Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Annu Rev Cell Dev Biol ; 37: 285-310, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34314591

RESUMEN

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division.


Asunto(s)
Citoesqueleto , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Movimiento Celular/genética , Citoesqueleto/metabolismo , Miosina Tipo II/química , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Transducción de Señal
2.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
3.
Nature ; 588(7838): 515-520, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268888

RESUMEN

Myosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, 'shutdown' state with the filament-forming tail folded onto the two heads1, which prevents filament formation and inactivates the motors2. The mechanism by which this happens is unclear. Here we report a cryo-electron microscopy structure of shutdown smooth muscle myosin with a resolution of 6 Å in the head region. A pseudo-atomic model, obtained by flexible fitting of crystal structures into the density and molecular dynamics simulations, describes interaction interfaces at the atomic level. The N-terminal extension of one regulatory light chain interacts with the tail, and the other with the partner head, revealing how the regulatory light chains stabilize the shutdown state in different ways and how their phosphorylation would allow myosin activation. Additional interactions between the three segments of the coiled coil, the motor domains and the light chains stabilize the shutdown molecule. The structure of the lever in each head is competent to generate force upon activation. This shutdown structure is relevant to all isoforms of myosin-2 and provides a framework for understanding their disease-causing mutations.


Asunto(s)
Microscopía por Crioelectrón , Miosina Tipo II/química , Miosina Tipo II/ultraestructura , Animales , Activación Enzimática , Estabilidad de Enzimas , Modelos Moleculares , Músculo Liso/química , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Cadenas Ligeras de Miosina/ultraestructura , Miosina Tipo II/metabolismo , Fosforilación , Dominios Proteicos , Pavos
4.
Nature ; 588(7838): 521-525, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268893

RESUMEN

Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape1. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients2,3. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail3-7, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited7,8. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells9-12, which can be activated to form functional filaments as needed13-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.


Asunto(s)
Microscopía por Crioelectrón , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/ultraestructura , Animales , Sitios de Unión , Modelos Moleculares , Músculo Liso/química , Mutación , Miosina Tipo II/química , Miosina Tipo II/genética , Fosforilación , Unión Proteica , Conformación Proteica , Desplegamiento Proteico , Pavos
5.
Annu Rev Cell Dev Biol ; 27: 157-84, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21740231

RESUMEN

Cell shape changes underlie a large set of biological processes ranging from cell division to cell motility. Stereotyped patterns of cell shape changes also determine tissue remodeling events such as extension or invagination. In vitro and cell culture systems have been essential to understanding the fundamental physical principles of subcellular mechanics. These are now complemented by studies in developing organisms that emphasize how cell and tissue morphogenesis emerge from the interplay between force-generating machines, such as actomyosin networks, and adhesive clusters that transmit tensile forces at the cell cortex and stabilize cell-cell and cell-substrate interfaces. Both force production and transmission are self-organizing phenomena whose adaptive features are essential during tissue morphogenesis. A new era is opening that emphasizes the similarities of and allows comparisons between distant dynamic biological phenomena because they rely on core machineries that control universal features of cytomechanics.


Asunto(s)
Movimiento Celular/fisiología , Forma de la Célula , Citoesqueleto/metabolismo , Morfogénesis/fisiología , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/ultraestructura , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Estrés Mecánico
6.
PLoS Biol ; 19(6): e3001248, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34111116

RESUMEN

The speed of muscle contraction is related to body size; muscles in larger species contract at slower rates. Since contraction speed is a property of the myosin isoform expressed in a muscle, we investigated how sequence changes in a range of muscle myosin II isoforms enable this slower rate of muscle contraction. We considered 798 sequences from 13 mammalian myosin II isoforms to identify any adaptation to increasing body mass. We identified a correlation between body mass and sequence divergence for the motor domain of the 4 major adult myosin II isoforms (ß/Type I, IIa, IIb, and IIx), suggesting that these isoforms have adapted to increasing body mass. In contrast, the non-muscle and developmental isoforms show no correlation of sequence divergence with body mass. Analysis of the motor domain sequence of ß-myosin (predominant myosin in Type I/slow and cardiac muscle) from 67 mammals from 2 distinct clades identifies 16 sites, out of 800, associated with body mass (padj < 0.05) but not with the clade (padj > 0.05). Both clades change the same small set of amino acids, in the same order from small to large mammals, suggesting a limited number of ways in which contraction velocity can be successfully manipulated. To test this relationship, the 9 sites that differ between human and rat were mutated in the human ß-myosin to match the rat sequence. Biochemical analysis revealed that the rat-human ß-myosin chimera functioned like the native rat myosin with a 2-fold increase in both motility and in the rate of ADP release from the actin-myosin crossbridge (the step that limits contraction velocity). Thus, these sequence changes indicate adaptation of ß-myosin as species mass increased to enable a reduced contraction velocity and heart rate.


Asunto(s)
Contracción Muscular/fisiología , Miosina Tipo II/química , Adaptación Fisiológica , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Peso Corporal , Línea Celular , Secuencia Conservada , Humanos , Filogenia , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782130

RESUMEN

The atomic structure of the complete myosin tail within thick filaments isolated from Lethocerus indicus flight muscle is described and compared to crystal structures of recombinant, human cardiac myosin tail segments. Overall, the agreement is good with three exceptions: the proximal S2, in which the filament has heads attached but the crystal structure doesn't, and skip regions 2 and 4. At the head-tail junction, the tail α-helices are asymmetrically structured encompassing well-defined unfolding of 12 residues for one myosin tail, ∼4 residues of the other, and different degrees of α-helix unwinding for both tail α-helices, thereby providing an atomic resolution description of coiled-coil "uncoiling" at the head-tail junction. Asymmetry is observed in the nonhelical C termini; one C-terminal segment is intercalated between ribbons of myosin tails, the other apparently terminating at Skip 4 of another myosin tail. Between skip residues, crystal and filament structures agree well. Skips 1 and 3 also agree well and show the expected α-helix unwinding and coiled-coil untwisting in response to skip residue insertion. Skips 2 and 4 are different. Skip 2 is accommodated in an unusual manner through an increase in α-helix radius and corresponding reduction in rise/residue. Skip 4 remains helical in one chain, with the other chain unfolded, apparently influenced by the acidic myosin C terminus. The atomic model may shed some light on thick filament mechanosensing and is a step in understanding the complex roles that thick filaments of all species undergo during muscle contraction.


Asunto(s)
Proteínas de Insectos/química , Miosina Tipo II/química , Animales , Microscopía por Crioelectrón , Hemípteros , Simulación de Dinámica Molecular , Músculo Esquelético/química , Músculo Esquelético/ultraestructura , Conformación Proteica en Hélice alfa
8.
Proc Natl Acad Sci U S A ; 117(27): 15666-15672, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571956

RESUMEN

Muscle contraction depends on the cyclical interaction of myosin and actin filaments. Therefore, it is important to understand the mechanisms of polymerization and depolymerization of muscle myosins. Muscle myosin 2 monomers exist in two states: one with a folded tail that interacts with the heads (10S) and one with an unfolded tail (6S). It has been thought that only unfolded monomers assemble into bipolar and side-polar (smooth muscle myosin) filaments. We now show by electron microscopy that, after 4 s of polymerization in vitro in both the presence (smooth muscle myosin) and absence of ATP, skeletal, cardiac, and smooth muscle myosins form tail-folded monomers without tail-head interaction, tail-folded antiparallel dimers, tail-folded antiparallel tetramers, unfolded bipolar tetramers, and small filaments. After 4 h, the myosins form thick bipolar and, for smooth muscle myosin, side-polar filaments. Nonphosphorylated smooth muscle myosin polymerizes in the presence of ATP but with a higher critical concentration than in the absence of ATP and forms only bipolar filaments with bare zones. Partial depolymerization in vitro of nonphosphorylated smooth muscle myosin filaments by the addition of MgATP is the reverse of polymerization.


Asunto(s)
Citoesqueleto de Actina/química , Miosina Tipo II/química , Miosinas/química , Miosinas del Músculo Liso/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestructura , Animales , Pollos , Microscopía Electrónica , Miosina Tipo II/genética , Miosina Tipo II/ultraestructura , Miosinas/genética , Miosinas/ultraestructura , Fosforilación/genética , Polimerizacion , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína/genética , Desplegamiento Proteico , Miosinas del Músculo Liso/genética , Miosinas del Músculo Liso/ultraestructura
9.
J Biol Chem ; 295(20): 7046-7059, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32273340

RESUMEN

Myosin II is the main force-generating motor during muscle contraction. Myosin II exists as different isoforms that are involved in diverse physiological functions. One outstanding question is whether the myosin heavy chain (MHC) isoforms alone account for these distinct physiological properties. Unique sets of essential and regulatory light chains (RLCs) are known to assemble with specific MHCs, raising the intriguing possibility that light chains contribute to specialized myosin functions. Here, we asked whether different RLCs contribute to this functional diversification. To this end, we generated chimeric motors by reconstituting the MHC fast isoform (MyHC-IId) and slow isoform (MHC-I) with different light-chain variants. As a result of the RLC swapping, actin filament sliding velocity increased by ∼10-fold for the slow myosin and decreased by >3-fold for the fast myosin. Results from ensemble molecule solution kinetics and single-molecule optical trapping measurements provided in-depth insights into altered chemo-mechanical properties of the myosin motors that affect the sliding speed. Notably, we found that the mechanical output of both slow and fast myosins is sensitive to the RLC isoform. We therefore propose that RLCs are crucial for fine-tuning the myosin function.


Asunto(s)
Citoesqueleto de Actina/química , Cadenas Ligeras de Miosina/química , Miosina Tipo II/química , Animales , Isoenzimas/química , Pinzas Ópticas , Conejos
10.
J Cell Sci ; 132(14)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315909

RESUMEN

An acto-myosin contractile ring, which forms after anaphase onset and is highly regulated in time and space, mediates cytokinesis, the final step of mitosis. The chromosomal passenger complex (CPC), composed of Aurora-B kinase, INCENP, borealin and survivin (also known as BIRC5), regulates various processes during mitosis, including cytokinesis. It is not understood, however, how CPC regulates cytokinesis. We show that survivin binds to non-muscle myosin II (NMII), regulating its filament assembly. Survivin and NMII interact mainly in telophase, and Cdk1 regulates their interaction in a mitotic-phase-specific manner, revealing the mechanism for the specific timing of survivin-NMII interaction during mitosis. The survivin-NMII interaction is indispensable for cytokinesis, and its disruption leads to multiple mitotic defects. We further show that only the survivin homodimer binds to NMII, attesting to the biological importance for survivin homodimerization. We suggest a novel function for survivin in regulating the spatio-temporal formation of the acto-NMII contractile ring during cytokinesis and we elucidate the role of Cdk1 in regulating this process.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citocinesis , Miosina Tipo II/metabolismo , Survivin/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Modelos Biológicos , Miosina Tipo II/química , Fosforilación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Telofase
11.
Arch Biochem Biophys ; 699: 108733, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388313

RESUMEN

Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.


Asunto(s)
Nucleótidos de Desoxiadenina/metabolismo , Miosina Tipo II/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Nucleótidos de Desoxiadenina/química , Dictyostelium/enzimología , Simulación de Dinámica Molecular , Miosina Tipo II/química , Docilidad , Unión Proteica , Conformación Proteica/efectos de los fármacos , Dominios Proteicos
12.
PLoS Comput Biol ; 16(7): e1007801, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628657

RESUMEN

Recent experiments with super-resolution live cell microscopy revealed that nonmuscle myosin II minifilaments are much more dynamic than formerly appreciated, often showing plastic processes such as splitting, concatenation and stacking. Here we combine sequence information, electrostatics and elasticity theory to demonstrate that the parallel staggers at 14.3, 43.2 and 72 nm have a strong tendency to splay their heads away from the minifilament, thus potentially initiating the diverse processes seen in live cells. In contrast, the straight antiparallel stagger with an overlap of 43 nm is very stable and likely initiates minifilament nucleation. Using stochastic dynamics in a newly defined energy landscape, we predict that the optimal parallel staggers between the myosin rods are obtained by a trial-and-error process in which two rods attach and re-attach at different staggers by rolling and zipping motion. The experimentally observed staggers emerge as the configurations with the largest contact times. We find that contact times increase from isoforms C to B to A, that A-B-heterodimers are surprisingly stable and that myosin 18A should incorporate into mixed filaments with a small stagger. Our findings suggest that nonmuscle myosin II minifilaments in the cell are first formed by isoform A and then convert to mixed A-B-filaments, as observed experimentally.


Asunto(s)
Miosina Tipo II , Electricidad Estática , Biología Computacional , Humanos , Modelos Moleculares , Miosina Tipo II/química , Miosina Tipo II/metabolismo , Miosina Tipo II/ultraestructura , Conformación Proteica , Isoformas de Proteínas
13.
Proc Natl Acad Sci U S A ; 115(30): E7101-E7108, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29997172

RESUMEN

The three mammalian nonmuscle myosin 2 (NM2) monomers, like all class 2 myosin monomers, are hexamers of two identical heavy (long) chains and two pairs of light (short) chains bound to the heavy chains. The heavy chains have an N-terminal globular motor domain (head) with actin-activated ATPase activity, a lever arm (neck) to which the two light chains bind, and a coiled-coil helical tail. Monomers polymerize into bipolar filaments, with globular heads at each end separated by a bare zone, by antiparallel association of their coiled-coil tails. NM2 filaments are highly dynamic in situ, frequently disassembling and reassembling at different locations within the cell where they are essential for multiple biological functions. Therefore, it is important to understand the mechanisms of filament polymerization and depolymerization. Monomers can exist in two states: folded and unfolded. It has been thought that unfolded monomers form antiparallel dimers that assemble into bipolar filaments. We now show that polymerization in vitro proceeds from folded monomers to folded antiparallel dimers to folded antiparallel tetramers that unfold forming antiparallel bipolar tetramers. Folded dimers and tetramers then associate with the unfolded tetramer and unfold, forming a mature bipolar filament consisting of multiple unfolded tetramers with an entwined bare zone. We also demonstrate that depolymerization is essentially the reverse of the polymerization process. These results will advance our understanding of NM2 filament dynamics in situ.


Asunto(s)
Citoesqueleto/química , Miosina Tipo II/química , Pliegue de Proteína , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Humanos , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Dominios Proteicos
14.
Proc Natl Acad Sci U S A ; 115(11): 2646-2651, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29487208

RESUMEN

The ability of adherent cells to sense changes in the mechanical properties of their extracellular environments is critical to numerous aspects of their physiology. It has been well documented that cell attachment and spreading are sensitive to substrate stiffness. Here, we demonstrate that this behavior is actually biphasic, with a transition that occurs around a Young's modulus of ∼7 kPa. Furthermore, we demonstrate that, contrary to established assumptions, this property is independent of myosin II activity. Rather, we find that cell spreading on soft substrates is inhibited due to reduced myosin-II independent nascent adhesion formation within the lamellipodium. Cells on soft substrates display normal leading-edge protrusion activity, but these protrusions are not stabilized due to impaired adhesion assembly. Enhancing integrin-ECM affinity through addition of Mn2+ recovers nascent adhesion assembly and cell spreading on soft substrates. Using a computational model to simulate nascent adhesion assembly, we find that biophysical properties of the integrin-ECM bond are optimized to stabilize interactions above a threshold matrix stiffness that is consistent with the experimental observations. Together, these results suggest that myosin II-independent forces in the lamellipodium are responsible for mechanosensation by regulating new adhesion assembly, which, in turn, directly controls cell spreading. This myosin II-independent mechanism of substrate stiffness sensing could potentially regulate a number of other stiffness-sensitive processes.


Asunto(s)
Miosina Tipo II/química , Miosina Tipo II/metabolismo , Seudópodos/química , Seudópodos/metabolismo , Animales , Fenómenos Biomecánicos , Adhesión Celular , Movimiento Celular , Matriz Extracelular/metabolismo , Ratones , Células 3T3 NIH
15.
Proc Natl Acad Sci U S A ; 115(9): E1991-E2000, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29444861

RESUMEN

Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.


Asunto(s)
Miosina Tipo II/antagonistas & inhibidores , Actinas/química , Adenosina Trifosfato/química , Secuencias de Aminoácidos , Animales , Evolución Biológica , Calcio/química , Línea Celular , Biología Computacional , Microscopía por Crioelectrón , Dictyostelium , Procesamiento de Imagen Asistido por Computador , Insectos , Microscopía Electrónica , Miosina Tipo II/química , Fosforilación , Poríferos , Unión Proteica , Schizosaccharomyces , Escifozoos , Anémonas de Mar , Pavos
16.
Biochem Soc Trans ; 48(2): 419-428, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32239187

RESUMEN

Directed cell migration poses a rich set of theoretical challenges. Broadly, these are concerned with (1) how cells sense external signal gradients and adapt; (2) how actin polymerisation is localised to drive the leading cell edge and Myosin-II molecular motors retract the cell rear; and (3) how the combined action of cellular forces and cell adhesion results in cell shape changes and net migration. Reaction-diffusion models for biological pattern formation going back to Turing have long been used to explain generic principles of gradient sensing and cell polarisation in simple, static geometries like a circle. In this minireview, we focus on recent research which aims at coupling the biochemistry with cellular mechanics and modelling cell shape changes. In particular, we want to contrast two principal modelling approaches: (1) interface tracking where the cell membrane, interfacing cell interior and exterior, is explicitly represented by a set of moving points in 2D or 3D space and (2) interface capturing. In interface capturing, the membrane is implicitly modelled analogously to a level line in a hilly landscape whose topology changes according to forces acting on the membrane. With the increased availability of high-quality 3D microscopy data of complex cell shapes, such methods will become increasingly important in data-driven, image-based modelling to better understand the mechanochemistry underpinning cell motion.


Asunto(s)
Bioquímica/métodos , Movimiento Celular , Miosina Tipo II/química , Actinas/química , Membrana Celular/química , Simulación por Computador , Dictyostelium/citología , Difusión , Hidrodinámica , Modelos Teóricos , Proteínas Motoras Moleculares/química , Polimerizacion
17.
BMC Med Genet ; 21(1): 154, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32711451

RESUMEN

BACKGROUND: MYH14 gene mutations have been suggested to be associated with nonsyndromic/syndromic sensorineural hearing loss. It has been reported that mutations in MYH14 can result in autosomal dominant nonsyndromic deafness-4A (DFNA4). METHODS: In this study, we examined a four-generation Han Chinese family with nonsyndromic hearing loss. Targeted next-generation sequencing of deafness genes was employed to identify the pathogenic variant. Sanger sequencing and PCR-RFLP analysis were performed in affected members of this family and 200 normal controls to further confirm the mutation. RESULTS: Four members of this family were diagnosed as nonsyndromic bilateral sensorineural hearing loss with postlingual onset and progressive impairment. A novel missense variant, c.5417C > A (p.A1806D), in MYH14 in the tail domain of NMH II C was successfully identified as the pathogenic cause in three affected individuals. The family member II-5 was suggested to have noise-induced deafness. CONCLUSION: In this study, a novel missense mutation, c.5417C > A (p.A1806D), in MYH14 that led to postlingual nonsyndromic autosomal dominant SNHL were identified. The findings broadened the phenotype spectrum of MYH14 and highlighted the combined application of gene capture and Sanger sequencing is an efficient approach to screen pathogenic variants associated with genetic diseases.


Asunto(s)
Pueblo Asiatico/genética , Genes Dominantes , Pérdida Auditiva Sensorineural/genética , Mutación/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo II/genética , Secuencia de Aminoácidos , Audiometría de Tonos Puros , Secuencia de Bases , Femenino , Humanos , Masculino , Mutación Missense , Cadenas Pesadas de Miosina/química , Miosina Tipo II/química , Linaje
18.
Phys Rev Lett ; 124(11): 118002, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242707

RESUMEN

Motivated by the dynamics of particles embedded in active gels, both in vitro and inside the cytoskeleton of living cells, we study an active generalization of the classical trap model. We demonstrate that activity leads to dramatic modifications in the diffusion compared to the thermal case: the mean square displacement becomes subdiffusive, spreading as a power law in time, when the trap depth distribution is a Gaussian and is slower than any power law when it is drawn from an exponential distribution. The results are derived for a simple, exactly solvable, case of harmonic traps. We then argue that the results are robust for more realistic trap shapes when the activity is strong.


Asunto(s)
Biopolímeros/química , Modelos Químicos , Citoesqueleto de Actina/química , Adenosina Trifosfato/química , Difusión , Geles/química , Miosina Tipo II/química
19.
Arch Biochem Biophys ; 680: 108228, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31843643

RESUMEN

Myosin II molecules in the thick filaments of striated muscle form a structure in which the heads interact with each other and fold back onto the tail. This structure, the "interacting heads motif" (IHM), provides a mechanistic basis for the auto-inhibition of myosin in relaxed thick filaments. Similar IHM interactions occur in single myosin molecules of smooth and nonmuscle cells in the switched-off state. In addition to the interaction between the two heads, which inhibits their activity, the IHM also contains an interaction between the motor domain of one head and the initial part (subfragment 2, S2) of the tail. This is thought to be a crucial anchoring interaction that holds the IHM in place on the thick filament. S2 appears to cross the head at a specific location within a broader region of the motor domain known as the myosin mesa. Here, we show that the positive and negative charge distribution in this part of the mesa is complementary to the charge distribution on S2. We have designated this the "mesa trail" owing to its linear path across the mesa. We studied the structural sequence alignment, the location of charged residues on the surface of myosin head atomic models, and the distribution of surface charge potential along the mesa trail in different types of myosin II and in different species. The charge distribution in both the mesa trail and the adjacent S2 is relatively conserved. This suggests a common basis for IHM formation across different myosin IIs, dependent on attraction between complementary charged patches on S2 and the myosin head. Conservation from mammals to insects suggests that the mesa trail/S2 interaction plays a key role in the inhibitory function of the IHM.


Asunto(s)
Miosina Tipo II/metabolismo , Animales , Arácnidos/química , Arácnidos/metabolismo , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Dictyostelium/química , Dictyostelium/metabolismo , Insectos , Mamíferos , Modelos Moleculares , Miosina Tipo II/química , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Especificidad de la Especie
20.
Proc Natl Acad Sci U S A ; 114(32): E6516-E6525, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739905

RESUMEN

Addition of 1 mM ATP substantially reduces the light scattering of solutions of polymerized unphosphorylated nonmuscle myosin IIs (NM2s), and this is reversed by phosphorylation of the regulatory light chain (RLC). It has been proposed that these changes result from substantial depolymerization of unphosphorylated NM2 filaments to monomers upon addition of ATP, and filament repolymerization upon RLC-phosphorylation. We now show that the differences in myosin monomer concentration of RLC-unphosphorylated and -phosphorylated recombinant mammalian NM2A, NM2B, and NM2C polymerized in the presence of ATP are much too small to explain their substantial differences in light scattering. Rather, we find that the decrease in light scattering upon addition of ATP to polymerized unphosphorylated NM2s correlates with the formation of dimers, tetramers, and hexamers, in addition to monomers, an increase in length, and decrease in width of the bare zones of RLC-unphosphorylated filaments. Both effects of ATP addition are reversed by phosphorylation of the RLC. Our data also suggest that, contrary to previous models, assembly of RLC-phosphorylated NM2s at physiological ionic strength proceeds from folded monomers to folded antiparallel dimers, tetramers, and hexamers that unfold and polymerize into antiparallel filaments. This model could explain the dynamic relocalization of NM2 filaments in vivo by dephosphorylation of RLC-phosphorylated filaments, disassembly of the dephosphorylated filaments to folded monomers, dimers, and small oligomers, followed by diffusion of these species, and reassembly of filaments at the new location following rephosphorylation of the RLC.


Asunto(s)
Adenosina Trifosfato/química , Modelos Moleculares , Cadenas Pesadas de Miosina/química , Miosina Tipo II/química , Multimerización de Proteína , Adenosina Trifosfato/metabolismo , Animales , Humanos , Ratones , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA