Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Plant Cell ; 34(4): 1396-1414, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35038740

RESUMEN

The mucilage surrounding hydrated Arabidopsis thaliana seeds is a specialized extracellular matrix composed mainly of the pectic polysaccharide rhamnogalacturonan I (RG-I). Although, several genes responsible for RG-I biosynthesis have been identified, the transcriptional regulatory mechanisms controlling RG-I production remain largely unknown. Here we report that the trihelix transcription factor DE1 BINDING FACTOR 1 (DF1) is a key regulator of mucilage RG-I biosynthesis. RG-I biosynthesis is significantly reduced in loss-of-function mutants of DF1. DF1 physically interacts with GLABRA2 (GL2) and both proteins transcriptionally regulate the expression of the RG-I biosynthesis genes MUCILAGE MODIFIED 4 (MUM4) and GALACTURONOSYLTRANSFERASE-LIKE5 (GATL5). Through chromatin immunoprecipitation-quantitative PCR and transcriptional activation assays, we uncover a cooperative mechanism of the DF1-GL2 module in activating MUM4 and GATL5 expression, in which DF1 binds to the promoters of MUM4 and GATL5 through interacting with GL2 and facilitates the transcriptional activity of GL2. The expression of DF1 and GL2 is directly regulated by TRANSPARENT TESTA GLABRA2 (TTG2) and, in turn, DF1 directly represses the expression of TTG2. Taken together, our data reveal that the transcriptional regulation of mucilage RG-I biosynthesis involves a regulatory module, comprising DF1, GL2, and TTG2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Pectinas , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Semillas/genética , Semillas/metabolismo
2.
Plant Physiol ; 194(1): 296-313, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37590952

RESUMEN

Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked ß-1→3/ß-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , beta-Glucanos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxidorreductasas/metabolismo , beta-Glucanos/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo , Semillas/metabolismo , Pared Celular/metabolismo , Mucílago de Planta/metabolismo
3.
Plant Cell ; 33(2): 381-403, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33709105

RESUMEN

Homogalacturonan (HG), a component of pectin, is synthesized in the Golgi apparatus in its fully methylesterified form. It is then secreted into the apoplast where it is typically de-methylesterified by pectin methylesterases (PME). Secretion and de-esterification are critical for normal pectin function, yet the underlying transcriptional regulation mechanisms remain largely unknown. Here, we uncovered a mechanism that fine-tunes the degree of HG de-methylesterification (DM) in the mucilage that surrounds Arabidopsis thaliana seeds. We demonstrate that the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor (TF) ERF4 is a transcriptional repressor that positively regulates HG DM. ERF4 expression is confined to epidermal cells in the early stages of seed coat development. The adhesiveness of the erf4 mutant mucilage was decreased as a result of an increased DM caused by a decrease in PME activity. Molecular and genetic analyses revealed that ERF4 positively regulates HG DM by suppressing the expression of three PME INHIBITOR genes (PMEIs) and SUBTILISIN-LIKE SERINE PROTEASE 1.7 (SBT1.7). ERF4 shares common targets with the TF MYB52, which also regulates pectin DM. Nevertheless, the erf4-2 myb52 double mutant seeds have a wild-type mucilage phenotype. We provide evidence that ERF4 and MYB52 regulate downstream gene expression in an opposite manner by antagonizing each other's DNA-binding ability through a physical interaction. Together, our findings reveal that pectin DM in the seed coat is fine-tuned by an ERF4-MYB52 transcriptional complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Proteínas Represoras/metabolismo , Semillas/metabolismo , Factores Generales de Transcripción/metabolismo , Adhesividad , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calcio/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Reactivos de Enlaces Cruzados/química , Esterificación , Genes de Plantas , Mutación/genética , Motivos de Nucleótidos/genética , Fenotipo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Unión Proteica , Proteínas Represoras/genética
4.
Physiol Plant ; 176(5): e14470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221496

RESUMEN

Although there is evidence to suggest that the endophytic fungus Serendipita indica plays a crucial role in enhancing plant tolerance against biotic/abiotic stressors, less is known about the impacts of this symbiosis association on root mucilage chemical composition and its physical functions. The mucilage of inoculated and non-inoculated seedlings of four wheat cultivars (i.e., Roshan, Ghods, Kavir and Pishtaz) were extracted using an aeroponic method. Total solute concentration (TCm), carbon content (Cmucilage), electrical conductivity (EC), pH, fatty acids, surface tension (σm), and viscosity (ηm) of mucilage were measured. Ghods and Kavir had the highest and lowest root colonization percents, respectively. Saturated fatty acids, including palmitic and stearic acids, were dominant over unsaturated fatty acids in wheat root mucilage. However, their compositions were significantly different among wheat cultivars. S. indica colonization, especially for Ghods, increased the TCm, Cmucilage, and palmitic acid. Moreover, root mucilage of S. indica-inoculated Ghods had lower σm and greater ηm. An increased amount of powerful surfactants like palmitic acid in the mucilage of S. indica inoculated treatments led to lower σm and greater ηm. Such studies provide further support for the idea that plant-released mucilage plays a major role in modifying the physical environment of the rhizosphere. This knowledge toward truly understanding the rhizosphere can be potentially used for improving the rhizosphere soil quality and increasing crop growth and yield.


Asunto(s)
Basidiomycota , Mucílago de Planta , Raíces de Plantas , Simbiosis , Triticum , Triticum/fisiología , Triticum/microbiología , Triticum/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Mucílago de Planta/metabolismo , Simbiosis/fisiología , Basidiomycota/fisiología , Ácidos Grasos/metabolismo , Plantones/fisiología
5.
Plant Cell Physiol ; 64(8): 906-919, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37354456

RESUMEN

MYB-bHLH-TTG1 (MBW) transcription factor (TF) complexes regulate Arabidopsis seed coat biosynthesis pathways via a multi-tiered regulatory mechanism. The MYB genes include MYB5, MYB23 and TRANSPARENT TESTA2 (TT2), which regulate GLABRA2 (GL2), HOMEODOMAIN GLABROUS2 (HDG2) and TRANSPARENT TESTA GLABRA2 (TTG2). Here, we examine the role of PECTIN METHYLESTERASE INHIBITOR14 (PMEI14) in seed coat mucilage pectin methylesterification and provide evidence in support of multi-tiered regulation of seed coat mucilage biosynthesis genes including PMEI14. The PMEI14 promoter was active in the seed coat and developing embryo. A pmei14 mutant exhibited stronger attachment of the outer layer of seed coat mucilage, increased mucilage homogalacturonan demethylesterification and reduced seed coat radial cell wall thickness, results consistent with decreased PMEI activity giving rise to increased PME activity. Reduced mucilage release from the seeds of myb5, myb23, tt2 and gl2, hdg2, ttg2 triple mutants indicated that HDG2 and MYB23 play minor roles in seed coat mucilage deposition. Chromatin immunoprecipitation analysis found that MYB5, TT8 and seven mucilage pathway structural genes are directly regulated by MYB5. Expression levels of GL2, HDG2, TTG2 and nine mucilage biosynthesis genes including PMEI14 in the combinatorial mutant seeds indicated that these genes are positively regulated by at least two of those six TFs and that TTG1 and TTG2 are major regulators of PMEI14 expression. Our results show that MYB-bHLH-TTG1 complexes regulate mucilage biosynthesis genes, including PMEI14, both directly and indirectly via a three-tiered mechanism involving GL2, HDG2 and TTG2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación , Pectinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mucílago de Planta/metabolismo
6.
Oecologia ; 203(1-2): 139-149, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37804460

RESUMEN

Many seeds are consumed by granivores despite numerous adaptations to prevent detection or exploitation. The environment can influence the efficacy of these defensive traits. Understanding the mechanisms by which environmental factors modify defensive efficacy is important for understanding spatial patterns of granivory and seed recruitment. Seed mucilage is a sticky coating that binds imbibed seeds to substrates; this attachment has been demonstrated to lessen exploitation by granivores. Seed mucilage as a defense has been recognized for decades, though rarely studied. Here, we investigated whether the environment alters this seed defense by addressing two questions: (1) Does substrate particle size affect attachment strength? (2) Does a change in particle size lead to changes in granivore-related mortality? In the field experiment, ants removed more seeds from finer substrates than their coarser counterparts. Across that same grit range, seeds took less force to dislodge when mucilage-bound to fine sandpaper; however, an investigation across a wider range of grits demonstrated nonlinearities occurred for many species, probably due to structural and chemical mucilage properties. Small differences in substrate grit lead to differential mortality in mucilaginous seeds due to alterations in attachment strength, suggesting that the defensive efficacy of this trait differs across the landscape. This work paves the way for a more integrative look at mucilaginous seeds. Seed mucilage is a widespread trait that is easily studied and has important demographic implications. It represents an ideal system to examine dispersal, germination, and granivory to gain a more holistic view of seed ecology.


Asunto(s)
Hormigas , Mucílago de Planta , Animales , Semillas , Ecología
7.
J Sci Food Agric ; 103(8): 3860-3870, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36308762

RESUMEN

BACKGROUND: The application of chia mucilage still remains restricted due to the difficulty in achieving high extraction yields. The effect of ultrasonic-assisted extraction (UAE) conditions (temperature, seed:water ratio and time) on the rheological properties of chia mucilage extracts and the relation to the proportion of translucent phase (TP) and opaque phase (OP) of the mucilage in the extract were evaluated. RESULTS: UAE allowed the efficient extraction of chia mucilage from chia seeds. The desired overall optimal combination to maximize both yield and apparent viscosity was achieved at a seed:water ratio 1:10, a temperature of 25.3 °C and 53.7 min extraction time; the optimal conditions to obtain the maximum yield and minimum apparent viscosity were a seed:water ratio close to 1:20, temperature of 48.8 °C and 208.4 min extraction time. CONCLUSION: The results obtained in the present work demonstrated that the differences in rheological properties of chia mucilage extracts are due to the extraction methods used. Therefore, it is possible to modulate the extraction conditions in order to obtain different characteristics of the mucilage, maintaining a high extraction yield. © 2022 Society of Chemical Industry.


Asunto(s)
Mucílago de Planta , Salvia , Mucílago de Planta/química , Viscosidad , Ultrasonido , Salvia/química , Polisacáridos/química , Semillas/química , Extractos Vegetales/química , Agua/análisis
8.
Plant J ; 107(4): 1228-1242, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160095

RESUMEN

MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Chlorophyta/citología , Chlorophyta/genética , Regulación de la Expresión Génica , Microalgas/genética , Señales de Localización Nuclear , Filogenia , Mucílago de Planta/metabolismo , Poliploidía , Dominios Proteicos , Multimerización de Proteína , Estrés Fisiológico , Factores de Transcripción/genética
9.
New Phytol ; 235(3): 1096-1110, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35488480

RESUMEN

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical microtubules (MTs) to maintain their organization in seed coat epidermal (SCE) cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cápsulas/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Microtúbulos/metabolismo , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Semillas/genética
10.
Plant Physiol ; 185(1): 77-93, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631797

RESUMEN

Numerous proteins involved in cellulose biosynthesis and assembly have been functionally characterized. Nevertheless, we have a limited understanding of the mechanisms underlying the transcriptional regulation of the genes that encode these proteins. Here, we report that HOMEODOMAIN GLABROUS2 (HDG2), a Homeobox-Leucine Zipper IV transcription factor, regulates cellulose biosynthesis in Arabidopsis (Arabidopsis thaliana) seed coat mucilage. HDG2 is a transcriptional activator with the transactivation domain located within its Leucine-Zipper domain. Transcripts of HDG2 were detected specifically in seed coat epidermal cells with peak expression at 10 d postanthesis. Disruptions of HDG2 led to seed coat mucilage with aberrant morphology due to a reduction in its crystalline cellulose content. Electrophoretic mobility shift and yeast one-hybrid assays, together with chromatin immunoprecipitation and quantitative PCR, provided evidence that HDG2 directly activates CELLULOSE SYNTHASE5 (CESA5) expression by binding to the L1-box cis-acting element in its promoter. Overexpression of CESA5 partially rescued the mucilage defects of hdg2-3. Together, our data suggest that HDG2 directly activates CESA5 expression and thus is a positive regulator of cellulose biosynthesis in seed coat mucilage.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Celulosa/biosíntesis , Celulosa/genética , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mucílago de Planta/genética , Mucílago de Planta/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/fisiología
11.
J Exp Bot ; 73(11): 3477-3495, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35188965

RESUMEN

The production of Arabidopsis seed mucilage involves complex polysaccharide biosynthetic pathways and developmental processes in seed epidermal cells. Although the polysaccharide components of Arabidopsis seed mucilage have been identified, their regulatory mechanism requires further investigation. Here, we show that Class II KNOX gene family members KNAT3 and KNAT7 play an essential role in regulating mucilage production in the early developmental stages of Arabidopsis seeds. Double mutant knat3knat7 resulted in defective seed mucilage production and columellae formation, whereas knat3 showed a normal phenotype compared with wild type, and the mucilage thickness in knat7 was slightly disturbed. Rhamnogalacturonan I (RG-I) and its biosynthetic substrates galacturonic acid and rhamnose were reduced in both the adherent and soluble mucilage of knat3knat7. Comparative transcriptome analysis on whole seeds suggested that polysaccharide, glucosinolate and anthocyanin biosynthetic pathways were specifically repressed in knat3knat7. Transient co-expression of KNAT3 and KNAT7 with promoter regions of candidate genes in Arabidopsis protoplasts revealed that both KNAT3 and KNAT7 act as positive regulators of the RG-I biosynthetic gene MUCILAGE-MODIFIED 4 (MUM4, AT1G53500). Collectively, our results demonstrate that KNAT3 and KNAT7 are multifunctional transcription factors in secondary cell wall development and redundantly modulate mucilage biosynthesis in Arabidopsis seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucílago de Planta/metabolismo , Polisacáridos/metabolismo , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/metabolismo
12.
Plant Cell ; 31(10): 2370-2385, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31439805

RESUMEN

Identifying genetic variation that increases crop yields is a primary objective in plant breeding. We used association analyses of oilseed rape/canola (Brassica napus) accessions to identify genetic variation that influences seed size, lipid content, and final crop yield. Variation in the promoter region of the HECT E3 ligase gene BnaUPL3 C03 made a major contribution to variation in seed weight per pod, with accessions exhibiting high seed weight per pod having lower levels of BnaUPL3 C03 expression. We defined a mechanism in which UPL3 mediated the proteasomal degradation of LEC2, a master transcriptional regulator of seed maturation. Accessions with reduced UPL3 expression had increased LEC2 protein levels, larger seeds, and prolonged expression of lipid biosynthetic genes during seed maturation. Natural variation in BnaUPL3 C03 expression appears not to have been exploited in current B napus breeding lines and could therefore be used as a new approach to maximize future yields in this important oil crop.


Asunto(s)
Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/enzimología , Brassica napus/genética , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/metabolismo , Ligasas/genética , Ligasas/metabolismo , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Mutación , Fenotipo , Mucílago de Planta/biosíntesis , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Aceite de Brassica napus/metabolismo , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Factores de Transcripción/genética , Transcriptoma/genética , Ubiquitina-Proteína Ligasas/genética
13.
Ann Bot ; 129(7): 817-830, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35325924

RESUMEN

BACKGROUND AND AIMS: Seed mucilage is a common and highly diverse trait shared among thousands of angiosperm species. While it has long been recognized that mucilage allows seeds to anchor to substrates (antitelechory), resisting abiotic and biotic dislodgement, we still lack a mechanistic understanding of this process. METHODS: We propose a mechanistic model of how mucilage affects substrate anchorage and fluid resistance, ultimately contributing to dislodgement resistance. To test this model, we subjected mucilaginous seeds of 52 species, varying in eight measured seed traits, to 7 d of continuous water flow at a range of dislodgement potentials. KEY RESULTS: Supporting our model, mucilage mass increased the force necessary to dislodge both dry and wet seeds; our measurement of the dislodgement force of dry mucilage explained time to dislodgement well. The effect size was remarkably large; increasing the standardized mucilage mass by 1 s.d. resulted in a 280-fold increase in the time to dislodgement. Fluid resistance was largely dependent on the speed of water flow and the seed's modified drag coefficient, but not seed traits. Neither mucilage expansion speed nor mucilage decay rate explained dislodgement potential well. CONCLUSIONS: Our results suggest that the degree of anchorage to a substrate, measured with a simple dislodgement force assay, is highly predictive of mucilaginous seed retention in highly erosive environments. In contrast, we found that other seed and mucilage traits are of lesser importance to anchorage.


Asunto(s)
Mucílago de Planta , Semillas , Polisacáridos , Agua
14.
J Sci Food Agric ; 102(13): 5585-5592, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35396743

RESUMEN

Chia mucilage (CM) is an emerging resource in food applications. However, the mechanism of this biopolymer as a stabilizer/emulsifier ingredient has not yet been well defined. A non-uniform viscoelastic tridimensional network was observed on emulsions with CM, while the surface activity of the CM ingredient has been associated with its protein content. To understand its functionality in food, this review focused on discussing and summarizing the rheological properties of dispersions and emulsions composed of CM under different conditions, such as pH, temperature, salt content, and mucilage content. For example, emulsions and dispersions with CM showed pseudoplastic behavior. An increase in the CM concentration increased the viscosity and the consistency index and decreased the behavior index. The consistency index of dispersions with CM increased with pH. The future evaluation of emulsions and dispersions properties, such as viscoelastic properties and microstructure, is particularly important for the successful use of CM in the food industry. The principal studies have evaluated the use of CM in dairy and meat systems as an emulsifier, stabilizer, or lipid replacer. The nutritional quality of the products with CM was maintained or improved, but sometimes an undesirable darkening was observed. Future evaluation of the cold extraction method of CM might improve the color and overall sensory acceptability of food products with CM. Integrated chia seed processing, including mucilage, oil, and protein extraction could be carried out to make chia seed industrial processing viable. © 2022 Society of Chemical Industry.


Asunto(s)
Mucílago de Planta , Salvia , Emulsionantes , Emulsiones/química , Mucílago de Planta/química , Polisacáridos/química , Reología , Salvia/química
15.
Plant Cell Physiol ; 62(12): 1847-1857, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34195842

RESUMEN

In plants, the diaspore (seed dispersal unit) may include a seed coat and/or pericarp to protect the embryo and assist in dispersion. In many species, the seed coat and/or pericarp secrete a gelatinous mixture of cell wall polysaccharides known as mucilage. In several species, mucilage synthesis, secretion and modification have been studied extensively as model systems for the investigation of plant cell wall structure and function. Despite this, efforts toward understanding the role of mucilage have received less attention. Mucilage has been hypothesized to impact seed dispersal through interaction with soil, protecting the seed in the gut following ingestion by animals or affecting the ability of seeds to sink or float in water. Mucilage has been found to influence seed germination and seedling establishment, most often during abiotic stress, probably by maintaining seed hydration when water is scarce. Finally, mucilage has been documented to mediate interactions with various organisms. Advances in transgenic technology should enable the genetic modification of mucilage structure and function in crop plants. Cells synthesizing mucilage may also be a suitable platform for creating custom polysaccharides or proteins with industrial applications. Thus, in the near future, it is likely that research on seed mucilage will expand well beyond the current focus. Here we summarize our understanding of the biological functions of mucilage and provide an outlook on the future of mucilage research.


Asunto(s)
Biotecnología , Mucílago de Planta/metabolismo , Plantas/metabolismo , Semillas/metabolismo , Pared Celular/metabolismo
16.
Plant Cell Physiol ; 62(12): 1912-1926, 2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-34059917

RESUMEN

The cell wall is essential for plant survival. Determining the relationship between cell wall structure and function using mutant analysis or overexpressing cell wall-modifying enzymes has been challenging due to the complexity of the cell wall and the appearance of secondary, compensatory effects when individual polymers are modified. In addition, viability of the plants can be severely impacted by wall modification. A useful model system for studying structure-function relationships among extracellular matrix components is the seed coat epidermal cells of Arabidopsis thaliana. These cells synthesize relatively simple, easily accessible, pectin-rich mucilage that is not essential for plant viability. In this study, we expressed enzymes predicted to modify polysaccharide components of mucilage in the apoplast of seed coat epidermal cells and explored their impacts on mucilage. The seed coat epidermal-specific promoter TESTA ABUNDANT2 (TBA2) was used to drive expression of these enzymes to avoid adverse effects in other parts of the plant. Mature transgenic seeds expressing Rhamnogalacturonate lyase A (RglA) or Rhamnogalacturonate lyase B (RglB) that degrade the pectin rhamnogalacturonan-I (RG-I), a major component of mucilage, had greatly reduced mucilage capsules surrounding the seeds and concomitant decreases in the monosaccharides that comprise the RG-I backbone. Degradation of the minor mucilage component homogalacturonan (HG) using the HG-degrading enzymes Pectin lyase A (PLA) or ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2) resulted in developing seed coat epidermal cells with disrupted cell-cell adhesion and signs of early cell death. These results demonstrate the feasibility of manipulating the seed coat epidermal cell extracellular matrix using a targeted genetic engineering approach.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pectinas/metabolismo , Mucílago de Planta/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Semillas/química
17.
New Phytol ; 229(4): 1917-1923, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220085

RESUMEN

Mucilage, a gel-like layer formed around wetted seeds in a process called myxospermy, has importance as a proxy for studying cell wall polysaccharide biosynthesis and interactions and as a source of valuable health supplements and hydrocolloids. Arabidopsis thaliana has provided unrivalled insight into mucilage/cell wall synthesis, but its lack of commercial utility presents an opportunity to develop an alternative myxospermous model linking genetics, chemistry and functionality. Here, we discuss recent advances in the understanding of mucilage production, composition and properties of Plantago, a promising candidate as an alternative model with economic relevance. We outline how genomic/transcriptomic and chemical analysis advances could be made to strengthen Plantago's use as a model system, through challenging but achievable approaches.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mucílago de Planta , Plantago , Arabidopsis/genética , Polisacáridos , Semillas
18.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086128

RESUMEN

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiología , Filogenia , Desarrollo de la Planta , Mucílago de Planta/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Microbiología del Suelo
19.
Nanotechnology ; 33(7)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34727534

RESUMEN

This study investigates the potential of iron oxide nanoparticles (Fe3O4) and quince seed mucilage as combined genetic carriers to deliver plasmid DNA (pDNA) through the gastrointestinal system. The samples are characterized by x-ray diffraction (XRD), zeta potential, dynamic light scattering, FT-IR spectroscopy, field emission scanning electron microscopy and vibrating sample magnetometry. The stability of pDNA loading on the nanocarriers and their release pattern are evaluated in simulated gastrointestinal environments by electrophoresis. The XRD patterns reveal that the nanocarriers could preserve their structure during various synthesis levels. The saturation magnetization (Ms) of the Fe3O4cores are 56.48 emu g-1without any magnetic hysteresis. Not only does the loaded pDNA contents experience a remarkable stability in the simulated gastric environment, but also, they could be released up to 99% when exposed to an alkaline environment similar to the intestinal fluid of fish. The results indicate that the synthesized nanoparticles could be employed as efficient low-cost pDNA carriers.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas de Magnetita/química , Sistema de Administración de Fármacos con Nanopartículas/química , Mucílago de Planta/química , Plásmidos , ADN/química , ADN/farmacocinética , Tamaño de la Partícula , Plásmidos/química , Plásmidos/farmacocinética , Rosaceae/química , Semillas/química
20.
Nanotechnology ; 33(7)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34757957

RESUMEN

Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.


Asunto(s)
Técnicas Electroquímicas/métodos , Lamiaceae/química , Mucílago de Planta/química , Alcohol Polivinílico/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/toxicidad , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Ensayo de Materiales , Nanofibras/química , Nanofibras/toxicidad , Semillas/química , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA