Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nat Immunol ; 14(1): 52-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23160153

RESUMEN

Interleukin 1 (IL-1) is an important mediator of innate immunity but can also promote inflammatory tissue damage. During chronic infections such as tuberculosis, the beneficial antimicrobial role of IL-1 must be balanced with the need to prevent immunopathology. By exogenously controlling the replication of Mycobacterium tuberculosis in vivo, we obviated the requirement for antimicrobial immunity and discovered that both IL-1 production and infection-induced immunopathology were suppressed by lymphocyte-derived interferon-γ (IFN-γ). This effect was mediated by nitric oxide (NO), which we found specifically inhibited assembly of the NLRP3 inflammasome via thiol nitrosylation. Our data indicate that the NO produced as a result of adaptive immunity is indispensable in modulating the destructive innate inflammatory responses elicited during persistent infections.


Asunto(s)
Proteínas Portadoras/metabolismo , Interleucina-1beta/metabolismo , Mycobacterium tuberculosis/inmunología , Óxido Nítrico/metabolismo , Tuberculosis/inmunología , Animales , Proteínas Portadoras/genética , Células Cultivadas , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interferón gamma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Óxido Nítrico/inmunología , Modificación Traduccional de las Proteínas/genética , Modificación Traduccional de las Proteínas/inmunología , Multimerización de Proteína/genética , Multimerización de Proteína/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
2.
Nucleic Acids Res ; 49(16): 9459-9478, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34358325

RESUMEN

DDX3 is a multifaceted RNA helicase of the DEAD-box family that plays central roles in all aspects of RNA metabolism including translation initiation. Here, we provide evidence that the Leishmania DDX3 ortholog functions in post-initiation steps of translation. We show that genetic depletion of DDX3 slows down ribosome movement resulting in elongation-stalled ribosomes, impaired translation elongation and decreased de novo protein synthesis. We also demonstrate that the essential ribosome recycling factor Rli1/ABCE1 and termination factors eRF3 and GTPBP1 are less recruited to ribosomes upon DDX3 loss, suggesting that arrested ribosomes may be inefficiently dissociated and recycled. Furthermore, we show that prolonged ribosome stalling triggers co-translational ubiquitination of nascent polypeptide chains and a higher recruitment of E3 ubiquitin ligases and proteasome components to ribosomes of DDX3 knockout cells, which further supports that ribosomes are not elongating optimally. Impaired elongation of translating ribosomes also results in the accumulation of cytoplasmic protein aggregates, which implies that defects in translation overwhelm the normal quality controls. The partial recovery of translation by overexpressing Hsp70 supports this possibility. Collectively, these results suggest an important novel contribution of DDX3 to optimal elongation of translating ribosomes by preventing prolonged translation stalls and stimulating recycling of arrested ribosomes.


Asunto(s)
Leishmania infantum/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , Ribosomas/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Biosíntesis de Péptidos/genética , Péptidos/genética , Modificación Traduccional de las Proteínas/genética , Proteínas Ribosómicas/genética , Ubiquitina-Proteína Ligasas/genética
3.
PLoS Comput Biol ; 15(7): e1007225, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31323035

RESUMEN

Exposure to the environmental toxin ß-methylamino-L-alanine (BMAA) is linked to amyotrophic lateral sclerosis (ALS), but its disease-promoting mechanism remains unknown. We propose that incorporation of BMAA into the ALS-linked protein Cu,Zn superoxide dismutase (SOD1) upon translation promotes protein misfolding and aggregation, which has been linked to ALS onset and progression. Using molecular simulation and predictive energetic computation, we demonstrate that substituting any serine with BMAA in SOD1 results in structural destabilization and aberrant dynamics, promoting neurotoxic SOD1 aggregation. We propose that translational incorporation of BMAA into SOD1 is directly responsible for its toxicity in neurodegeneration, and BMAA modification of SOD1 may serve as a biomarker of ALS.


Asunto(s)
Aminoácidos Diaminos/farmacocinética , Aminoácidos Diaminos/toxicidad , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Sitios de Unión/genética , Biología Computacional , Toxinas de Cianobacterias , Estabilidad de Enzimas/genética , Humanos , Simulación de Dinámica Molecular , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Pliegue de Proteína/efectos de los fármacos , Modificación Traduccional de las Proteínas/efectos de los fármacos , Modificación Traduccional de las Proteínas/genética , Estructura Cuaternaria de Proteína , Superóxido Dismutasa-1/genética
4.
Biol Chem ; 401(1): 63-80, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31408431

RESUMEN

Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.


Asunto(s)
Membrana Celular/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Partícula de Reconocimiento de Señal/genética , Elementos Alu/genética , Archaea/genética , Bacterias/genética , Membrana Celular/ultraestructura , Células Eucariotas/metabolismo , Proteínas de la Membrana/ultraestructura , Dominios Proteicos/genética , Modificación Traduccional de las Proteínas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Partícula de Reconocimiento de Señal/ultraestructura
5.
Methods ; 137: 71-81, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29221924

RESUMEN

Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.


Asunto(s)
Microscopía por Crioelectrón/métodos , Pliegue de Proteína , Modificación Traduccional de las Proteínas/genética , Proteínas/ultraestructura , Sistema Libre de Células , Biosíntesis de Proteínas/genética , Proteínas/genética , Ribosomas/genética , Ribosomas/ultraestructura
6.
PLoS Genet ; 12(11): e1006351, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27802276

RESUMEN

Ciliopathies represent a broad class of disorders that affect multiple organ systems. The craniofacial complex is among those most severely affected when primary cilia are not functional. We previously reported that loss of primary cilia on cranial neural crest cells, via a conditional knockout of the intraflagellar transport protein KIF3a, resulted in midfacial widening due to a gain of Hedgehog (HH) activity. Here, we examine the molecular mechanism of how a loss of primary cilia can produce facial phenotypes associated with a gain of HH function. We show that loss of intraflagellar transport proteins (KIF3a or IFT88) caused aberrant GLI processing such that the amount of GLI3FL and GLI2FL was increased, thus skewing the ratio of GLIFL to GLIR in favor of the FL isoform. Genetic addition of GLI3R partially rescued the ciliopathic midfacial widening. Interestingly, despite several previous studies suggesting midfacial development relies heavily on GLI3R activity, the conditional loss of GLI3 alone did not reproduce the ciliopathic phenotype. Only the combined loss of both GLI2 and GLI3 was able to phenocopy the ciliopathic midfacial appearance. Our findings suggest that ciliopathic facial phenotypes are generated via loss of both GLI3R and GLI2R and that this pathology occurs via a de-repression mechanism. Furthermore, these studies suggest a novel role for GLI2R in craniofacial development.


Asunto(s)
Cilios/genética , Ciliopatías/genética , Cara/embriología , Factores de Transcripción de Tipo Kruppel/genética , Proteínas del Tejido Nervioso/genética , Animales , Cilios/patología , Ciliopatías/patología , Cara/patología , Regulación del Desarrollo de la Expresión Génica , Cinesinas/genética , Ratones , Ratones Transgénicos , Fenotipo , Isoformas de Proteínas/genética , Modificación Traduccional de las Proteínas/genética , Transducción de Señal/genética , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
7.
PLoS Comput Biol ; 13(6): e1005592, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28598992

RESUMEN

Models of mRNA translation usually presume that transcripts are linear; upon reaching the end of a transcript each terminating ribosome returns to the cytoplasmic pool before initiating anew on a different transcript. A consequence of linear models is that faster translation of a given mRNA is unlikely to generate more of the encoded protein, particularly at low ribosome availability. Recent evidence indicates that eukaryotic mRNAs are circularized, potentially allowing terminating ribosomes to preferentially reinitiate on the same transcript. Here we model the effect of ribosome reinitiation on translation and show that, at high levels of reinitiation, protein synthesis rates are dominated by the time required to translate a given transcript. Our model provides a simple mechanistic explanation for many previously enigmatic features of eukaryotic translation, including the negative correlation of both ribosome densities and protein abundance on transcript length, the importance of codon usage in determining protein synthesis rates, and the negative correlation between transcript length and both codon adaptation and 5' mRNA folding energies. In contrast to linear models where translation is largely limited by initiation rates, our model reveals that all three stages of translation-initiation, elongation, and termination/reinitiation-determine protein synthesis rates even at low ribosome availability.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional/genética , Modificación Traduccional de las Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/química , Ribosomas/genética , Simulación por Computador , Modelos Químicos , Modelos Genéticos , Extensión de la Cadena Peptídica de Translación/genética , ARN Mensajero/ultraestructura , Ribosomas/ultraestructura , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/ultraestructura
8.
Metab Eng ; 44: 293-301, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29101090

RESUMEN

Polysialic acid (polySia) is a posttranslational modification found on only a handful of proteins in the central nervous and immune systems. The addition of polySia to therapeutic proteins improves pharmacokinetics and reduces immunogenicity. To date, polysialylation of therapeutic proteins has only been achieved in vitro by chemical or chemoenzymatic strategies. In this work, we develop a biosynthetic pathway for site-specific polysialylation of recombinant proteins in the cytoplasm of Escherichia coli. The pathway takes advantage of a bacterial cytoplasmic polypeptide-glycosyltransferase to establish a site-specific primer on the target protein. The glucose primer is extended by glycosyltransferases derived from lipooligosaccharide, lipopolysaccharide and capsular polysaccharide biosynthesis from different bacterial species to synthesize long chain polySia. We demonstrate the new biosynthetic route by modifying green fluorescent proteins and a therapeutic DARPin (designed ankyrin repeat protein).


Asunto(s)
Escherichia coli , Modificación Traduccional de las Proteínas/genética , Ácidos Siálicos , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosilación , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Ácidos Siálicos/genética , Ácidos Siálicos/metabolismo
9.
J Biol Chem ; 289(9): 5462-6, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24398691

RESUMEN

Non-healing wounds are a significant source of morbidity. This is particularly true for diabetic patients, who tend to develop chronic skin wounds. O-GlcNAc modification of serine and threonine residues is a common regulatory post-translational modification analogous to protein phosphorylation; increased intracellular protein O-GlcNAc modification has been observed in diabetic and hyperglycemic states. Two intracellular enzymes, UDP-N-acetylglucosamine-polypeptide ß-N-acetylglucosaminyl transferase (OGT) and O-GlcNAc-selective N-acetyl-ß-D-glucosaminidase (OGA), mediate addition and removal, respectively, of N-acetylglucosamine (GlcNAc) from intracellular protein substrates. Alterations in O-GlcNAc modification of intracellular proteins is linked to diabetes, and the increased levels of protein O-GlcNAc modification observed in diabetic tissues may in part explain some of the observed underlying pathophysiology that contributes to delayed wound healing. We have previously shown that increasing protein O-GlcNAc modification by overexpression of OGT in murine keratinocytes results in elevated protein O-GlcNAc modification and a hyperadhesive phenotype. This study was undertaken to explore the hypothesis that increased O-GlcNAc modification of cellular proteins in diabetic skin could contribute to the delayed wound healing observed in patients with diabetic skin ulcers. In the present study, we show that human keratinocytes cultured under hyperglycemic conditions display increased levels of O-GlcNAc modification as well as a delay in the rate of wound closure in vitro. We further show that specific knockdown of OGT by RNA interference (RNAi) reverses this effect, thereby opening up the opportunity for OGT-targeted therapies to promote wound healing in diabetic patients.


Asunto(s)
Complicaciones de la Diabetes/enzimología , Complicaciones de la Diabetes/terapia , N-Acetilglucosaminiltransferasas/metabolismo , Piel/enzimología , Cicatrización de Heridas , Heridas y Lesiones/enzimología , Heridas y Lesiones/terapia , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Animales , Línea Celular , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/patología , Técnicas de Silenciamiento del Gen , Glicosilación , Humanos , Queratinocitos/enzimología , Queratinocitos/patología , Ratones , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , N-Acetilglucosaminiltransferasas/genética , Modificación Traduccional de las Proteínas/genética , Interferencia de ARN , Piel/patología , Heridas y Lesiones/genética , Heridas y Lesiones/patología
10.
Biol Reprod ; 93(2): 43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26134869

RESUMEN

During oocyte maturation, fertilization, and early embryo development until zygotic genome activation (ZGA), transcription is suppressed, and gene expression is dependent upon the timely activation of stored mRNAs. Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos and is important for regulating translational activation of maternally stored mRNAs. EPAB is critical for early development because Epab(-/-) female mice do not produce mature eggs and are infertile. In this study, we further characterize morphological and molecular aspects of Epab(-/-) oocytes. We demonstrated that Epab(-/-) oocytes are smaller in size, contain peripheral germinal vesicles, and are loosely associated with cumulus cells. The chromatin reorganization of the surrounded nucleolus (SN) configuration and transcriptional silencing that normally occurs during oocyte growth does not occur in Epab(-/-) oocytes. Interestingly, microinjection of Epab mRNA into Epab(-/-) preantral follicle-enclosed oocytes rescues reorganization of chromatin and oocyte maturation to metaphase II. Overall, these results demonstrate an important role for EPAB during oocyte growth and the acquisition of meiotic competence.


Asunto(s)
Cromatina/fisiología , Meiosis/genética , Oocitos/crecimiento & desarrollo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/fisiología , Animales , Nucléolo Celular/genética , Nucléolo Celular/ultraestructura , Femenino , Silenciador del Gen , Metafase/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/ultraestructura , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/ultraestructura , Embarazo , Modificación Traduccional de las Proteínas/genética , Huso Acromático/genética
11.
J Neurosci ; 33(7): 2732-53, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23407934

RESUMEN

The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/psicología , Perfilación de la Expresión Génica/métodos , Modificación Traduccional de las Proteínas/genética , Modificación Traduccional de las Proteínas/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Neuronas Serotoninérgicas/fisiología , Serotonina/fisiología , Animales , Conducta Animal/fisiología , Proteínas CELF , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Mutación/genética , Mutación/fisiología , Neurotransmisores/metabolismo , Polimorfismo Genético , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Ribosomas/genética , Ribosomas/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Olfato/fisiología , Conducta Social , Vocalización Animal/fisiología
12.
Am J Respir Cell Mol Biol ; 50(1): 201-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23991634

RESUMEN

Lung aging is associated with morphological and physiological changes in which alterations in transcription factors, including the cyclic adenosine monophosphate response element-binding protein (CREB), could play a role. We studied CREB in lung tissue from mice at different ages and in response to known age-related factors (e.g., cellular senescence and matrix modifications with advanced glycation end-products [AGEs]). Our study shows that protein but not mRNA levels of CREB are reduced in the lungs of old mice. CREB reduction was also observed in senescent human lung fibroblasts (WI-38, LuFi) and human lung epithelial cells (A549) cultured on AGE-modified collagen matrix. Reduction of CREB protein is partially based on pre- and posttranslational modifications as exhibited by an increase in the CREB-regulating microRNA 34b and CREB ubiquitination. Permanent down-regulation of CREB in lung cells impaired cell proliferation and viability and increased the number of cells with senescence-associated ß-galactosidase activity. CREB down-regulation was accompanied by the reduced expression of 165 genes in WI-38 fibroblasts and A549 epithelial cells, of which 15 genes showed a reduced expression in lung tissues of old mice. The CREB-dependent reduction in RAB27A coding for the Ras-related protein Rab27A and IGFBP3 coding for the insulin-like growth factor-binding protein 3 has been confirmed for aged lung tissue, senescent fibroblasts, and lung epithelial cells on AGE-modified collagen. Our data demonstrate that the reduced protein expression of CREB might play a significant role in lung aging by modifying the transcription of RAB27A, IGFBP3, and other target genes.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , AMP Cíclico/genética , Pulmón/fisiología , Envejecimiento/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Senescencia Celular/genética , Senescencia Celular/fisiología , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Modificación Traduccional de las Proteínas/genética , Procesamiento Postranscripcional del ARN/genética , Ubiquitinación/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
13.
Biochim Biophys Acta ; 1829(1): 116-26, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22982193

RESUMEN

The Paf1 complex was originally identified over fifteen years ago in budding yeast through its physical association with RNA polymerase II. The Paf1 complex is now known to be conserved throughout eukaryotes and is well studied for promoting RNA polymerase II transcription elongation and transcription-coupled histone modifications. Through these critical regulatory functions, the Paf1 complex participates in numerous cellular processes such as gene expression and silencing, RNA maturation, DNA repair, cell cycle progression and prevention of disease states in higher eukaryotes. In this review, we describe the historic and current research involving the eukaryotic Paf1 complex to explain the cellular roles that underlie its conservation and functional importance. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.


Asunto(s)
Enfermedad/genética , Eucariontes/genética , Histonas/metabolismo , Proteínas Nucleares/fisiología , Transcripción Genética/genética , Animales , Secuencia Conservada , Humanos , Modelos Biológicos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Modificación Traduccional de las Proteínas/genética , Modificación Traduccional de las Proteínas/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Factores de Transcripción , Transcripción Genética/fisiología
14.
J Neurosci ; 32(4): 1467-80, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22279231

RESUMEN

sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally interact in neurons to control trafficking and amyloidogenic processing of APP. We have identified a sequence (FANSHY) in the cytoplasmic domain of sorLA that is recognized by the VPS26 subunit of the retromer complex. Accordingly, we characterized the interaction between the retromer complex and sorLA and determined the role of retromer on sorLA-dependent sorting and processing of APP. Mutations in the VPS26 binding site resulted in receptor redistribution to the endosomal network, similar to the situation seen in cells with VPS26 knockdown. The sorLA mutant retained APP-binding activity but, as opposed to the wild-type receptor, misdirected APP into a distinct non-Golgi compartment, resulting in increased amyloid processing. In conclusion, our data provide a molecular link between reduced retromer expression and increased amyloidogenesis as seen in patients with sporadic AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modificación Traduccional de las Proteínas/fisiología , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animales , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Células PC12 , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Modificación Traduccional de las Proteínas/genética , Transporte de Proteínas/genética , Ratas
15.
Plant Cell ; 21(10): 3296-314, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19855051

RESUMEN

The earliest proteolytic event affecting most proteins is the excision of the initiating Met (NME). This is an essential and ubiquitous cotranslational process tightly regulated in all eukaryotes. Currently, the effects of NME on unknown complex cellular networks and the ways in which its inhibition leads to developmental defects and cell growth arrest remain poorly understood. Here, we provide insight into the earliest molecular mechanisms associated with the inhibition of the NME process in Arabidopsis thaliana. We demonstrate that the developmental defects induced by NME inhibition are caused by an increase in cellular proteolytic activity, primarily induced by an increase in the number of proteins targeted for rapid degradation. This deregulation drives, through the increase of the free amino acids pool, a perturbation of the glutathione homeostasis, which corresponds to the earliest limiting, reversible step promoting the phenotype. We demonstrate that these effects are universally conserved and that the reestablishment of the appropriate glutathione status restores growth and proper development in various organisms. Finally, we describe a novel integrated model in which NME, protein N-alpha-acylation, proteolysis, and glutathione homeostasis operate in a sequentially regulated mechanism that directs both growth and development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Homeostasis/fisiología , Arabidopsis/genética , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Homeostasis/genética , Espectrometría de Masas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Modificación Traduccional de las Proteínas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Neurogenet ; 25(4): 140-51, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22077787

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common forms of inheritable Parkinson's disease and likely play a role in sporadic disease as well. LRRK2 is a large multidomain protein containing two key groups, a Ras-like GTP binding domain and a serine, threonine kinase domain. Mutations in the LRRK2 gene that associate with Parkinson's disease reside primarily within the two functional domains of the protein, suggesting that LRRK2 function is critical to the pathogenesis of the disease. The most common LRRK2 mutation increases kinase activity, making LRRK2 kinase inhibition an attractive target for small molecule drug development. However, the physiological function of LRRK2 kinase as well as its endogenous protein substrates remains poorly understood and has hindered drug development efforts. Recent advances in LRRK2 biology have revealed several potential cellular roles, interacting proteins, and putative physiological substrates. Together, a picture emerges of a complex multifunctional protein that exists in multiple cellular compartments. Through unclear mechanisms, LRRK2 kinase regulates cytoskeleton architecture through control of protein translation, phosphorylation of cytoskeletal proteins, and response to cellular stressors. This article will briefly cover some interesting recent studies in LRRK2 cellular biology and highlight emerging cellular models of LRRK2 kinase function.


Asunto(s)
Neuronas/fisiología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Animales , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Proteínas del Citoesqueleto/ultraestructura , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuronas/enzimología , Enfermedad de Parkinson/patología , Biosíntesis de Proteínas/genética , Modificación Traduccional de las Proteínas/genética , Proteínas Serina-Treonina Quinasas/química , Especificidad por Sustrato/genética , Especificidad por Sustrato/fisiología
17.
J Cell Biol ; 172(5): 747-58, 2006 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-16505169

RESUMEN

We have been able to observe the dynamic interactions between a specific messenger RNA (mRNA) and its protein product in vivo by studying the synthesis and assembly of peripherin intermediate filaments (IFs). The results show that peripherin mRNA-containing particles (messenger ribonucleoproteins [mRNPs]) move mainly along microtubules (MT). These mRNPs are translationally silent, initiating translation when they cease moving. Many peripherin mRNPs contain multiple mRNAs, possibly amplifying the total amount of protein synthesized within these "translation factories." This mRNA clustering is dependent on MT, regulatory sequences within the RNA and the nascent protein. Peripherin is cotranslationally assembled into insoluble, nonfilamentous particles that are precursors to the long IF that form extensive cytoskeletal networks. The results show that the motility and targeting of peripherin mRNPs, their translational control, and the assembly of an IF cytoskeletal system are linked together in a process we have termed dynamic cotranslation.


Asunto(s)
Proteínas de Filamentos Intermediarios/genética , Filamentos Intermedios/metabolismo , Modificación Traduccional de las Proteínas/genética , Animales , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Proteínas de Filamentos Intermediarios/biosíntesis , Proteínas de Filamentos Intermediarios/metabolismo , Filamentos Intermedios/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células PC12 , Periferinas , ARN Mensajero/metabolismo , Ratas , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo
18.
Muscle Nerve ; 43(5): 665-70, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21484825

RESUMEN

INTRODUCTION: Pompe disease (glycogen storage disease type II, acid maltase deficiency) is caused by deficiency of lysosomal acid α-glucosidase (GAA). A few late-onset patients have been reported with skin fibroblast GAA activity levels of <2%. METHODS: We measured GAA activity in skin fibroblasts from 101 patients with late-onset Pompe disease. Whenever possible, we performed Western blot analysis and correlated the results with GAA activity and GAA gene mutations. RESULTS: Thirteen patients (13%) had skin fibroblast GAA activity of <1% of normal. Although there was wide genetic heterogeneity, none of these patients carried the common late-onset mutation c.-32-13T > G. We performed Western blot on 11 patients with <1% GAA activity. All produced GAA protein that was at lower levels and/or was abnormally processed. DISCUSSION: There is no common mutation associated with <1% GAA activity in late-onset Pompe disease patients. Most patients produce unprocessed forms of GAA protein compared with patients with higher GAA activity.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Modificación Traduccional de las Proteínas/genética , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Adolescente , Adulto , Edad de Inicio , Anciano , Western Blotting/métodos , Niño , Activación Enzimática/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/epidemiología , Humanos , Persona de Mediana Edad , Mutación/genética , Adulto Joven
19.
Nat Protoc ; 16(3): 1343-1375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514943

RESUMEN

During maturation, eukaryotic precursor RNAs undergo processing events including intron splicing, 3'-end cleavage, and polyadenylation. Here we describe nanopore analysis of co-transcriptional processing (nano-COP), a method for probing the timing and patterns of RNA processing. An extension of native elongating transcript sequencing, which quantifies transcription genome-wide through short-read sequencing of nascent RNA 3' ends, nano-COP uses long-read nascent RNA sequencing to observe global patterns of RNA processing. First, nascent RNA is stringently purified through a combination of 4-thiouridine metabolic labeling and cellular fractionation. In contrast to cDNA or short-read-based approaches relying on reverse transcription or amplification, the sample is sequenced directly through nanopores to reveal the native context of nascent RNA. nano-COP identifies both active transcription sites and splice isoforms of single RNA molecules during synthesis, providing insight into patterns of intron removal and the physical coupling between transcription and splicing. The nano-COP protocol yields data within 3 d.


Asunto(s)
Modificación Traduccional de las Proteínas/fisiología , Precursores del ARN/análisis , Análisis de Secuencia de ARN/métodos , Animales , Exones/genética , Humanos , Intrones/genética , Modificación Traduccional de las Proteínas/genética , ARN/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Empalme del ARN/genética , ARN Mensajero/genética , Transcripción Genética/genética
20.
Biomolecules ; 10(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936054

RESUMEN

Many proteins in the cell fold cotranslationally within the restricted space of the polypeptide exit tunnel or at the surface of the ribosome. A growing body of evidence suggests that the ribosome can alter the folding trajectory in many different ways. In this review, we summarize the recent examples of how translation affects folding of single-domain, multiple-domain and oligomeric proteins. The vectorial nature of translation, the spatial constraints of the exit tunnel, and the electrostatic properties of the ribosome-nascent peptide complex define the onset of early folding events. The ribosome can facilitate protein compaction, induce the formation of intermediates that are not observed in solution, or delay the onset of folding. Examples of single-domain proteins suggest that early compaction events can define the folding pathway for some types of domain structures. Folding of multi-domain proteins proceeds in a domain-wise fashion, with each domain having its role in stabilizing or destabilizing neighboring domains. Finally, the assembly of protein complexes can also begin cotranslationally. In all these cases, the ribosome helps the nascent protein to attain a native fold and avoid the kinetic traps of misfolding.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Modificación Traduccional de las Proteínas/fisiología , Ribosomas/metabolismo , Animales , Humanos , Cinética , Modelos Moleculares , Biosíntesis de Proteínas/genética , Dominios Proteicos/fisiología , Pliegue de Proteína , Modificación Traduccional de las Proteínas/genética , Proteínas/metabolismo , Ribosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA