Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257028

RESUMEN

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Asunto(s)
Metabolismo Energético , Neuronas GABAérgicas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Mapeo Encefálico , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Dorsal del Rafe/metabolismo , Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Temperatura , Termogénesis
2.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146164

RESUMEN

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Asunto(s)
Núcleo Dorsal del Rafe/anatomía & histología , Núcleo Dorsal del Rafe/fisiología , Serotonina/fisiología , Adaptación Psicológica/fisiología , Amígdala del Cerebelo/fisiología , Animales , Ansiedad/fisiopatología , Encéfalo/fisiología , Núcleo Dorsal del Rafe/metabolismo , Femenino , Lóbulo Frontal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Serotonina/metabolismo
3.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753423

RESUMEN

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Asunto(s)
Regulación del Apetito , Núcleo Dorsal del Rafe/metabolismo , Neuronas/metabolismo , Animales , Peso Corporal , Encéfalo/fisiología , Núcleo Dorsal del Rafe/citología , Electrofisiología , Ayuno , Hambre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Optogenética
4.
Nature ; 632(8023): 147-156, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39020173

RESUMEN

Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.


Asunto(s)
Adaptación Fisiológica , Axones , Ritmo Circadiano , Neurotransmisores , Fotoperiodo , Animales , Femenino , Ratones , Adaptación Fisiológica/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axones/metabolismo , Axones/fisiología , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Oscuridad , Núcleo Dorsal del Rafe/citología , Núcleo Dorsal del Rafe/metabolismo , Vías Nerviosas/fisiología , Neurotransmisores/metabolismo , Área Preóptica/citología , Área Preóptica/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Virus de la Rabia , Serotonina/metabolismo , Sueño/fisiología , Vigilia/fisiología
5.
Bioessays ; 46(4): e2300213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314963

RESUMEN

Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.


Asunto(s)
Agresión , Núcleo Dorsal del Rafe , Animales , Núcleo Dorsal del Rafe/metabolismo , Agresión/fisiología , Serotonina/metabolismo , Neuronas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(32): e2301730120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523544

RESUMEN

The brain employs distinct circuitries to encode positive and negative valence stimuli, and dysfunctions of these neuronal circuits have a key role in the etiopathogenesis of many psychiatric disorders. The Dorsal Raphè Nucleus (DRN) is involved in various behaviors and drives the emotional response to rewarding and aversive experiences. Whether specific subpopulations of neurons within the DRN encode these behaviors with different valence is still unknown. Notably, microRNA expression in the mammalian brain is characterized by tissue and neuronal specificity, suggesting that it might play a role in cell and circuit functionality. However, this specificity has not been fully exploited. Here, we demonstrate that microRNA-34a (miR-34a) is selectively expressed in a subpopulation of GABAergic neurons of the ventrolateral DRN. Moreover, we report that acute exposure to both aversive (restraint stress) and rewarding (chocolate) stimuli reduces GABA release in the DRN, an effect prevented by the inactivation of DRN miR-34a or its genetic deletion in GABAergic neurons in aversive but not rewarding conditions. Finally, miR-34a inhibition selectively reduced passive coping with severe stressors. These data support a role of miR-34a in regulating GABAergic neurotransmitter activity and behavior in a context-dependent manner and suggest that microRNAs could represent a functional signature of specific neuronal subpopulations with valence-specific activity in the brain.


Asunto(s)
Núcleo Dorsal del Rafe , MicroARNs , Humanos , Animales , Núcleo Dorsal del Rafe/metabolismo , Neuronas GABAérgicas/metabolismo , MicroARNs/metabolismo , Mamíferos
7.
Eur J Neurosci ; 59(7): 1460-1479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38155094

RESUMEN

The orbitofrontal cortex (OFC) is a key node in the cortico-limbic-striatal circuitry that influences decision-making guided by the relative value of outcomes. Midbrain dopamine from either the ventral tegmental area (VTA) or the dorsal raphe nucleus (DRN) has the potential to modulate OFC neurons; however, it is unknown at what concentrations these terminals release dopamine. Male and female adult dopamine transporter (DAT)IRES-Cre-tdTomato mice were injected with AAV2/8-EF1a-DIO-eYFP into either the DRN or the VTA or the retrograde label cholera toxin B (CTB) 488 in the medial or lateral OFC. We quantified co-expression of CTB 488 or enhanced yellow fluorescent protein (eYFP) with tdTomato fluorescence in VTA or DRN and eYFP fibre density in the medial or lateral OFC. Both VTA and DRN dopamine neurons project to either the medial OFC or the lateral OFC, with greater expression of fibres in the medial OFC. Using fast-scan cyclic voltammetry, we detected optogenetically evoked dopamine from channelrhodopsin 2 (ChR2)-expressing VTA or DRN dopamine terminals in either the medial OFC or the lateral OFC. We assessed if optical stimulation of dopamine from the VTA or the DRN onto the medial OFC could alter layer V pyramidal neuronal firing; however, we did not observe a change in firing at stimulation parameters that evoked dopamine release from either projection even though bath application of dopamine with the monoamine transporter inhibitor, nomifensine, decreased firing. In summary, dopaminergic neurons from the VTA or the DRN project to the OFC and release submicromolar dopamine in the medial and lateral OFC.


Asunto(s)
Núcleo Dorsal del Rafe , Proteína Fluorescente Roja , Área Tegmental Ventral , Ratones , Masculino , Femenino , Animales , Área Tegmental Ventral/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Dopamina/metabolismo , Corteza Prefrontal/fisiología , Neuronas Dopaminérgicas/metabolismo
8.
Eur J Neurosci ; 60(7): 5658-5670, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39189108

RESUMEN

Fluctuations in estradiol levels at each stage of life in women are considered one of the causes of mental diseases through their effects on the central nervous system. During menopause, a decrease in estradiol levels has been reported to affect the serotonin nervous system and induce depression-like and anxiety symptoms. However, the regulation of brain and behaviour during childhood and adolescence is poorly understood. Moreover, the role of oestrogen receptors α and ß in the regulation of the serotonergic nervous system has been reported, but little is known about the involvement of G protein-coupled receptor 30. Therefore, in this study, we used an ovariectomized childhood mouse model to analyse behaviour and investigate the effects on the serotonin nervous system. We showed that ovariectomy surgery at 4 weeks of age, which is the weaning period, induced a decrease in spontaneous locomotor activity during the active period and a preference for novel mice over familiar mice in the three-chamber social test at 10 weeks of age. In addition, the administration of G-1, a protein-coupled receptor 30 agonist, to ovariectomized mice suppressed spontaneous locomotor activity and the preference for novel mice. Furthermore, we demonstrated that childhood ovariectomy induces increased tryptophan hydroxylase gene expression in the raphe nucleus and increased serotonin release in the amygdaloid nucleus, and administration of G-1 ameliorated these effects. Our study suggests that G protein-coupled receptor 30-mediated regulation of serotonin synthesis is involved in changes in activity and social-cognitive behaviour due to decreased estradiol levels during childhood.


Asunto(s)
Ovariectomía , Receptores Acoplados a Proteínas G , Serotonina , Triptófano Hidroxilasa , Animales , Femenino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Serotonina/metabolismo , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/genética , Conducta Animal/fisiología , Receptores de Estrógenos/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ratones Endogámicos C57BL , Conducta Social , Quinolinas/farmacología , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Locomoción/fisiología , Locomoción/efectos de los fármacos , Actividad Motora/fisiología
9.
PLoS Biol ; 19(3): e3000709, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690628

RESUMEN

Daily rhythms are disrupted in patients with mood disorders. The lateral habenula (LHb) and dorsal raphe nucleus (DRN) contribute to circadian timekeeping and regulate mood. Thus, pathophysiology in these nuclei may be responsible for aberrations in daily rhythms during mood disorders. Using the 15-day chronic social defeat stress (CSDS) paradigm and in vitro slice electrophysiology, we measured the effects of stress on diurnal rhythms in firing of LHb cells projecting to the DRN (cellsLHb→DRN) and unlabeled DRN cells. We also performed optogenetic experiments to investigate if increased firing in cellsLHb→DRN during exposure to a weak 7-day social defeat stress (SDS) paradigm induces stress-susceptibility. Last, we investigated whether exposure to CSDS affected the ability of mice to photoentrain to a new light-dark (LD) cycle. The cellsLHb→DRN and unlabeled DRN cells of stress-susceptible mice express greater blunted diurnal firing compared to stress-näive (control) and stress-resilient mice. Daytime optogenetic activation of cellsLHb→DRN during SDS induces stress-susceptibility which shows the direct correlation between increased activity in this circuit and putative mood disorders. Finally, we found that stress-susceptible mice are slower, while stress-resilient mice are faster, at photoentraining to a new LD cycle. Our findings suggest that exposure to strong stressors induces blunted daily rhythms in firing in cellsLHb→DRN, DRN cells and decreases the initial rate of photoentrainment in susceptible-mice. In contrast, resilient-mice may undergo homeostatic adaptations that maintain daily rhythms in firing in cellsLHb→DRN and also show rapid photoentrainment to a new LD cycle.


Asunto(s)
Ritmo Circadiano/fisiología , Habénula/fisiología , Estrés Psicológico/metabolismo , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Habénula/citología , Habénula/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética/métodos , Serotonina/farmacología , Derrota Social , Estrés Psicológico/fisiopatología
10.
Neuroendocrinology ; 114(7): 605-622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547853

RESUMEN

INTRODUCTION: Irritable bowel syndrome with diarrhea (IBS-D) is frequently accompanied by depression and anxiety, resulting in a reduced quality of life and increased medical expenditures. Although psychological factors are known to play an important role in the genesis and development of IBS-D, an understanding of the central neural control of intestinal dysfunction remains elusive. Melanin-concentrating hormone (MCH) is a gut-brain peptide involved in regulating feeding, sleep-wake rhythms, and emotional states. METHODS: This study investigated the regulation of the MCHergic neural circuit from the lateral hypothalamic area (LHA) to the dorsal raphe nucleus (DRN) on anxiety- and depression-like behaviors, intestinal motility, and visceral hypersensitivity in a mice model of IBS-D. The models of IBS-D were prepared by inducing chronic unpredictable mild stress. RESULTS: Chemogenetic activation of the MCH neurons in the LHA could excite serotonin (5-HT) neurons in the DRN and induce anxiety- and depression-like behaviors and IBS-D-like symptoms, which could be recovered by microinjection of the MCH receptor antagonist SNAP94847 into the DRN. The mice model of IBS-D showed a reduction of 5-HT and brain-derived neurotrophic factor (BDNF) expression in the DRN, while an elevation of 5-HT and BDNF was observed in the colon through immunofluorescent staining, ELISA, and Western blot analysis. SNAP94847 treatment in the DRN alleviated anxiety- and depression-like behaviors, improved intestinal motility, and alleviated visceral hypersensitivity responses by normalizing the 5-HT and BDNF expression in the DRN and colon. CONCLUSION: This study suggests that the activation of MCH neurons in the LHA may induce IBS-D symptoms via the DRN and that the MCH receptor antagonist could potentially have therapeutic effects.


Asunto(s)
Diarrea , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe , Hormonas Hipotalámicas , Síndrome del Colon Irritable , Melaninas , Hormonas Hipofisarias , Animales , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Núcleo Dorsal del Rafe/metabolismo , Hormonas Hipofisarias/metabolismo , Hormonas Hipotalámicas/metabolismo , Ratones , Diarrea/metabolismo , Diarrea/etiología , Masculino , Melaninas/metabolismo , Ratones Endogámicos C57BL , Motilidad Gastrointestinal/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Serotonina/metabolismo , Emociones/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Ansiedad/etiología , Ansiedad/fisiopatología , Ansiedad/metabolismo , Depresión/etiología , Depresión/metabolismo , Depresión/fisiopatología , Conducta Animal/fisiología
11.
Nature ; 560(7720): 589-594, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089910

RESUMEN

Dysfunction in prosocial interactions is a core symptom of autism spectrum disorder. However, the neural mechanisms that underlie sociability are poorly understood, limiting the rational development of therapies to treat social deficits. Here we show in mice that bidirectional modulation of the release of serotonin (5-HT) from dorsal raphe neurons in the nucleus accumbens bidirectionally modifies sociability. In a mouse model of a common genetic cause of autism spectrum disorder-a copy number variation on chromosome 16p11.2-genetic deletion of the syntenic region from 5-HT neurons induces deficits in social behaviour and decreases dorsal raphe 5-HT neuronal activity. These sociability deficits can be rescued by optogenetic activation of dorsal raphe 5-HT neurons, an effect requiring and mimicked by activation of 5-HT1b receptors in the nucleus accumbens. These results demonstrate an unexpected role for 5-HT action in the nucleus accumbens in social behaviours, and suggest that targeting this mechanism may prove therapeutically beneficial.


Asunto(s)
Trastorno del Espectro Autista/psicología , Trastorno del Espectro Autista/terapia , Núcleo Accumbens/metabolismo , Serotonina/metabolismo , Conducta Social , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe/citología , Núcleo Dorsal del Rafe/metabolismo , Humanos , Masculino , Ratones , Vías Nerviosas , Núcleo Accumbens/citología , Optogenética , Sintenía/genética
12.
Acta Pharmacol Sin ; 45(7): 1393-1405, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38528118

RESUMEN

Anxiety disorders are the most common psychiatric condition, but the etiology of anxiety disorders remains largely unclear. Our previous studies have shown that neuroplastin 65 deficiency (NP65-/-) mice exhibit abnormal social and mental behaviors and decreased expression of tryptophan hydroxylase 2 (TPH2) protein. However, whether a causal relationship between TPH2 reduction and anxiety disorders exists needs to be determined. In present study, we found that replenishment of TPH2 in dorsal raphe nucleus (DRN) enhanced 5-HT level in the hippocampus and alleviated anxiety-like behaviors. In addition, injection of AAV-NP65 in DRN significantly increased TPH2 expression in DRN and hippocampus, and reduced anxiety-like behaviors. Acute administration of exogenous 5-HT or HTR3 agonist SR57227A in hippocampus mitigated anxiety-like behaviors in NP65-/- mice. Moreover, replenishment of TPH2 in DRN partly repaired the impairment of long-term potentiation (LTP) maintenance in hippocampus of NP65-/- mice. Finally, we found that loss of NP65 lowered transcription factors Lmx1b expression in postnatal stage and replenishment of NP65 in DRN reversed the decrease in Lmx1b expression of NP65-/- mice. Together, our findings reveal that NP65 deficiency induces anxiety phenotype by downregulating DRN-hippocampus serotonergic-HTR3 transmission. These studies provide a novel and insightful view about NP65 function, suggesting an attractive potential target for treatment of anxiety disorders.


Asunto(s)
Ansiedad , Núcleo Dorsal del Rafe , Hipocampo , Ratones Noqueados , Receptores de Serotonina 5-HT3 , Serotonina , Triptófano Hidroxilasa , Animales , Núcleo Dorsal del Rafe/metabolismo , Hipocampo/metabolismo , Ansiedad/metabolismo , Serotonina/metabolismo , Ratones , Masculino , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Triptófano Hidroxilasa/deficiencia , Receptores de Serotonina 5-HT3/metabolismo , Receptores de Serotonina 5-HT3/genética , Ratones Endogámicos C57BL , Fenotipo , Potenciación a Largo Plazo
13.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474132

RESUMEN

The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.


Asunto(s)
Dopamina , Neuronas , Ratones , Animales , Neuronas/metabolismo , Dopamina/metabolismo , Área Tegmental Ventral/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Neuronas Dopaminérgicas/metabolismo
14.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891901

RESUMEN

The diverse effects of serotonin on cognition may emerge from the modulation of large-scale brain networks that support distinct cognitive processes. Yet, the specific effect of serotoninergic modulation on the properties of these networks remains elusive. Here, we used a simultaneous PET-fMRI scanner combined with graph theory analyses to investigate the modulation of network properties by the Serotonin Transporter (SERT) availability measured in the dorsal raphe nucleus (DRN). We defined global efficiency as the average mean of efficiencies over all pairs of distinct nodes of specific brain networks, and determined whether SERT levels correlated with the global efficiency of each network. SERT availability in the DRN correlated negatively with the global efficiency of the executive control brain network, which is engaged in cognitive control and directed attention. No relationship was observed between SERT availability and the global efficiency of the default mode or the salience brain networks. These findings indicate a specific role of serotoninergic modulation in the executive control brain network via a change in its global efficiency.


Asunto(s)
Encéfalo , Función Ejecutiva , Imagen por Resonancia Magnética , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Humanos , Masculino , Función Ejecutiva/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Femenino , Tomografía de Emisión de Positrones/métodos , Serotonina/metabolismo , Adulto Joven , Núcleo Dorsal del Rafe/metabolismo , Mapeo Encefálico
15.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125652

RESUMEN

Methylphenidate (MPD) remains a cornerstone pharmacological intervention for managing ADHD, yet its increasing usage among ordinary youth and adults outside clinical contexts necessitates a thorough investigation into its developmental effects. This study seeks to simultaneously investigate the behavioral and neuronal changes within the dorsal raphe (DR) nucleus, a center of serotonergic neurons in the mammalian brain, before and after the administration of varying doses of acute and chronic MPD in freely behaving young and adult rats implanted with DR recording electrodes. Wireless neuronal and behavioral recording systems were used over 10 consecutive experimental days. Eight groups were examined: saline, 0.6, 2.5, and 10.0 mg/kg MPD for both young and adult rats. Six daily MPD injections were administered on experimental days 1 to 6, followed by a three-day washout period and MPD re-administration on experimental day 10 (ED10). The analysis of neuronal activity recorded from 504 DR neurons (DRNs) in young rats and 356 DRNs in adult rats reveals significant age-dependent differences in acute and chronic MPD responses. This study emphasizes the importance of aligning electrophysiological evaluations with behavioral outcomes following extended MPD exposure, elucidating the critical role of DRNs and serotonin signaling in modulating MPD responses and delineating age-specific variations in young versus adult rat models.


Asunto(s)
Conducta Animal , Núcleo Dorsal del Rafe , Metilfenidato , Serotonina , Animales , Metilfenidato/farmacología , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Ratas , Serotonina/metabolismo , Masculino , Conducta Animal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Edad
16.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892125

RESUMEN

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Asunto(s)
Conducta Animal , Núcleo Caudado , Metilfenidato , Neuronas , Núcleo Accumbens , Corteza Prefrontal , Área Tegmental Ventral , Animales , Metilfenidato/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/metabolismo , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/fisiología , Núcleo Caudado/metabolismo , Masculino , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Conducta Animal/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Ratas Sprague-Dawley , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/fisiología , Núcleo Dorsal del Rafe/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
17.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3828-3836, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39099356

RESUMEN

This study aims to further elucidate the efficacy targets of celastrol(CEL) intervention in central inflammation in mice with obesity-depression comorbiditiy, based on the differential mRNA expression in the amygdala(AMY) and dorsal raphe nucleus(DRN) after CEL intervention. C57BL/6J mice were randomly divided into a normal diet group(Chow), a obesity-depression comorbidity(COM) group, and low-, medium-, and high-dose CEL groups(CEL-L, CEL-M, CEL-H, 0.5, 1.0, 2.0 mg·kg~(-1)). The Chow group received a normal diet, while the COM group and CEL-L, CEL-M, CEL-H groups received a high-fat diet combined with chronic stress from wet bedding. After 10 weeks of feeding, the mice were orally administered CEL for three weeks. Subsequently, the AMY and DRN of mice in the Chow, COM, and CEL-H groups were subjected to transcriptome analysis, and the intersection of target differentially expressed genes in both nuclei was visualized using a Venn diagram. The intersected genes were then imported into STRING for protein-protein interaction(PPI) analysis, and Gene Ontology(GO) analysis was performed using DAVID to identify the core targets regulated by CEL in the AMY and DRN. Independent samples were subjected to quantitative real-time PCR(qPCR) to validate the intersection genes. The results revealed that the common genes regulated by CEL in the AMY and DRN included chemokine family genes Ccl2, Ccl5, Ccl7, Cxcl10, Cxcr6, and Hsp70 family genes Hspa1a, Hspa1b, as well as Myd88, Il2ra, Irf7, Slc17a8, Drd2, Parp9, and Nampt. GO analysis showed that the top 5 nodes Ccl2, Cxcl10, Myd88, Ccl5, and Irf7 were all involved in immune-inflammation regulation(P<0.01). The qPCR results from independent samples showed that in the AMY, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Slc17a8, Parp9, and Nampt were significantly up-regulated in the COM group, with Drd2 showing a decreasing trend; these pathological changes were significantly improved in the CEL-H group compared to the COM group. In the DRN, compared with the results in the Chow group, chemokine family genes, Hsp70, Myd88, Il2ra, Irf7, Parp9, and Nampt were significantly down-regulated, while Slc17a8 was significantly up-regulated in the COM group; compared with those in the COM group, Cxcr6, Irf7, and Drd2 were significantly up-regulated, while Slc17a8 was significantly down-regulated in the CEL-H group. In both the AMY and DRN, the expression of Irf7 by CEL showed both inhibition and activation in a dose-dependent manner(R~2 were 0.709 8 and 0.917 2, respectively). These findings suggest that CEL can effectively improve neuroinflammation by regulating bidirectional expression of the same target proteins, thereby intervening in the immune activation of the AMY and immune suppression of the DRN in COM mice.


Asunto(s)
Amígdala del Cerebelo , Depresión , Núcleo Dorsal del Rafe , Ratones Endogámicos C57BL , Obesidad , Triterpenos Pentacíclicos , Triterpenos , Animales , Ratones , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Depresión/genética , Depresión/metabolismo , Obesidad/genética , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Triterpenos/farmacología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/genética , Humanos
18.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931727

RESUMEN

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Asunto(s)
Agresión , Núcleo Dorsal del Rafe , Interleucina-1beta , Serotonina , Agresión/fisiología , Animales , Núcleo Dorsal del Rafe/metabolismo , Humanos , Individualidad , Interleucina-1beta/metabolismo , Masculino , Ratones , Serotonina/metabolismo
19.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697176

RESUMEN

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Asunto(s)
Núcleo Dorsal del Rafe , Receptor de Serotonina 5-HT2B , Neuronas Serotoninérgicas , Animales , Núcleo Dorsal del Rafe/metabolismo , Ratones , Ratas , Receptor de Serotonina 5-HT2B/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/farmacología
20.
Proc Natl Acad Sci U S A ; 117(6): 3239-3247, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31992641

RESUMEN

The olfactory system receives extensive serotonergic inputs from the dorsal raphe, a nucleus involved in control of behavior, regulation of mood, and modulation of sensory processing. Although many studies have investigated how serotonin modulates the olfactory bulb, few have focused on the anterior piriform cortex (aPC), a region important for olfactory learning and encoding of odor identity and intensity. Specifically, the mechanism and functional significance of serotonergic modulation of the aPC remain largely unknown. Here we used pharmacologic, optogenetic, and fiber photometry techniques to examine the serotonergic modulation of neural activity in the aPC in vitro and in vivo. We found that serotonin (5-HT) reduces the excitability of pyramidal neurons directly via 5-HT2C receptors, phospholipase C, and calcium-activated potassium (BK) channels. Furthermore, endogenous serotonin attenuates odor-evoked calcium responses in aPC pyramidal neurons. These findings identify the mechanism underlying serotonergic modulation of the aPC and shed light on its potential role.


Asunto(s)
Núcleo Dorsal del Rafe/metabolismo , Corteza Piriforme , Células Piramidales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Odorantes , Bulbo Olfatorio/fisiología , Optogenética , Corteza Piriforme/citología , Corteza Piriforme/metabolismo , Serotonina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA