higher relative humidity storage condition. This was due to the competitive kinetics between disproportionation to the free base and conversion to the dihydrate salt form. The results of this study provide important insights into the impact of solid-state form on susceptibility to disproportionation that can be utilized for rationally designing robust pharmaceutical formulations.


Asunto(s)
Excipientes/química , Mesilatos/química , Miconazol/química , Carboximetilcelulosa de Sodio/química , Composición de Medicamentos , Estabilidad de Medicamentos , Solubilidad
14.
Bioorg Med Chem ; 26(8): 1665-1674, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475581

RESUMEN

In our endeavor towards the development of potent multi-target ligands for the treatment of Alzheimer's disease, miconazole was identified to show BuChE-IDO1 dual-target inhibitory effects. Morris water maze test indicated that miconazole obviously ameliorated the cognitive function impaired by scopolamine. Furthermore, it showed good safety in primary hepatotoxicity evaluation. Based on these results, we designed, synthesized, and evaluated a series of miconazole derivatives as BuChE-IDO1 dual-target inhibitors. Out of the 12 compounds, 5i and 5j exhibited the best potency in enzymatic evaluation, thus were selected for subsequent behavioral study, in which the two compounds exerted much improved effect than tacrine. Meanwhile, 5i and 5j displayed no apparent hepatotoxicity. The results suggest that miconazole analogue offers an attractive starting point for further development of new BuChE-IDO1 dual-target inhibitors against Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Miconazol/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Relación Dosis-Respuesta a Droga , Electrophorus , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Caballos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ligandos , Miconazol/síntesis química , Miconazol/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
15.
Molecules ; 23(7)2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976876

RESUMEN

This study aims to develop new antifungal dermal films based on their mechanical properties (elongation, adhesion, behaviour towards vapour moisture) and the in vitro availability of miconazole nitrate, used as a pharmaceutical active ingredient in various concentrations. The three polymeric films prepared were translucent or shiny, with the surface of 63.585 cm², 0.20⁻0.30 mm thickness, and content of miconazole nitrate of 3.931 or 15.726 mg·cm². The mechanical resistance and elongation tests demonstrated that the two films based on hydroxyethyl cellulose (HEC) polymer were more elastic than the one prepared with hydroxypropyl methylcellulose (HPMC). The vapour water absorption and vapour water loss capacity of the films revealed that the HPMC film did not dry very well in the process of preparation by the evaporation of the solvent technique, unlike the HEC films that jellified more evenly in water and had higher drying capacity at 40 °C. The in vitro availability of miconazole nitrate from dermal films was evaluated using the Franz diffusion cell method, through a synthetic membrane (Ø 25 mm × 0.45 µm) and acceptor media with pH 7.4 (phosphate buffer and sodium lauryl sulphate 0.045%), resulting a release rate of up to 70%.


Asunto(s)
Antifúngicos/farmacocinética , Celulosa/análogos & derivados , Derivados de la Hipromelosa/química , Miconazol/farmacocinética , Administración Cutánea , Antifúngicos/química , Disponibilidad Biológica , Fenómenos Biomecánicos , Celulosa/química , Química Farmacéutica , Elasticidad , Miconazol/química
16.
AAPS PharmSciTech ; 19(8): 3712-3722, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30238304

RESUMEN

Oropharyngeal candidiasis is a recurrent oral infection caused by Candida species. Gel formulation containing miconazole nitrate is the most common approach for treating oral candidiasis. However, traditional oral topical antifungal therapies have many limitations, including short contact time with the oral mucosa and the necessity to administrate various doses per day. Thus, the aim of this work was to formulate composited microparticulated systems based on combinations of mucoadhesive cationic, anionic, and nonionic polymers that could protect and modify the drug release rate and therefore avoid a fast dilution of the drug by saliva. Microparticulated systems were prepared by the spray drying method employing chitosan, gelatin, and hydroxypropyl methylcellulose. The morphology of the systems was investigated by scanning electron microscopy; drug crystallinity was studied by X-ray, while interactions between polymers were analyzed by infrared spectroscopy. Drug release and halo zone test were employed to analyze the release and activity of the systems loaded with miconazole against Candida albicans cultures. The most appropriate microparticulated system was the one based on chitosan and gelatin which showed homogeneous morphology (mean size of 1.7 ± 0.5 µm), a protective effect of the drug, and better antifungal effect against Candida culture than miconazole nitrate and the other assayed systems. Taking into account these results, this approach should be seriously considered for further evaluation of its safety and in vivo efficacy to be considered as an alternative therapeutic system for the treatment of oral candidiasis.


Asunto(s)
Antifúngicos/química , Miconazol/química , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Quitosano/química , Composición de Medicamentos , Miconazol/farmacología , Polímeros/química
17.
Anal Bioanal Chem ; 409(27): 6315-6323, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28852798

RESUMEN

Miconazole has one chiral center, and consists of two enantiomers. In this study, a novel chiral liquid chromatography-tandem mass spectrometry method was developed for enantioselective separation and determination of miconazole in rat plasma. For the first time, the enantioselective pharmacokinetics of miconazole was investigated by the current method. Firstly, attempts were made to separate the enantiomers in reversed-phase mode with a mobile phase that was mass spectrometry compatible. Baseline separation was achieved on a Chiralpak IC column with a mobile phase composed of acetonitrile and aqueous ammonium hydrogen carbonate (5 mM; 80:20, v/v). Data were acquired in multiple reaction monitoring mode with positive electrospray ionization by triple-quadrupole mass spectrometry. Then, overall method validation regarding the linearity, accuracy, precision, extraction recovery, matrix effect, and stability of each enantiomer was performed, and acceptable results were obtained for all of these. Finally, the method developed was applied in an enantioselective pharmacokinetic study of miconazole enantiomers in rats after oral administration of racemic miconazole at doses of 5 and 10 mg/kg. The results demonstrated that (-)-(R)-miconazole had a higher concentration than (+)-(S)-miconazole in plasma, with a ratio of 1.3-1.7 for both doses. This is the first experimental evidence of enantioselective behavior of miconazole in vivo, and provides a reference for clinical practice and encourages further research into miconazole enantioselective metabolism and drug interactions. Graphical Abstract A stereoselective pharmacokinetic study of the miconazole enantiomers was investigated using a novel chiral liquid chromatography-tandem mass spectrometry method. Baseline separation was achieved on Chiralpak IC column, and Chiralcel OJ column was used to collect single enantiomer. A significant difference between the two enantiomers was observed in view of the plasma concentration.


Asunto(s)
Antifúngicos/sangre , Cromatografía Líquida de Alta Presión/métodos , Miconazol/sangre , Espectrometría de Masas en Tándem/métodos , Administración Oral , Animales , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Miconazol/administración & dosificación , Miconazol/química , Miconazol/aislamiento & purificación , Ratas , Ratas Wistar , Estereoisomerismo
18.
J Microencapsul ; 34(6): 592-609, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28877639

RESUMEN

OBJECTIVE: To develop and evaluate solidified-reverse-micellar-solution (SRMS)-based oromucosal nano lipid gels for improved localised delivery of miconazole nitrate (MN). METHODS: Phospholipon® 90G and Softisan® 154 (3:7) were used to prepare SRMS by fusion. Solid lipid nanoparticles (SLNs, 0.25-1.0% w/w MN) formulated with the SRMS by high shear homogenisation were employed to prepare mucoadhesive nano lipid gels. Physicochemical characterisation, drug release in simulated salivary fluid (SSF) (pH 6.8) and anti-candidal activity were carried out. RESULTS: The SLNs were spherical nanoparticles, had mean size of 133.8 ± 6.4 to 393.2 ± 14.5 nm, low polydispersity indices, good encapsulation efficiency (EE) (51.96 ± 2.33-67.12 ± 1.65%) and drug loading (DL) (19.05 ± 2.44-24.93 ± 1.98%). The nano lipid gels were stable, spreadable, pseudoplastic viscoelastic mucoadhesive systems that exhibited better prolonged release and anti-candidal properties than marketed formulation (Daktarin® oral gel) (p < 0.05). CONCLUSION: This study has shown that SRMS-based nano lipid gels could be employed to prolong localised oromucosal delivery of MN.


Asunto(s)
Antifúngicos/administración & dosificación , Candidiasis Bucal/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Miconazol/administración & dosificación , Nanopartículas/administración & dosificación , Química Farmacéutica , Estabilidad de Medicamentos , Geles , Micelas , Miconazol/química , Tamaño de la Partícula
19.
AAPS PharmSciTech ; 18(4): 936-946, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28108973

RESUMEN

In this work, chitosan films were prepared by a casting/solvent evaporation methodology using pectin or hydroxypropylmethyl cellulose to form polymeric matrices. Miconazole nitrate, as a model drug, was loaded into such formulations. These polymeric films were characterized in terms of mechanical properties, adhesiveness, and swelling as well as drug release. Besides, the morphology of raw materials and films was investigated by scanning electron microscopy; interactions between polymers were analyzed by infrared spectroscopy and drug crystallinity studied by differential scanning calorimetry and X-ray diffraction. In addition, antifungal activity against cultures of the five most important fungal opportunistic pathogens belonging to Candida genus was investigated. Chitosan:hydroxypropylmethyl cellulose films were found to be the most appropriate formulations in terms of folding endurance, mechanical properties, and adhesiveness. Also, an improvement in the dissolution rate of miconazole nitrate from the films up to 90% compared to the non-loaded drug was observed. The in vitro antifungal activity showed a significant activity of the model drug when it is loaded into chitosan films. These findings suggest that chitosan-based films are a promising approach to deliver miconazole nitrate for the treatment of candidiasis.


Asunto(s)
Candidiasis Bucal/tratamiento farmacológico , Quitosano , Sistemas de Liberación de Medicamentos , Derivados de la Hipromelosa/farmacología , Miconazol , Adhesividad , Administración Bucal , Antidiarreicos/química , Antidiarreicos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Quitosano/química , Quitosano/farmacología , Composición de Medicamentos , Humanos , Miconazol/química , Miconazol/farmacología , Microscopía Electrónica de Rastreo/métodos , Pectinas/química , Pectinas/farmacología , Polímeros/farmacología , Difracción de Rayos X/métodos
20.
J Sep Sci ; 39(9): 1766-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26935589

RESUMEN

A novel single-isomer cyclodextrin derivative, heptakis {2,6-di-O-[3-(1,3-dicarboxyl propylamino)-2-hydroxypropyl]}-ß-cyclodextrin (glutamic acid-ß-cyclodextrin) was synthesized and used as a chiral selector in capillary electrophoresis for the enantioseparation of 12 basic drugs, including terbutaline, clorprenaline, tulobuterol, clenbuterol, procaterol, carvedilol, econazole, miconazole, homatropine methyl bromide, brompheniramine, chlorpheniramine and pheniramine. The primary factors affecting separation efficiency, which include the background electrolyte pH, the concentration of glutamic acid-ß-cyclodextrin and phosphate buffer concentration, were investigated. Satisfactory enantioseparations were obtained using an uncoated fused-silica capillary of 50 cm (effective length 40 cm) × 50 µm id with 120 mM phosphate buffer (pH 2.5-4.0) containing 0.5-4.5 mM glutamic acid-ß-cyclodextrin as background electrolyte. A voltage of 20 kV was applied and the capillary temperature was kept at 20°C. The results proved that glutamic acid-ß-cyclodextrin was an effective chiral selector for studied 12 basic drugs. Moreover, the possible chiral recognition mechanism of brompheniramine, chlorpheniramine and pheniramine on glutamic acid-ß-cyclodextrin was investigated using the semi-empirical Parametric Method 3.


Asunto(s)
Ciclodextrinas/química , Bromofeniramina/química , Bromofeniramina/aislamiento & purificación , Carbazoles/química , Carbazoles/aislamiento & purificación , Carvedilol , Clorfeniramina/química , Clorfeniramina/aislamiento & purificación , Clenbuterol/química , Clenbuterol/aislamiento & purificación , Ciclodextrinas/síntesis química , Econazol/química , Econazol/aislamiento & purificación , Electroforesis Capilar , Isoproterenol/análogos & derivados , Isoproterenol/química , Isoproterenol/aislamiento & purificación , Miconazol/química , Miconazol/aislamiento & purificación , Estructura Molecular , Feniramina/química , Feniramina/aislamiento & purificación , Procaterol/química , Procaterol/aislamiento & purificación , Propanolaminas/química , Propanolaminas/aislamiento & purificación , Estereoisomerismo , Terbutalina/análogos & derivados , Terbutalina/química , Terbutalina/aislamiento & purificación , Tropanos/química , Tropanos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA