Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 537
Filtrar
1.
Vet Res ; 55(1): 19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360700

RESUMEN

A positive Mycoplasma hyopneumoniae PCR result in a clinical specimen may eventually represent the mere detection of non-viable bacteria, complicating the diagnostic interpretation. Thus, the objective of this study was to evaluate the PCR detection of non-viable M. hyopneumoniae and its residual cell-free DNA in live pigs. Pigs were inoculated with either active or inactivated M. hyopneumoniae and were sampled for up to 14 days. Mycoplasma hyopneumoniae was not detected by PCR at any timepoint in pigs inoculated with the inactivated bacterium, suggesting that in healthy pigs, the non-viable M. hyopneumoniae DNA was rapidly sensed and cleared.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Porcinos , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/microbiología , Sistema Respiratorio , Enfermedades de los Porcinos/microbiología
2.
Can Vet J ; 65(7): 707-711, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952762

RESUMEN

A swine production system had 3 sections located a few kilometers apart. Sections A and C contained several thousand sows and nursery and finishing pigs. Section B, located between the other 2 sections, was the smallest and had 6 finishing sites and 2 sow sites. The entire system was infected with porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, and Actinobacillus pleuropneumoniae. Section B was depopulated, cleaned, disinfected, and repopulated with negative gilts. Despite extreme measures, recontamination occurred for each pathogen, with aerosol considered the most plausible contamination source.


Transmission suspectée d'agents pathogènes porcins par aérosol : un cas de terrainUn système de production porcine comportait 3 sections situées à quelques kilomètres l'une de l'autre. Les sections A et C contenaient plusieurs milliers de truies et de porcs en maternité et en finition. La section B, située entre les 2 autres sections, était la plus petite et comptait 6 sites de finition et 2 sites de truies. L'ensemble du système était infecté par le virus du syndrome reproducteur et respiratoire porcin, Mycoplasma hyopneumoniae et Actinobacillus pleuropneumoniae. La section B a été dépeuplée, nettoyée, désinfectée et repeuplée de cochettes négatives. Malgré des mesures extrêmes, une recontamination s'est produite pour chaque agent pathogène, les aérosols étant considérés comme la source de contamination la plus plausible.(Traduit par Dr Serge Messier).


Asunto(s)
Actinobacillus pleuropneumoniae , Aerosoles , Mycoplasma hyopneumoniae , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/virología , Mycoplasma hyopneumoniae/aislamiento & purificación , Actinobacillus pleuropneumoniae/aislamiento & purificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Infecciones por Actinobacillus/veterinaria , Infecciones por Actinobacillus/transmisión , Infecciones por Actinobacillus/microbiología , Neumonía Porcina por Mycoplasma/transmisión , Femenino , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Crianza de Animales Domésticos
3.
Vet Res ; 54(1): 16, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859402

RESUMEN

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. To minimize the economic losses caused by this disease, M. hyopneumoniae vaccination is commonly practiced. However, the persistence of M. hyopneumoniae vaccine-induced immunity, especially the cell-mediated immunity, till the moment of slaughter has not been investigated yet. Therefore, on two commercial farms, 25 pigs (n = 50) received a commercial bacterin intramuscularly at 16 days of age. Each month, the presence of M. hyopneumoniae-specific serum antibodies was analyzed and the proliferation of and TNF-α, IFN-γ and IL-17A production by different T cell subsets in blood was assessed using recall assays. Natural infection with M. hyopneumoniae was assumed in both farms. However, the studied pigs remained M. hyopneumoniae negative for almost the entire trial. Seroconversion was not observed after vaccination and all pigs became seronegative at two months of age. The kinetics of the T cell subset frequencies was similar on both farms. Mycoplasma hyopneumoniae-specific cytokine-producing CD4+CD8+ T cells were found in blood of pigs from both farms at one month of age but decreased significantly with increasing age. On the other hand, T cell proliferation after in vitro M. hyopneumoniae stimulation was observed until the end of the fattening period. Furthermore, differences in humoral and cell-mediated immune responses after M. hyopneumoniae vaccination were not seen between pigs with and without maternally derived antibodies. This study documents the long-term M. hyopneumoniae vaccine-induced immune responses in fattening pigs under field conditions. Further research is warranted to investigate the influence of a natural infection on these responses.


Asunto(s)
Vacunas Bacterianas , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Vacunas Bacterianas/inmunología , Linfocitos T CD8-positivos , Activación de Linfocitos , Porcinos , Neumonía Porcina por Mycoplasma/prevención & control , Linfocitos T CD4-Positivos , Citocinas , Anticuerpos Antibacterianos
4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047564

RESUMEN

Mycoplasma hyopneumoniae is a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from Mycoplasma hyopneumoniae and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days. On the first day, the piglets were weighed and, from the third day onwards, submitted to blood collections for the detection and quantification of anti-Mycoplasma hyopneumoniae IgG. Nasal swabs were collected to monitor IgA by ELISA, and oropharyngeal swabs were used to assess the bacterial load by qPCR. Biological samples were collected periodically from the third day of life until the 73rd day. At 41 days of life, 15 individuals of the same age, experimentally challenged with an inoculum containing M. hyopneumoniae, were co-housed with the animals from groups (1 to 4) in a single pen to increase the infection pressure during the nursery period. At 73 days, all piglets were euthanized, and lungs were evaluated by collecting samples for estimation of bacterial load by qPCR. Quantitative data obtained from physical parameters and laboratory investigation were analyzed by performing parametric or non-parametric statistical tests. Results indicate that animals from G2 showed smaller affected lung areas compared to G3. Animals from G2 and G4 had a low prevalence of animals shedding M. hyopneumoniae at 61 days of age. Additionally, no correlation was observed between lung lesions and M. hyopneumoniae load in lung and BALF samples in animals that received the oral vaccine, while a strong correlation was observed in other groups. In the present study, evidence points to the effectiveness of the oral vaccine developed for controlling M. hyopneumoniae in pig production under field conditions.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Neumonía Porcina por Mycoplasma/prevención & control , Neumonía Porcina por Mycoplasma/microbiología , Adyuvantes de Vacunas , Vacunas Bacterianas , Dióxido de Silicio
5.
Microb Pathog ; 162: 105344, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34864146

RESUMEN

Mycoplasma hyopneumoniae is a bacterium that inhabits the swine respiratory tract, causing porcine enzootic pneumonia, which generates significant economic losses to the swine industry worldwide. The knowledge on M. hyopneumoniae biology and virulence have been significantly increased by genomics studies. However, around 30% of the predicted proteins remained of unknown function so far. According to the original annotation, the genome of M. hyopneumoniae 7448, a Brazilian pathogenic strain, had 693 coding DNA sequences, 244 of which were annotated as coding for hypothetical or uncharacterized proteins. Among them, there may be still several genes coding for unknown virulence factors. Therefore, this study aimed to functionally reannotate the whole set of 244 M. hyopneumoniae 7448 proteins of unknown function based on currently available database and bioinformatic tools, in order to predict novel potential virulence factors. Predictions of physicochemical properties, subcellular localization, function, overall association to virulence and antigenicity are provided. With that, 159 out of the set of 244 proteins of unknown function had a putative function associated to them, allowing identification of novel enzymes, membrane transporters, lipoproteins, DNA-binding proteins and adhesins. Furthermore, 139 proteins were generally associated to virulence, 14 of which had a function assigned and were differentially expressed between pathogenic and non-pathogenic strains of M. hyopneumoniae. Moreover, all extracellular or cytoplasmic membrane predicted proteins had putative epitopes identified. Overall, these analyses improved the functional annotation of M. hyopneumoniae 7448 genome from 65% to 87% and allowed the identification of new potential virulence factors.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Proteínas Bacterianas/genética , Mycoplasma hyopneumoniae/genética , Porcinos , Virulencia , Factores de Virulencia/genética
6.
Vet Res ; 53(1): 20, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303928

RESUMEN

Mycoplasma (M.) hyopneumoniae interacts with the respiratory microbiota and facilitates colonization of other pathogens. The present study investigated the pulmonary and nasal microbiota of M. hyopneumoniae-infected and M. hyopneumoniae-free pigs. Sixty-six pigs from three commercial herds were selected at the end of the finishing phase: 44 originated from two M. hyopneumoniae-positive herds and 22 from a M. hyopneumoniae-negative farm. At the slaughterhouse, samples of nasal turbinate (NT) and bronchus-alveolar lavage fluid (BALF) were collected. DNA was extracted with a commercial kit and the infection status was confirmed by qPCR. All samples from the same herd were pooled, and next-generation sequencing based on the hypervariable region V3-V4 of the 16 s bacterial rDNA was performed. Data analysis included the taxonomic analysis, Alpha diversity indexes, and Principal coordinates analysis (Pcoa) using Jaccard, Bray-Curtis, Weighted Unifrac, and Unweighted Unifrac distances. All pigs from the infected herds tested PCR positive for M. hyopneumoniae, whereas all pigs from the negative farm were negative. There was a greater diversity of microorganisms in BALF when compared to NT samples in all the farms. BALF samples from infected animals showed higher abundance of M. hyopneumoniae than NT samples and a predominance of Pasteurella multocida among the main species identified, which was also abundant in the M. hyopneumoniae-free herd. PCoa diagrams indicated that for most of the samples, dissimilarity on bacterial composition was observed, regardless of infection status and sample type. Therefore, the lung microbiota was modulated by M. hyopneumoniae infection, which could play a role in the pathogenesis of M. hyopneumoniae-disease.


Asunto(s)
Microbiota , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Líquido del Lavado Bronquioalveolar/microbiología , Pulmón/patología , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/microbiología , Porcinos , Enfermedades de los Porcinos/microbiología
7.
Vet Res ; 53(1): 62, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927699

RESUMEN

Autophagy is an important conserved homeostatic process related to nutrient and energy deficiency and organelle damage in diverse eukaryotic cells and has been reported to play an important role in cellular responses to pathogens and bacterial replication. The respiratory bacterium Mycoplasma hyopneumoniae has been identified to enter porcine alveolar macrophages, which are considered important immune cells. However, little is known about the role of autophagy in the pathogenesis of M. hyopneumoniae infection of porcine alveolar macrophages. Our experiments demonstrated that M. hyopneumoniae infection enhanced the formation of autophagosomes in porcine alveolar macrophages but prevented the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux and preventing the acidification and destruction of M. hyopneumoniae in low-pH surroundings. In addition, using different autophagy regulators to intervene in the autophagy process, we found that incomplete autophagy promoted the intracellular proliferation of M. hyopneumoniae. We also found that blocking the phosphorylation of JNK and Akt downregulated the autophagy induced by M. hyopneumoniae, but pathways related to two mitogen-activated protein kinases (Erk1/2 and p38) did not affect the process. Collectively, M. hyopneumoniae induced incomplete autophagy in porcine alveolar macrophages through the JNK and Akt signalling pathways; conversely, incomplete autophagy prevented M. hyopneumoniae from entering and degrading lysosomes to realize the proliferation of M. hyopneumoniae in porcine alveolar macrophages. These findings raise the possibility that targeting the autophagic pathway may be effective for the prevention or treatment of M. hyopneumoniae infection.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Autofagia , Proliferación Celular , Macrófagos Alveolares , Mycoplasma hyopneumoniae/fisiología , Neumonía Porcina por Mycoplasma/microbiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Porcinos , Enfermedades de los Porcinos/metabolismo
8.
Vet Res ; 53(1): 41, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35692039

RESUMEN

Little is known about how co-infections and genotype dynamics affect Mycoplasma hyopneumoniae infection in fattening pigs. This study was aimed at assessing the role of co-infections in M. hyopneumoniae outbreaks, their influence on the presence of M. hyopneumoniae genotypes and their impact on consequent lung lesions. Tracheobronchial swabs (TBS) from 300 finishers were collected from 10 farms at the onset of enzootic pneumonia outbreaks and 1 month later, sampling of 3 groups per farm: Group A showed clinical signs first, Group B was housed near Group A, and Group C was located in a different building. Pigs' lungs were scored at the slaughterhouse. TBS were tested for the main pathogens involved in respiratory diseases, and samples positive for M. hyopneumoniae were genotyped by multiple-locus variable-number tandem repeat analysis (MLVA). Pigs in Group A showed the highest prevalence and load of M. hyopneumoniae. A positive association was detected between M. hyopneumoniae and Mycoplasma hyorhinis, whereas Actinobacillus pleuropneumoniae was more frequent when the M. hyopneumoniae load was higher. Nevertheless, co-infection had no effect on lung lesion scores. The presence of multiple MLVA types (mixed infections) increased in time only in pigs from Group C and was positively associated with porcine reproductive and respiratory syndrome virus infection. Lung lesions were more severe in pigs with at least one TBS positive for M. hyopneumoniae and in pigs with a history of mixed infections. The central role of M. hyopneumoniae and relevance of mixed infections suggest that increased biosecurity might be beneficial for lung lesion sequelae.


Asunto(s)
Coinfección , Infecciones por Mycoplasma , Mycoplasma hyopneumoniae , Mycoplasma hyorhinis , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Coinfección/epidemiología , Coinfección/patología , Coinfección/veterinaria , Brotes de Enfermedades/veterinaria , Pulmón/patología , Infecciones por Mycoplasma/epidemiología , Infecciones por Mycoplasma/veterinaria , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/patología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/patología
9.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35887246

RESUMEN

Mycoplasma hyopneumoniae (Mhp), the primary pathogen causing Mycoplasma pneumonia of swine (MPS), brings massive economic losses worldwide. Genomic variability and post-translational protein modification can enhance the immune evasion of Mhp, which makes MPS prone to recurrent outbreaks on farms, even with vaccination or other treatments. The reverse vaccinology pipeline has been developed as an attractive potential method for vaccine development due to its high efficiency and applicability. In this study, a multi-epitope vaccine for Mhp was developed, and its immune responses were evaluated in mice and piglets. Genomic core proteins of Mhp were retrieved through pan-genome analysis, and four immunodominant antigens were screened by host homologous protein removal, membrane protein screening, and virulence factor identification. One immunodominant antigen, AAV27984.1 (membrane nuclease), was expressed by E. coli and named rMhp597. For epitope prioritization, 35 B-cell-derived epitopes were identified from the four immunodominant antigens, and 10 MHC-I and 6 MHC-II binding epitopes were further identified. The MHC-I/II binding epitopes were merged and combined to produce recombinant proteins MhpMEV and MhpMEVC6His, which were used for animal immunization and structural analysis, respectively. Immunization of mice and piglets demonstrated that MhpMEV could induce humoral and cellular immune responses. The mouse serum antibodies could detect all 11 synthetic epitopes, and the piglet antiserum suppressed the nuclease activity of rMhp597. Moreover, piglet serum antibodies could also detect cultured Mhp strain 168. In summary, this study provides immunoassay results for a multi-epitope vaccine derived from the reverse vaccinology pipeline, and offers an alternative vaccine for MPS.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Vacunas Bacterianas , Epítopos , Escherichia coli , Inmunidad Celular , Epítopos Inmunodominantes , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/prevención & control , Porcinos
10.
Trop Anim Health Prod ; 54(5): 249, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35941399

RESUMEN

Pneumonia caused by Mycoplasma (M.) hyopneumoniae is one of the major respiratory diseases in swine production. Commercial vaccines for M. hyopneumoniae are widely used in weaned piglets to reduce lung lesions and clinical signs in the downstream flow; however, no information regarding the effect of mass immunization of the breeding herd is available. The aim of this work was to evaluate a mass vaccination protocol for M. hyopneumoniae on the humoral response of sows and their offspring 24 h post-partum (trial registration number 40156). A total of 52 sows from two different farms (13 primiparous and 13 multiparous sows on each farm), one with mass vaccination (MVF) and one without mass vaccination against M. hyopneumoniae (control farm (CF)) were enrolled in this study. Five piglets from each litter were selected, resulting in 260 piglets. Blood was collected from sows and piglets 24 h post-partum for M. hyopneumoniae antibody detection by ELISA. The results showed that primiparous sows from MVF had higher antibody titers compared to multiparous sows of the same farm, and multiparous and primiparous sows from the CF. Similar results were evidenced in their offspring. The findings of this study suggest that mass vaccination results in a more robust serologic response on primiparous sows, which could be the main target of vaccination strategies for the breeding herd.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , Femenino , Inmunidad Humoral , Vacunación Masiva/veterinaria , Neumonía Porcina por Mycoplasma/prevención & control , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria
11.
J Clin Microbiol ; 59(5)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33597256

RESUMEN

Antemortem detection of Mycoplasma hyopneumoniae infection in swine production systems has relied on antibody testing, but the availability of tests based on DNA detection and novel diagnostic specimens, e.g., tracheal swabs and oral fluids, has the potential to improve M. hyopneumoniae surveillance. A field study was performed over a 14-week period during which 10 pigs in one pen at the center of a room with 1,250 6-week-old pigs housed in 46 pens were intratracheally inoculated with M. hyopneumoniae Thereafter, one tracheal sample, four serum samples, and one oral fluid sample were collected from every pen at 2-week intervals. Tracheal and oral fluid samples were tested for M. hyopneumoniae DNA and serum samples for M. hyopneumoniae antibody. Test results were modeled using a hierarchical Bayesian model, based on a latent spatial piecewise exponential survival model, to estimate the probability of detection by within-pen prevalence, number of positive pens in the barn, sample allocation, sample size, and sample type over time. Analysis showed that tracheal samples provided the earliest detection, especially at large sample sizes. While serum samples are more commonly collected and are less expensive to test, high probability of detection estimates were only obtained 30 days postexposure at large sample sizes. In all scenarios, probability of detection estimates for oral fluids within 30 days were significantly lower than those for tracheal and serum samples. Ultimately, the choice of specimen type, sample number, and assay will depend on testing objectives and economics, but the estimates provided here will assist in the design of M. hyopneumoniae surveillance and monitoring programs for different situations.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Teorema de Bayes , Neumonía Porcina por Mycoplasma/diagnóstico , Porcinos , Enfermedades de los Porcinos/diagnóstico
12.
Vet Res ; 52(1): 96, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193259

RESUMEN

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. Although cell mediated immunity (CMI) may play a role in protection against M. hyopneumoniae, its transfer from sows to their offspring is poorly characterized. Therefore, maternally-derived CMI was studied in piglets from vaccinated and non-vaccinated sows. The potential influence of cross-fostering before colostrum ingestion on the transfer of CMI from dam to piglets was also investigated. Six M. hyopneumoniae vaccinated sows from an endemically infected herd and 47 of their piglets, of which 24 piglets were cross-fostered, were included, as well as three non-vaccinated control sows from an M. hyopneumoniae-free herd and 24 of their piglets. Vaccinated sows received a commercial bacterin intramuscularly at 6 and 3 weeks prior to farrowing. The TNF-α, IFN-γ and IL-17A production by different T-cell subsets in blood of sows, colostrum and blood of piglets was assessed using a recall assay. In blood of sows cytokine producing T-cells were increased upon M. hyopneumoniae vaccination. Similarly, M. hyopneumoniae-specific T-cells were detected in blood of 2-day-old piglets born from these vaccinated sows. In contrast, no M. hyopneumoniae-specific cytokine producing T-cells were found in blood of piglets from control sows. No difference was found in M. hyopneumoniae-specific CMI between cross-fostered and non-cross-fostered piglets. In conclusion, different M. hyopneumoniae-specific T-cell subsets are transferred from the sow to the offspring. Further studies are required to investigate the role of these transferred cells on immune responses in piglets and their potential protective effect against M. hyopneumoniae infections.


Asunto(s)
Inmunidad Celular , Inmunidad Materno-Adquirida , Mycoplasma hyopneumoniae/fisiología , Neumonía Porcina por Mycoplasma/inmunología , Animales , Calostro/inmunología , Femenino , Parto , Neumonía Porcina por Mycoplasma/virología , Sus scrofa , Porcinos , Vacunación/veterinaria
13.
Vet Res ; 52(1): 67, 2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964969

RESUMEN

Mycoplasma hyopneumoniae (M. hyopneumoniae) is one of the primary agents involved in the porcine respiratory disease complex, economically one of the most important diseases in pigs worldwide. The pathogen adheres to the ciliated epithelium of the trachea, bronchi, and bronchioles, causes damage to the mucosal clearance system, modulates the immune system and renders the animal more susceptible to other respiratory infections. The pathogenesis is very complex and not yet fully understood. Cell-mediated and likely also mucosal humoral responses are considered important for protection, although infected animals are not able to rapidly clear the pathogen from the respiratory tract. Vaccination is frequently practiced worldwide to control M. hyopneumoniae infections and the associated performance losses, animal welfare issues, and treatment costs. Commercial vaccines are mostly bacterins that are administered intramuscularly. However, the commercial vaccines provide only partial protection, they do not prevent infection and have a limited effect on transmission. Therefore, there is a need for novel vaccines that confer a better protection. The present paper gives a short overview of the pathogenesis and immune responses following M. hyopneumoniae infection, outlines the major limitations of the commercial vaccines and reviews the different experimental M. hyopneumoniae vaccines that have been developed and tested in mice and pigs. Most experimental subunit, DNA and vector vaccines are based on the P97 adhesin or other factors that are important for pathogen survival and pathogenesis. Other studies focused on bacterins combined with novel adjuvants. Very few efforts have been directed towards the development of attenuated vaccines, although such vaccines may have great potential. As cell-mediated and likely also humoral mucosal responses are important for protection, new vaccines should aim to target these arms of the immune response. The selection of proper antigens, administration route and type of adjuvant and carrier molecule is essential for success. Also practical aspects, such as cost of the vaccine, ease of production, transport and administration, and possible combination with vaccines against other porcine pathogens, are important. Possible avenues for further research to develop better vaccines and to achieve a more sustainable control of M. hyopneumoniae infections are discussed.


Asunto(s)
Vacunas Bacterianas/farmacología , Mycoplasma hyopneumoniae/efectos de los fármacos , Neumonía Porcina por Mycoplasma/prevención & control , Vacunación/veterinaria , Animales , Neumonía Porcina por Mycoplasma/microbiología , Sus scrofa , Porcinos
14.
Genet Sel Evol ; 53(1): 24, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33731010

RESUMEN

BACKGROUND: The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. RESULTS: A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. CONCLUSIONS: We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.


Asunto(s)
Inmunogenicidad Vacunal , Neumonía Porcina por Mycoplasma/genética , Polimorfismo de Nucleótido Simple , Porcinos/genética , Transcriptoma , Animales , Anticuerpos/sangre , Anticuerpos/genética , Anticuerpos/inmunología , Femenino , Hemo/metabolismo , Inmunidad Innata , Masculino , Mycoplasma hyopneumoniae/inmunología , Activación Plaquetaria , Neumonía Porcina por Mycoplasma/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Porcinos/inmunología , Vacunación/veterinaria
15.
BMC Vet Res ; 17(1): 123, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726780

RESUMEN

BACKGROUND: Immunization of pigs with an inactivated Mycoplasma hyopneumoniae vaccine (bacterin) generates hyperimmune serum that contains high concentrations of anti-M. hyopneumoniae IgG. Commercially available IgG-ELISA kits cannot distinguish between anti-M. hyopneumoniae IgG in inactivated bacterin-induced hyperimmune sera and convalescent sera resulting from natural M. hyopneumoniae infection. Establishment of an ELISA to detect anti-M. hyopneumoniae IgG in convalescent sera will facilitate the evaluation of the M. hyopneumoniae status of pig farms. RESULTS: In this study, we expressed and purified recombinant Mhp366-N protein, which contains an epitope recognized by M. hyopneumoniae convalescent sera but not hyperimmune sera, for use as a coating antigen. For the M. hyopneumoniae convalescent serum IgG-ELISA, the optimal antigen concentration, blocking buffer, blocking time, dilution of serum, incubation time with serum, secondary antibody dilution, secondary antibody incubation time and colorimetric reaction time were 0.25 µg/mL, 2.5 % skim milk, 1 h, 1:500, 0.5 h, 1:10,000, 1 h and 15 min, respectively. Validation of the M. hyopneumoniae convalescent serum IgG-ELISA showed a cut-off value of 0.323, the intra-assay CV ranged from 3.27 to 7.26 %, the inter-assay CV ranged from 3.46 to 5.93 %, and the assay was able to differentiate convalescent sera from antibodies to 7 other porcine respiratory pathogens. The convalescent serum IgG-ELISA detected no anti-M. hyopneumoniae IgG in hyperimmune serum samples while a commercial IgG-ELISA identified 95/145 of these sera as positive. The accuracy of the M. hyopneumoniae convalescent serum IgG-ELISA was comparable to the sIgA-ELISA but better than the commercial IgG-ELISA. CONCLUSIONS: The convalescent serum IgG-ELISA is a reproducible, sensitive, and specific indirect ELISA to detect anti-M. hyopneumoniae IgG in naturally infected pathogen-induced convalescent sera. This ELISA could be used to carry out large scale surveillance of M. hyopneumoniae infection in pig farms regardless of vaccination status.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoglobulina G/sangre , Mycoplasma hyopneumoniae/inmunología , Neumonía Porcina por Mycoplasma/inmunología , Enfermedades de los Porcinos/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Convalecencia , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/inmunología , Neumonía Porcina por Mycoplasma/sangre , Proteínas Recombinantes/inmunología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Porcinos , Enfermedades de los Porcinos/sangre
16.
BMC Vet Res ; 17(1): 347, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749727

RESUMEN

BACKGROUND: Between 2018 and 2020, 989 clinical specimens from pigs showing clinical signs of a variety of swine diseases in 27 provinces in China were sampled and submitted for further testing. Nested PCR targeting the 16S rRNA gene of Mycoplasma hyopneumoniae and subsequent sequencing were used to analyse these specimens. Mycoplasma hyopneumoniae-positive samples were assayed by multilocus sequence typing (MLST). The aim of the study was to reveal the distribution of M. hyopneumoniae and determine the genotypes of M. hyopneumoniae in pig herds in China based on MLST. RESULTS: Among these 989 samples, 199 samples were M. hyopneumoniae-positive. The M. hyopneumoniae positivity rate was 7.2% (35/494) in 2018, 18.4% (38/207) in 2019, and 43.8% (126/288) in 2020. In total, 47 samples were successfully assayed by MLST. Sixteen new M. hyopneumoniae sequence types from 9 provinces were recorded in the present study. CONCLUSIONS: This is the first report on sample positivity rates and molecular typing results for M. hyopneumoniae in swine herds in China. MLST has revealed high genotype diversity among M. hyopneumoniae from different provinces of China.


Asunto(s)
Tipificación de Secuencias Multilocus/veterinaria , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/aislamiento & purificación , Animales , China , Variación Genética , Genotipo , Tipificación de Secuencias Multilocus/métodos , Neumonía Porcina por Mycoplasma/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria , ARN Ribosómico 16S , Porcinos
17.
BMC Vet Res ; 17(1): 82, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33596907

RESUMEN

BACKGROUND: Respiratory diseases are among the most important factors affecting swine farm productivity in Canada. The objectives of this study were to investigate antibody responses to porcine reproductive and respiratory syndrome virus (PRRSV), influenza A virus (IAV), and Mycoplasma hyopneumoniae (M. hyopneumoniae) from weaning to the end of the finisher stage on a subset of commercial swine farms in Ontario, Canada, and to examine the association between nursery diet and antibody responses. RESULTS: Overall, older pigs were more likely to test seropositive for PRRSV and less likely to test seropositive for M. hyopneumoniae (p <  0.001). Pigs were more likely to test seropositive for IAV at weaning and the end of the grower and finisher stages compared to the end of nursery (p <  0.001). Pigs that were seropositive for IAV were more likely to test seropositive for both PRRSV and M. hyopneumoniae (p <  0.001). Two, 9, and 4 groups that had more than 20% of pigs seropositive to PRRSV, IAV, and M. hyopneumoniae, respectively, from the end of nursery to the end of finisher were classified as seropositive. Pigs fed a plant-based (low complexity) diet during nursery were more likely to be seropositive for PRRSV (p <  0.001) but there were no significant differences in seropositivity to IAV or M. hyopneumoniae due to nursery diet complexity. CONCLUSIONS: This study provides information regarding changes in serum antibody in pigs across different stages of production and highlights periods of vulnerability. Additionally, these findings may encourage further research into the effects of nursery diet complexity on disease susceptibility and immune response.


Asunto(s)
Dieta/veterinaria , Infecciones por Orthomyxoviridae/veterinaria , Neumonía Porcina por Mycoplasma/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Enfermedades de los Porcinos/inmunología , Alimentación Animal/análisis , Crianza de Animales Domésticos/métodos , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Virus de la Influenza A/aislamiento & purificación , Mycoplasma hyopneumoniae/aislamiento & purificación , Ontario/epidemiología , Infecciones por Orthomyxoviridae/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/virología
18.
Infect Immun ; 88(10)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747599

RESUMEN

Mycoplasma hyopneumoniae is an important respiratory pathogen of pigs that causes persistent and secondary infections. However, the mechanisms by which this occurs are unclear. In this study, we established air-liquid interface culture systems for pig bronchial epithelial cells (ALI-PBECs) that were comparable to the conditions in the native bronchus in vivo We used this ALI-PBECs model to study the infection and migration characteristics of M. hyopneumoniaein vitro Based on the results, we confirmed that M. hyopneumoniae was able to adhere to ALI-PBECs and disrupt mucociliary function. Importantly, M. hyopneumoniae could migrate to the basolateral chamber through the paracellular route but not the transcellular pathway, and this was achieved by reversibly disrupting tight junctions (TJs) and increasing the permeability and damaging the integrity of the epithelial barrier. We examined the migration ability of M. hyopneumoniae using an ALI-PBECs model for the first time. The disruption of the epithelial barrier allowed M. hyopneumoniae to migrate to the basolateral chamber through the paracellular route, which may be related to immune evasion, extrapulmonary dissemination, and persistent infection of M. hyopneumoniae.


Asunto(s)
Traslocación Bacteriana/fisiología , Modelos Biológicos , Mycoplasma hyopneumoniae/fisiología , Mucosa Respiratoria/microbiología , Animales , Adhesión Bacteriana/fisiología , Bronquios/citología , Células Epiteliales , Depuración Mucociliar , Neumonía Porcina por Mycoplasma/microbiología , Neumonía Porcina por Mycoplasma/patología , Mucosa Respiratoria/patología , Porcinos , Uniones Estrechas/patología
19.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32312764

RESUMEN

Mycoplasma hyopneumoniae causes the disease porcine enzootic pneumonia, a highly contagious and chronic disease affecting pigs. Understanding the molecular mechanisms of its pathogenicity is critical for developing effective interventions to control this swine respiratory disease. Here, we describe a novel virulence mechanism by which M. hyopneumoniae interferes with the host unfolded protein response (UPR) and eventually facilitates bacterial adhesion and infection. We observed that M. hyopneumoniae infection suppressed the UPR target molecules GRP78 and CHOP by reducing PKR-like endoplasmic reticulum kinase/eukaryotic initiation factor 2 alpha (PERK/eIF2α) phosphorylation, ATF6 cleavage, and X-box binding protein 1 (XBP1) splicing. Interestingly, further analyses revealed that host UPR inhibition subsequently suppressed the NF-κB pathway, leading to the reduced production of porcine beta-defensin 2 (PBD-2), thus facilitating M. hyopneumoniae adherence and infection. This study provides new insights into the molecular pathogenesis of M. hyopneumoniae and sheds light upon its interactions with the host.


Asunto(s)
Mycoplasma hyopneumoniae/fisiología , Neumonía Porcina por Mycoplasma/metabolismo , Neumonía Porcina por Mycoplasma/microbiología , Respuesta de Proteína Desplegada , beta-Defensinas/biosíntesis , Animales , Adhesión Bacteriana , Biomarcadores , Interacciones Huésped-Patógeno , FN-kappa B/metabolismo , Transducción de Señal , Porcinos
20.
J Clin Microbiol ; 58(12)2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-32967897

RESUMEN

Mycoplasma hyopneumoniae is an economically significant pathogen of swine. M. hyopneumoniae serum antibody detection via commercial enzyme-linked immunosorbent assays (ELISAs) is widely used for routine surveillance in commercial swine production systems. Samples from two studies were used to evaluate assay performance. In study 1, 6 commercial M. hyopneumoniae ELISAs were compared using serum samples from 8-week-old cesarean-derived, colostrum-deprived (CDCD) pigs allocated to the following 5 inoculation groups of 10 pigs each: (i) negative control, (ii) Mycoplasma flocculare (strain 27399), (iii) Mycoplasma hyorhinis (strain 38983), (iv) Mycoplasma hyosynoviae (strain 34428), and (v) M. hyopneumoniae (strain 232). Weekly serum and daily oral fluid samples were collected through 56 days postinoculation (dpi). The true status of pigs was established by PCR testing on oral fluids samples over the course of the observation period. Analysis of ELISA performance at various cutoffs found that the manufacturers' recommended cutoffs were diagnostically specific, i.e., produced no false positives, with the exceptions of 2 ELISAs. An analysis based on overall misclassification error rates found that 4 ELISAs performed similarly, although one assay produced more false positives. In study 2, the 3 best-performing ELISAs from study 1 were compared using serum samples generated under field conditions. Ten 8-week-old pigs were intratracheally inoculated with M. hyopneumoniae Matched serum and tracheal samples (to establish the true pig M. hyopneumoniae status) were collected at 7- to 14-day intervals through 98 dpi. Analyses of sensitivity and specificity showed similar performance among these 3 ELISAs. Overall, this study provides an assessment of the performance of current M. hyopneumoniae ELISAs and an understanding of their use in surveillance.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Anticuerpos Antibacterianos , Ensayo de Inmunoadsorción Enzimática , Mycoplasma , Neumonía Porcina por Mycoplasma/diagnóstico , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA