Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.875
Filtrar
1.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214470

RESUMEN

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Asunto(s)
Movimiento/fisiología , Red Nerviosa/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Cerebelo/fisiología , Sincronización Cortical , Miembro Anterior/fisiología , Interneuronas/fisiología , Aprendizaje , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Neurológicos , Actividad Motora/fisiología , Núcleo Olivar/fisiología , Optogenética , Células de Purkinje/fisiología , Conducta Estereotipada , Análisis y Desempeño de Tareas
2.
Annu Rev Neurosci ; 42: 433-457, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31018099

RESUMEN

Many mammals, including humans, are exquisitely sensitive to tiny time differences between sounds at the two ears. These interaural time differences are an important source of information for sound detection, for sound localization in space, and for environmental awareness. Two brainstem circuits are involved in the initial temporal comparisons between the ears, centered on the medial and lateral superior olive. Cells in these nuclei, as well as their afferents, display a large number of striking physiological and anatomical specializations to enable submillisecond sensitivity. As such, they provide an important model system to study temporal processing in the central nervous system. We review the progress that has been made in characterizing these primary binaural circuits as well as the variety of mechanisms that have been proposed to underlie their function.


Asunto(s)
Vías Auditivas/fisiología , Audición/fisiología , Núcleo Olivar/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica/métodos , Animales , Humanos , Modelos Neurológicos
3.
PLoS Biol ; 22(4): e3002586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683852

RESUMEN

Having two ears enables us to localize sound sources by exploiting interaural time differences (ITDs) in sound arrival. Principal neurons of the medial superior olive (MSO) are sensitive to ITD, and each MSO neuron responds optimally to a best ITD (bITD). In many cells, especially those tuned to low sound frequencies, these bITDs correspond to ITDs for which the contralateral ear leads, and are often larger than the ecologically relevant range, defined by the ratio of the interaural distance and the speed of sound. Using in vivo recordings in gerbils, we found that shortly after hearing onset the bITDs were even more contralaterally leading than found in adult gerbils, and travel latencies for contralateral sound-evoked activity clearly exceeded those for ipsilateral sounds. During the following weeks, both these latencies and their interaural difference decreased. A computational model indicated that spike timing-dependent plasticity can underlie this fine-tuning. Our results suggest that MSO neurons start out with a strong predisposition toward contralateral sounds due to their longer neural travel latencies, but that, especially in high-frequency neurons, this predisposition is subsequently mitigated by differential developmental fine-tuning of the travel latencies.


Asunto(s)
Estimulación Acústica , Gerbillinae , Neuronas , Complejo Olivar Superior , Animales , Neuronas/fisiología , Complejo Olivar Superior/fisiología , Localización de Sonidos/fisiología , Masculino , Núcleo Olivar/fisiología , Sonido , Femenino
4.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38195508

RESUMEN

The olivo-cerebellar system plays an important role in vertebrate sensorimotor control. Here, we investigate sensory representations in the inferior olive (IO) of larval zebrafish and their spatial organization. Using single-cell labeling of genetically identified IO neurons, we find that they can be divided into at least two distinct groups based on their spatial location, dendritic morphology, and axonal projection patterns. In the same genetically targeted population, we recorded calcium activity in response to a set of visual stimuli using two-photon imaging. We found that most IO neurons showed direction-selective and binocular responses to visual stimuli and that the functional properties were spatially organized within the IO. Light-sheet functional imaging that allowed for simultaneous activity recordings at the soma and axonal level revealed tight coupling between functional properties, soma location, and axonal projection patterns of IO neurons. Taken together, our results suggest that anatomically defined classes of IO neurons correspond to distinct functional types, and that topographic connections between IO and cerebellum contribute to organization of the cerebellum into distinct functional zones.


Asunto(s)
Núcleo Olivar , Pez Cebra , Animales , Larva , Núcleo Olivar/fisiología , Neuronas/fisiología , Cerebelo/fisiología
5.
J Neurosci ; 43(46): 7766-7779, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734946

RESUMEN

The medial nucleus of the trapezoid body (MNTB) in the auditory brainstem is the principal source of synaptic inhibition to several functionally distinct auditory nuclei. Prominent projections of individual MNTB neurons comprise the major binaural nuclei that are involved in the early processing stages of sound localization as well as the superior paraolivary nucleus (SPON), which contains monaural neurons that extract rapid changes in sound intensity to detect sound gaps and rhythmic oscillations that commonly occur in animal calls and human speech. While the processes that guide the development and refinement of MNTB axon collaterals to the binaural nuclei have become increasingly understood, little is known about the development of MNTB collaterals to the monaural SPON. In this study, we investigated the development of MNTB-SPON connections in mice of both sexes from shortly after birth to three weeks of age, which encompasses the time before and after hearing onset. Individual axon reconstructions and electrophysiological analysis of MNTB-SPON connectivity demonstrate a dramatic increase in the number of MNTB axonal boutons in the SPON before hearing onset. However, this proliferation was not accompanied by changes in the strength of MNTB-SPON connections or by changes in the structural or functional topographic precision. However, following hearing onset, the spread of single-axon boutons along the tonotopic axis increased, indicating an unexpected decrease in the tonotopic precision of the MNTB-SPON pathway. These results provide new insight into the development and organization of inhibition to SPON neurons and the regulation of developmental plasticity in diverging inhibitory pathways.SIGNIFICANCE STATEMENT The superior paraolivary nucleus (SPON) is a prominent auditory brainstem nucleus involved in the early detection of sound gaps and rhythmic oscillations. The ability of SPON neurons to fire at the offset of sound depends on strong and precise synaptic inhibition provided by glycinergic neurons in the medial nucleus of the trapezoid body (MNTB). Here, we investigated the anatomic and physiological maturation of MNTB-LSO connectivity in mice before and after the onset of hearing. We observed a period of bouton proliferation without accompanying changes in topographic precision before hearing onset. This was followed by bouton elimination and an unexpected decrease in the tonotopic precision after hearing onset. These results provide new insight into the development of inhibition to the SPON.


Asunto(s)
Complejo Olivar Superior , Cuerpo Trapezoide , Masculino , Femenino , Ratones , Animales , Humanos , Vías Auditivas/fisiología , Núcleo Olivar/fisiología , Neuronas/fisiología
6.
J Neurosci ; 43(22): 4093-4109, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37130779

RESUMEN

The medial superior olive (MSO) is a binaural nucleus that is specialized in detecting the relative arrival times of sounds at both ears. Excitatory inputs to its neurons originating from either ear are segregated to different dendrites. To study the integration of synaptic inputs both within and between dendrites, we made juxtacellular and whole-cell recordings from the MSO in anesthetized female gerbils, while presenting a "double zwuis" stimulus, in which each ear received its own set of tones, which were chosen in a way that all second-order distortion products (DP2s) could be uniquely identified. MSO neurons phase-locked to multiple tones within the multitone stimulus, and vector strength, a measure for spike phase-locking, generally depended linearly on the size of the average subthreshold response to a tone. Subthreshold responses to tones in one ear depended little on the presence of sound in the other ear, suggesting that inputs from different ears sum linearly without a substantial role for somatic inhibition. The "double zwuis" stimulus also evoked response components in the MSO neuron that were phase-locked to DP2s. Bidendritic subthreshold DP2s were quite rare compared with bidendritic suprathreshold DP2s. We observed that in a small subset of cells, the ability to trigger spikes differed substantially between both ears, which might be explained by a dendritic axonal origin. Some neurons that were driven monaurally by only one of the two ears nevertheless showed decent binaural tuning. We conclude that MSO neurons are remarkably good in finding binaural coincidences even among uncorrelated inputs.SIGNIFICANCE STATEMENT Neurons in the medial superior olive are essential for precisely localizing low-frequency sounds in the horizontal plane. From their soma, only two dendrites emerge, which are innervated by inputs originating from different ears. Using a new sound stimulus, we studied the integration of inputs both within and between these dendrites in unprecedented detail. We found evidence that inputs from different dendrites add linearly at the soma, but that small increases in somatic potentials could lead to large increases in the probability of generating a spike. This basic scheme allowed the MSO neurons to detect the relative arrival time of inputs at both dendrites remarkably efficient, although the relative size of these inputs could differ considerably.


Asunto(s)
Localización de Sonidos , Complejo Olivar Superior , Animales , Femenino , Complejo Olivar Superior/fisiología , Gerbillinae , Neuronas/fisiología , Estimulación Acústica , Localización de Sonidos/fisiología , Núcleo Olivar/fisiología , Vías Auditivas/fisiología
7.
Cerebellum ; 23(2): 284-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36690829

RESUMEN

Olov Oscarsson's review on the functional organization of spinocerebellar paths is a prime demonstration of the great skills and huge knowledge base of the electrophysiologists of his era working on communication systems in the brain. Oscarsson describes and characterizes in detail no less than ten different communication lines between the spinal cord and the cerebellum. As such, his work proved to be a highly fertile basis for ongoing physiological and anatomical research. However, even after 50 years of continuing cerebellar research, many questions are still open and even care must be taken that the differentiation in spinocerebellar paths, so carefully demonstrated by Oscarsson, is not lost in present-day research.


Asunto(s)
Cerebelo , Núcleo Olivar , Vías Nerviosas/anatomía & histología , Cerebelo/fisiología , Vías Aferentes , Núcleo Olivar/fisiología , Células de Purkinje/fisiología
8.
J Acoust Soc Am ; 155(5): 3183-3194, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738939

RESUMEN

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.


Asunto(s)
Estimulación Acústica , Conducta Animal , Ruido , Animales , Femenino , Masculino , Ratones , Vías Auditivas/fisiología , Vías Auditivas/fisiopatología , Percepción Auditiva/fisiología , Umbral Auditivo , Cóclea/fisiología , Cóclea/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Ratones Endogámicos C57BL , Ratones Noqueados , Ruido/efectos adversos , Núcleo Olivar/fisiología , Enmascaramiento Perceptual , Fenotipo , Receptores Nicotínicos/genética , Receptores Nicotínicos/deficiencia , Reflejo de Sobresalto
9.
BMC Neurol ; 23(1): 127, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991344

RESUMEN

BACKGROUND: Hypertrophic olivary degeneration (HOD), a rare form of transsynaptic degeneration, is secondary to dentato-rubro-olivary pathway injuries in some cases. We describe a unique case of an HOD patient who presented with palatal myoclonus secondary to Wernekinck commissure syndrome caused by a rare bilateral "heart-shaped" infarct lesion in the midbrain. CASE PRESENTATION: A 49-year-old man presented with progressive gait instability in the past 7 months. The patient had a history of posterior circulation ischemic stroke presenting with diplopia, slurred speech, and difficulty in swallowing and walking 3 years prior to admission. The symptoms improved after treatment. The feeling of imbalance appeared and was aggravated gradually in the past 7 months. Neurological examination demonstrated dysarthria, horizontal nystagmus, bilateral cerebellar ataxia, and 2-3 Hz rhythmic contractions of the soft palate and upper larynx. Magnetic resonance imaging (MRI) of the brain performed 3 years prior to this admission showed an acute midline lesion in the midbrain exhibiting a remarkable "heart appearance" on diffusion weighted imaging. MRI after this admission revealed T2 and FLAIR hyperintensity with hypertrophy of the bilateral inferior olivary nucleus. We considered a diagnosis of HOD resulting from a midbrain heart-shaped infarction, which caused Wernekinck commissure syndrome 3 years prior to admission and later HOD. Adamantanamine and B vitamins were administered for neurotrophic treatment. Rehabilitation training was also performed. One year later, the symptoms of this patient were neither improved nor aggravated. CONCLUSION: This case report suggests that patients with a history of midbrain injury, especially Wernekinck commissure injury, should be alert to the possibility of delayed bilateral HOD when new symptoms occur or original symptoms are aggravated.


Asunto(s)
Ataxia Cerebelosa , Mioclonía , Masculino , Humanos , Persona de Mediana Edad , Mioclonía/complicaciones , Núcleo Olivar/patología , Mesencéfalo/patología , Hipertrofia/patología , Imagen por Resonancia Magnética/métodos , Síndrome
10.
BMC Neurol ; 23(1): 105, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918827

RESUMEN

BACKGROUND: Hypertrophic olivary degeneration (HOD) is a rare condition caused by lesions within the dentato-rubro-olivary pathway, resulting in ocular nystagmus and palatal myoclonus (oculopalatal tremor) but not usually dystonia. Dystonia is an uncommon association, and we present the first reported association of hypertrophic olivary degeneration with bilateral vocal cord dystonia. CASE PRESENTATION: A 33 year old male presented initially with acute hydrocephalus on the background of previous ventriculoperitoneal (VP) shunting for previously treated medulloblastoma. After revision of the VP shunt, the patient developed progressive hiccups and stridor leading to respiratory failure requiring intubation. Ocular pendular nystagmus and palatal myoclonus at 3 Hz was observed. Flexible nasendoscopy (FNE) demonstrated bilateral tonic adduction of the vocal folds with 3 Hz coarse supraglottic, pharyngeal and palatal rhythmic myoclonus. MRI imaging demonstrated T2 hyperintensity within the bilateral inferior olivary nuclei consistent with stage 3 radiological HOD. CONCLUSIONS: Dystonia is a rarely reported phenomenon in HOD but is not unexpected with the inferior olivary nucleus implicated in dystonic disorders. We report the association of HOD with bilateral vocal cord adductor dystonia, a potentially life threatening condition.


Asunto(s)
Distonía , Trastornos Distónicos , Mioclonía , Nistagmo Patológico , Masculino , Humanos , Adulto , Pliegues Vocales/diagnóstico por imagen , Pliegues Vocales/patología , Distonía/complicaciones , Mioclonía/complicaciones , Núcleo Olivar/patología , Imagen por Resonancia Magnética/métodos , Hipertrofia/patología
11.
Zoolog Sci ; 40(2): 141-150, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37042693

RESUMEN

The cerebellum receives inputs via the climbing fibers originating from the inferior olivary nucleus in the ventral medulla. In mammals, the climbing fibers entwine and terminate onto both major and peripheral branches of dendrites of the Purkinje cells. In this study, the inferior olivary nucleus and climbing fiber in the goldfish were investigated with several histological techniques. By neural tracer application to the hemisphere of the cerebellum, labeled inferior olivary neurons were found in the ventral edge of the contralateral medulla. Kainate stimulated Co + + uptake and gephyrin immunoreactivities were found in inferior olivary neurons, indicating, respectively, that they receive both excitatory (glutamatergic) and inhibitory (GABAergic or glycinergic) inputs. Inferior olivary neurons express vglut2.1 transcripts, suggesting they are glutamatergic. Around 85% of inferior olivary neurons were labeled with anti-calretinin antiserum. Calretinin immunoreactive (ir) climbing fiber terminal-like structures were distributed near the Purkinje cells and in the molecular layer. Double labeling immunofluorescence with anti-calretinin and zebrin II antisera revealed that the calretinin-ir climbing fibers run along and made synaptic-like contacts on the major dendrites of the zebrin II-ir Purkinje cells. In teleost fish, cerebellar efferent neurons, eurydendroid cells, also lie near the Purkinje cells and extend dendrites outward to intermingle with dendrites of the Purkinje cells within the molecular layer. Here we found no contacts between the climbing fiber terminals and the eurydendroid cell dendrites. These results support the idea that Purkinje cells, but not eurydendroid cells, receive strong inputs via the climbing fibers, similar to the mammalian situation.


Asunto(s)
Carpa Dorada , Núcleo Olivar , Animales , Núcleo Olivar/fisiología , Fibras Nerviosas/fisiología , Neuronas , Células de Purkinje/fisiología , Mamíferos
12.
Neuropathology ; 43(6): 479-485, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37165430

RESUMEN

Genetic Creutzfeldt-Jakob disease (gCJD) with a V180I mutation (V180I gCJD) is the most common type of gCJD in Japan, characterized by an older age at onset, slower progression, and moderate to severe cortical degeneration with spongiform changes and sparing of the brainstem and cerebellum. Degeneration of the inferior olivary nucleus (IO) is rarely observed in patients with CJD but is known to occur in fatal familial insomnia (FFI) and MM2-thalamic-type sporadic CJD (sCJD-MM2T) involving type 2 prion protein (M2T prion). Here we report on an 81-year-old Japanese woman who initially developed depressive symptoms followed by progressive cognitive impairment, myoclonus, and hallucinations and died after a clinical course of 23 months. Insomnia was not evident. Genetic analysis of the prion protein (PrP) identified a V180I mutation with methionine/valine heterozygosity at codon 129. Pathologic analysis demonstrated extensive spongiform degeneration, neuronal loss in the cortices, and weak synaptic-type PrP deposition. Except for IO degeneration, the clinicopathologic features and Western blotting PrP band pattern were compatible with those of previously reported V180I gCJD cases. Quantitative analysis revealed that the neuronal density of the IO, especially in the dorsal area, was considerably reduced to the same extent as that of a patient with sCJD-MM2T but preserved in other patients with V180I gCJD and sCJD-MM1 (this patient, 2.3 ± 0.53/mm2 ; a patient with sCJD-MM2T, 4.2 ± 2; a patient with V180I gCJD, 60.5 ± 9.3; and a patient with sCJD-MM1, 84.5 ± 17.9). Use of the protein misfolding cyclic amplification (PMCA) method confirmed the presence of the M2T prion strain, suggesting that the latter might be associated with IO degeneration in V180I gCJD. Autopsy studies are necessary to better understand the nature of CJD, since even if patients present with the common clinical picture, pathologic analysis might provide new insights, as was the case here.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Femenino , Humanos , Anciano de 80 o más Años , Priones/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Autopsia , Núcleo Olivar/patología
13.
Neurosurg Rev ; 46(1): 181, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37468768

RESUMEN

The dentato-rubro-olivary pathway, also known as the Guillain-Mollaret triangle (GMT) or myoclonic triangle, consists of the dentate nucleus, the red nucleus, and the inferior olivary nucleus (ION). GMT is important for motor coordination and control, and abnormalities in this network can lead to various neurological disorders. The present study followed a systematic approach in conducting a review on GMT studies. The inclusion criteria were limited to human subjects with primary objectives of characterizing and evaluating GMT syndromes, and the methodology used was not a determining factor for eligibility. The search strategy used MeSH terms and keywords relevant to the study's objective in various databases until August 2022. A total of 76 studies were included in the review after assessing 527 articles for eligibility based on the final inclusion criteria. Most of the studies evaluated the GMT in human subjects, with the majority utilizing magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), or combination of them. The review found that Hypertrophic olivary degeneration (HOD), a common consequence of GMT damage, has diverse underlying causes, including stroke, brainstem cavernous malformations, and structural impairments. Palatal tremor, ocular myoclonus, ataxia, nystagmus, and vertigo were frequently reported symptoms associated with HOD. This systematic review provides comprehensive insights into the association between GMT and various neurological syndromes, shedding light on the diagnostic, etiological, and prognostic aspects of GMT dysfunction. Understanding the role of the GMT and its implications in movement disorders could pave the way for improved treatment options and better management of neurological conditions related to this critical brainstem pathway.


Asunto(s)
Imagen de Difusión Tensora , Accidente Cerebrovascular , Humanos , Imagen de Difusión Tensora/métodos , Síndrome , Núcleo Olivar/metabolismo , Núcleo Olivar/patología , Imagen por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Hipertrofia/diagnóstico , Hipertrofia/etiología , Hipertrofia/patología
14.
J Acoust Soc Am ; 153(3): 1723, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002081

RESUMEN

The peripheral auditory system is influenced by the medial olivocochlear (MOC) and middle ear muscle (MEM) reflexes. When elicited by contralateral acoustic stimulation (CAS), these reflexes reduce cochlear amplification (MOC reflex) and limit low-frequency transmission through the middle ear (MEM reflex). The independent roles of these reflexes on auditory physiology and perception are difficult to distinguish. The amplitude of the cochlear microphonic (CM) is expected to increase or decrease when the MOC and MEM reflexes are elicited by CAS, respectively, which could lead to a straightforward interpretation of what reflex is dominant for a given CAS level. CM and ear canal sound pressure level (SPL) were measured for a 500 Hz, 90 dB SPL probe in the presence of contralateral broadband noise (CBBN) for levels ranging from 45-75 dB SPL. In most subjects, CM amplitude increased for CBBN levels of 45 and 55 dB SPL, while no change in ear canal SPL was observed, consistent with eliciting the MOC reflex. Conversely, CM amplitude decreased, and ear canal SPL increased in the presence of 65 and 75 dB SPL CBBN, consistent with eliciting the MEM reflex. A CM-based test of the MOC reflex may facilitate detection of MEM effects and the assessment of adults with cochlear hearing loss.


Asunto(s)
Cóclea , Núcleo Olivar , Adulto , Humanos , Núcleo Olivar/fisiología , Cóclea/fisiología , Estimulación Acústica , Oído Medio/fisiología , Músculos
15.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051523

RESUMEN

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Asunto(s)
Núcleo Coclear , Colículos Inferiores , Animales , Conejos , Colículos Inferiores/fisiología , Núcleo Coclear/fisiología , Vías Eferentes/fisiología , Cóclea/fisiología , Audición/fisiología , Núcleo Olivar/fisiología , Vías Auditivas/fisiología
16.
Int J Audiol ; 62(2): 110-117, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35195043

RESUMEN

OBJECTIVE: The medial olivocochlear (MOC) reflex provides unmasking of sounds in noise, but its contribution to speech-in-noise perception remains unclear due to conflicting results. This study determined associations between MOC reflex strength and sentence recognition in noise in individuals with normal hearing. DESIGN: MOC reflex strength was assessed using contralateral inhibition of transient-evoked otoacoustic emissions (TEOAEs). Scores on the AzBio sentence task were quantified at three signal-to-noise ratios (SNRs). Additionally, slope and threshold of the psychometric function were computed. Associations between MOC reflex strength and speech-in-noise outcomes were assessed using Spearman rank correlations. STUDY SAMPLE: Nineteen young adults with normal hearing participated, with data from 17 individuals (mean age = 21.8 years) included in the analysis. RESULTS: Contralateral noise significantly decreased the amplitude of TEOAEs. A range of contralateral inhibition values was exhibited across participants. Scores increased significantly with increasing SNR. Contrary to hypotheses, there were no significant correlations between MOC reflex strength and score, nor were there any significant correlations between MOC reflex strength and measures of the psychometric function. CONCLUSIONS: Results found no significant monotonic relationship between MOC reflex strength and sentence recognition in noise. Future work is needed to determine the functional role of the MOC reflex.


Asunto(s)
Núcleo Olivar , Emisiones Otoacústicas Espontáneas , Adulto Joven , Humanos , Adulto , Emisiones Otoacústicas Espontáneas/fisiología , Cóclea/fisiología , Ruido/efectos adversos , Reflejo/fisiología , Estimulación Acústica
17.
J Neurosci ; 41(4): 674-688, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33268542

RESUMEN

The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4ß2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.


Asunto(s)
Estimulación Acústica , Sistema Nervioso Parasimpático/fisiología , Cuerpo Trapezoide/fisiología , Acetilcolina/fisiología , Animales , Vías Auditivas/fisiología , Femenino , Gerbillinae , Masculino , Neuronas/fisiología , Núcleo Olivar/fisiología , Puente/fisiología , Receptores Nicotínicos/fisiología , Sonido , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
18.
J Physiol ; 600(1): 61-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34761815

RESUMEN

Understanding communication signals, especially in noisy environments, is crucial to social interactions. Yet, as we age, acoustic signals can be disrupted by cochlear damage and the subsequent auditory nerve fibre degeneration. The most vulnerable medium- and high-threshold-auditory nerve fibres innervate various cell types in the cochlear nucleus, among which the small cells are unique in receiving this input exclusively. Furthermore, small cells project to medial olivocochlear (MOC) neurons, which in turn send branched collaterals back into the small cell cap. Here, we use single-unit recordings to characterise small cell firing characteristics and demonstrate superior intensity coding in this cell class. We show converse effects when activating/blocking the MOC system, demonstrating that small-cell unique coding properties are facilitated by direct cholinergic input from the MOC system. Small cells also maintain tone-level coding in the presence of background noise. Finally, small cells precisely code low-frequency modulation more accurately than other ventral cochlear nucleus cell types, demonstrating accurate envelope coding that may be important for vocalisation processing. These results highlight the small cell olivocochlear circuit as a key player in signal processing in noisy environments, which may be selectively degraded in ageing or after noise insult. KEY POINTS: Cochlear nucleus small cells receive input from low/medium spontaneous rate auditory nerve fibres and medial olivocochlear neurons. Electrical stimulation of medial olivocochlear neurons in the ventral nucleus of the trapezoid body and blocking cholinergic input to small cells using atropine demonstrates an excitatory cholinergic input to small cells, which increases responses to suprathreshold sound. Unique inputs to small cells produce superior sound intensity coding. This coding of intensity is preserved in the presence of background noise, an effect exclusive to this cell type in the cochlear nucleus. These results suggest that small cells serve an essential function in the ascending auditory system, which may be relevant to disorders such as hidden hearing loss.


Asunto(s)
Núcleo Coclear , Cuerpo Trapezoide , Estimulación Acústica , Cóclea , Nervio Coclear , Núcleo Olivar
19.
J Physiol ; 600(23): 5077-5099, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254104

RESUMEN

The cerebellum is the largest sensorimotor structure in the brain. A fundamental organizational feature of its cortex is its division into a series of rostrocaudally elongated zones. These are defined by their inputs from specific parts of the inferior olive and Purkinje cell output to specific cerebellar and vestibular nuclei. However, little is known about how patterns of neuronal activity in zones, and their microcircuit subdivisions, microzones, are related to behaviour in awake animals. In the present study, we investigated the organization of microzones within the C3 zone and their activity during a skilled forelimb reaching task in cats. Neurons in different microzones of the C3 zone, functionally determined by receptive field characteristics, differed in their patterns of activity during movement. Groups of Purkinje cells belonging to different receptive field classes, and therefore belonging to different microzones, were found to collectively encode different aspects of the reach controlled by the C3 zone. Our results support the hypothesis that the cerebellar C3 zone is organized and operates within a microzonal frame of reference, with a specific relationship between the sensory input to each microzone and its motor output. KEY POINTS: A defining feature of cerebellar organization is its division into a series of zones and smaller subunits termed microzones. Much of how zones and microzones are organized has been determined in anaesthetized preparations, and little is known about their function in awake animals. We recorded from neurons in the forelimb part of the C3 zone 'in action' by recording from single cerebellar cortical neurons located in different microzones defined by their peripheral receptive field properties during a forelimb reach-retrieval task in cats. Neurons from individual microzones had characteristic patterns of activity during movement, indicating that function is organized in relation to microcomplexes.


Asunto(s)
Corteza Cerebelosa , Células de Purkinje , Gatos , Animales , Corteza Cerebelosa/fisiología , Células de Purkinje/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología , Cerebelo/fisiología
20.
J Physiol ; 600(11): 2747-2763, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35443073

RESUMEN

The descending auditory system modulates the ascending system at every level. The final descending, or efferent, stage comprises lateral olivocochlear and medial olivocochlear (MOC) neurons. MOC somata in the ventral brainstem project axons to the cochlea to synapse onto outer hair cells (OHC), inhibiting OHC-mediated cochlear amplification. MOC suppression of OHC function is implicated in cochlear gain control with changing sound intensity, detection of salient stimuli, attention and protection against acoustic trauma. Thus, sound excites MOC neurons to provide negative feedback of the cochlea. Sound also inhibits MOC neurons via medial nucleus of the trapezoid body (MNTB) neurons. However, MNTB-MOC synapses exhibit short-term depression, suggesting reduced MNTB-MOC inhibition during sustained stimuli. Further, due to high rates of both baseline and sound-evoked activity in MNTB neurons in vivo, MNTB-MOC synapses may be tonically depressed. To probe this, we characterized short-term plasticity of MNTB-MOC synapses in mouse brain slices. We mimicked in vivo-like temperature and extracellular calcium conditions, and in vivo-like activity patterns of fast synaptic activation rates, sustained activation and prior tonic activity. Synaptic depression was sensitive to extracellular calcium concentration and temperature. During rapid MNTB axon stimulation, postsynaptic currents in MOC neurons summated but with concurrent depression, resulting in smaller, sustained currents, suggesting tonic inhibition of MOC neurons during rapid circuit activity. Low levels of baseline MNTB activity did not significantly reduce responses to subsequent rapid activity that mimics sound stimulation, indicating that, in vivo, MNTB inhibition of MOC neurons persists despite tonic synaptic depression. KEY POINTS: Inhibitory synapses from the medial nucleus of the trapezoid body (MNTB) onto medial olivocochlear (MOC) neurons exhibit short-term plasticity that is sensitive to calcium and temperature, with enhanced synaptic depression occurring at higher calcium concentrations and at room temperature. High rates of background synaptic activity that mimic the upper limits of spontaneous MNTB activity cause tonic synaptic depression of MNTB-MOC synapses that limits further synaptic inhibition. High rates of activity at MNTB-MOC synapses cause synaptic summation with concurrent depression to yield a response with an initial large amplitude that decays to a tonic inhibition.


Asunto(s)
Calcio , Cuerpo Trapezoide , Animales , Cóclea/fisiología , Ratones , Plasticidad Neuronal/fisiología , Neuronas Eferentes/fisiología , Núcleo Olivar/fisiología , Sinapsis/fisiología , Cuerpo Trapezoide/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA