Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.366
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(15): 3973-3991.e24, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38897195

RESUMEN

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.


Asunto(s)
Antenas de Artrópodos , Odorantes , Neuronas Receptoras Olfatorias , Animales , Neuronas Receptoras Olfatorias/metabolismo , Antenas de Artrópodos/fisiología , Olfato/fisiología , Saltamontes/fisiología , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Vías Olfatorias/fisiología , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Locusta migratoria/fisiología , Calcio/metabolismo
2.
Cell ; 187(18): 5081-5101.e19, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996528

RESUMEN

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.


Asunto(s)
Axones , Proteínas de Drosophila , Drosophila melanogaster , Proteínas del Tejido Nervioso , Neuronas Receptoras Olfatorias , Transducción de Señal , Sinapsis , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Axones/metabolismo , Sinapsis/metabolismo , Actinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Encéfalo/metabolismo , Dendritas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Tenascina , Proteínas de Unión al GTP rac
3.
Cell ; 185(17): 3104-3123.e28, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35985288

RESUMEN

Aedes aegypti mosquitoes are a persistent human foe, transmitting arboviruses including dengue when they feed on human blood. Mosquitoes are intensely attracted to body odor and carbon dioxide, which they detect using ionotropic chemosensory receptors encoded by three large multi-gene families. Genetic mutations that disrupt the olfactory system have modest effects on human attraction, suggesting redundancy in odor coding. The canonical view is that olfactory sensory neurons each express a single chemosensory receptor that defines its ligand selectivity. We discovered that Ae. aegypti uses a different organizational principle, with many neurons co-expressing multiple chemosensory receptor genes. In vivo electrophysiology demonstrates that the broad ligand-sensitivity of mosquito olfactory neurons depends on this non-canonical co-expression. The redundancy afforded by an olfactory system in which neurons co-express multiple chemosensory receptors may increase the robustness of the mosquito olfactory system and explain our long-standing inability to disrupt the detection of humans by mosquitoes.


Asunto(s)
Aedes , Neuronas Receptoras Olfatorias , Aedes/genética , Animales , Humanos , Ligandos , Odorantes
4.
Cell ; 185(21): 3896-3912.e22, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36167070

RESUMEN

Olfactory sensory neurons (OSNs) convert the stochastic choice of one of >1,000 olfactory receptor (OR) genes into precise and stereotyped axon targeting of OR-specific glomeruli in the olfactory bulb. Here, we show that the PERK arm of the unfolded protein response (UPR) regulates both the glomerular coalescence of like axons and the specificity of their projections. Subtle differences in OR protein sequences lead to distinct patterns of endoplasmic reticulum (ER) stress during OSN development, converting OR identity into distinct gene expression signatures. We identify the transcription factor Ddit3 as a key effector of PERK signaling that maps OR-dependent ER stress patterns to the transcriptional regulation of axon guidance and cell-adhesion genes, instructing targeting precision. Our results extend the known functions of the UPR from a quality-control pathway that protects cells from misfolded proteins to a sensor of cellular identity that interprets physiological states to direct axon wiring.


Asunto(s)
Axones/metabolismo , Estrés del Retículo Endoplásmico , Receptores Odorantes , Animales , Ratones , Bulbo Olfatorio , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Factores de Transcripción/metabolismo
5.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34879231

RESUMEN

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , Sensación/genética , Transcripción Genética , Animales , Encéfalo/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Odorantes , Bulbo Olfatorio/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
6.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34551316

RESUMEN

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Asunto(s)
Vías Olfatorias/citología , Vías Olfatorias/diagnóstico por imagen , Imagen de Lapso de Tiempo , Animales , Axones/fisiología , Células Cultivadas , Dendritas/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Microtúbulos/metabolismo , Neuronas Receptoras Olfatorias/fisiología , Factores de Tiempo
7.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34798069

RESUMEN

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Asunto(s)
Autopsia/métodos , COVID-19/mortalidad , COVID-19/virología , Bulbo Olfatorio/virología , Mucosa Olfatoria/virología , Mucosa Respiratoria/virología , Anciano , Anosmia , COVID-19/fisiopatología , Endoscopía/métodos , Femenino , Glucuronosiltransferasa/biosíntesis , Humanos , Inmunohistoquímica , Hibridación in Situ , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Trastornos del Olfato , Neuronas Receptoras Olfatorias/metabolismo , Sistema Respiratorio , SARS-CoV-2 , Olfato
8.
Cell ; 181(4): 749-753, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413294

RESUMEN

In 1991, Buck and Axel published a landmark study in Cell for work that was awarded the 2004 Nobel Prize. The identification of the olfactory receptors as the largest family of GPCRs catapulted olfaction into mainstream neurobiology. This BenchMark revisits Buck's experimental innovation and its surprising success at the time.


Asunto(s)
Receptores Odorantes/metabolismo , Olfato/fisiología , Distinciones y Premios , Historia del Siglo XX , Humanos , Neurobiología , Premio Nobel , Neuronas Receptoras Olfatorias , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31955847

RESUMEN

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Asunto(s)
Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Proteómica/métodos , Animales , Axones/metabolismo , Encéfalo/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de la Membrana/metabolismo , Neurogénesis/fisiología , Nervio Olfatorio/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Receptores de Lipoproteína/metabolismo , Olfato/fisiología
10.
Cell ; 175(1): 57-70.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220455

RESUMEN

Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Nervio Olfatorio/fisiología , Olfato/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Canales de Calcio/fisiología , Quimiotaxis/fisiología , Potenciales de la Membrana/fisiología , Odorantes , Neuronas Receptoras Olfatorias/metabolismo
11.
Cell ; 165(7): 1734-1748, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27238024

RESUMEN

Odor perception in mammals is mediated by parallel sensory pathways that convey distinct information about the olfactory world. Multiple olfactory subsystems express characteristic seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-per-neuron pattern that facilitates odor discrimination. Sensory neurons of the "necklace" subsystem are nestled within the recesses of the olfactory epithelium and detect diverse odorants; however, they do not express known GPCR odor receptors. Here, we report that members of the four-pass transmembrane MS4A protein family are chemosensors expressed within necklace sensory neurons. These receptors localize to sensory endings and confer responses to ethologically relevant ligands, including pheromones and fatty acids, in vitro and in vivo. Individual necklace neurons co-express many MS4A proteins and are activated by multiple MS4A ligands; this pooling of information suggests that the necklace is organized more like subsystems for taste than for smell. The MS4As therefore define a distinct mechanism and functional logic for mammalian olfaction.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Olfato , Animales , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Odorantes , Neuronas Receptoras Olfatorias/metabolismo , Filogenia
12.
Physiol Rev ; 103(4): 2759-2766, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342077

RESUMEN

Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.


Asunto(s)
Anosmia , COVID-19 , Anosmia/virología , Humanos , COVID-19/complicaciones , Neuronas Receptoras Olfatorias/fisiología , Animales , SARS-CoV-2
13.
Nature ; 625(7993): 181-188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123679

RESUMEN

Olfactory receptor (OR) choice provides an extreme example of allelic competition for transcriptional dominance, where every olfactory neuron stably transcribes one of approximately 2,000 or more OR alleles1,2. OR gene choice is mediated by a multichromosomal enhancer hub that activates transcription at a single OR3,4, followed by OR-translation-dependent feedback that stabilizes this choice5,6. Here, using single-cell genomics, we show formation of many competing hubs with variable enhancer composition, only one of which retains euchromatic features and transcriptional competence. Furthermore, we provide evidence that OR transcription recruits enhancers and reinforces enhancer hub activity locally, whereas OR RNA inhibits transcription of competing ORs over distance, promoting transition to transcriptional singularity. Whereas OR transcription is sufficient to break the symmetry between equipotent enhancer hubs, OR translation stabilizes transcription at the prevailing hub, indicating that there may be sequential non-coding and coding mechanisms that are implemented by OR alleles for transcriptional prevalence. We propose that coding OR mRNAs possess non-coding functions that influence nuclear architecture, enhance their own transcription and inhibit transcription from their competitors, with generalizable implications for probabilistic cell fate decisions.


Asunto(s)
Neuronas Receptoras Olfatorias , ARN , Receptores Odorantes , Alelos , Linaje de la Célula , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , ARN/genética , Transcripción Genética , Genómica , Análisis de la Célula Individual
14.
Physiol Rev ; 102(1): 61-154, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254835

RESUMEN

The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall input-output (I/O) relationships. Up to this point, our accounts of the systems go along similar lines. The next processing steps differ considerably: whereas in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers, were little studied. Only recently has there been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little-connected fields.


Asunto(s)
Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Células Receptoras Sensoriales/fisiología , Olfato/fisiología , Animales , Humanos , Odorantes , Vertebrados/fisiología
15.
Cell ; 156(5): 878-81, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581489

RESUMEN

Mosquitoes are a great threat to human health. Fortunately, they have a weakness: they utilize their sense of smell to target a human host. Recent studies examine the effectiveness of protecting humans from attack by ablating or odorant targeting mosquito olfactory receptors. The results are both promising and alarming.


Asunto(s)
Culicidae/efectos de los fármacos , Culicidae/fisiología , Mordeduras y Picaduras de Insectos , Control de Mosquitos , Animales , Dióxido de Carbono/metabolismo , Humanos , Proteínas de Insectos/metabolismo , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Olfato
16.
Cell ; 159(3): 543-57, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417106

RESUMEN

The transcriptional activation of one out of ?2800 olfactory receptor (OR) alleles is a poorly understood process. Here, we identify a plethora of putative OR enhancers and study their in vivo activity in olfactory neurons. Distinguished by an unusual epigenetic signature, candidate OR enhancers are characterized by extensive interchromosomal interactions associated with OR transcription and share a similar pattern of transcription factor footprints. In particular, we establish the role of the transcription factor Bptf as a facilitator of both enhancer interactions and OR transcription. Our observations agree with the model whereby OR transcription occurs in the context of multiple interacting enhancers. Disruption of these interchromosomal interactions results in weak and multigenic OR expression, suggesting that the rare coincidence of numerous enhancers over a stochastically chosen OR may account for the singularity and robustness in OR transcription.


Asunto(s)
Elementos de Facilitación Genéticos , Receptores Odorantes/genética , Activación Transcripcional , Animales , Animales Modificados Genéticamente , Antígenos Nucleares/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Nucleoproteínas/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo
17.
Annu Rev Cell Dev Biol ; 31: 721-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26359778

RESUMEN

The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture.


Asunto(s)
Neuronas Receptoras Olfatorias/fisiología , Animales , Axones/fisiología , Humanos , Odorantes , Olfato/fisiología
18.
Cell ; 155(2): 274-7, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120129

RESUMEN

Understanding the mechanisms of monogenic and monoallelic transcription of the large repertoire of olfactory receptor genes represents a challenging task. A picture is now emerging in which odorant receptor choice and stabilization involve an escape from silencing followed by the activation of an unconventional feedback loop.


Asunto(s)
Regulación de la Expresión Génica , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Animales , Retroalimentación , Humanos , Receptores Odorantes/metabolismo , Procesos Estocásticos , Transcripción Genética
19.
Cell ; 155(7): 1610-23, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360281

RESUMEN

The Drosophila sex pheromone cVA elicits different behaviors in males and females. First- and second-order olfactory neurons show identical pheromone responses, suggesting that sex genes differentially wire circuits deeper in the brain. Using in vivo whole-cell electrophysiology, we now show that two clusters of third-order olfactory neurons have dimorphic pheromone responses. One cluster responds in females; the other responds in males. These clusters are present in both sexes and share a common input pathway, but sex-specific wiring reroutes pheromone information. Regulating dendritic position, the fruitless transcription factor both connects the male-responsive cluster and disconnects the female-responsive cluster from pheromone input. Selective masculinization of third-order neurons transforms their morphology and pheromone responses, demonstrating that circuits can be functionally rewired by the cell-autonomous action of a switch gene. This bidirectional switch, analogous to an electrical changeover switch, provides a simple circuit logic to activate different behaviors in males and females.


Asunto(s)
Drosophila melanogaster/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Feromonas/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Caracteres Sexuales , Transducción de Señal , Factores de Transcripción/metabolismo
20.
Cell ; 154(2): 325-36, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870122

RESUMEN

The molecular mechanisms regulating olfactory receptor (OR) expression in the mammalian nose are not yet understood. Here, we identify the transient expression of histone demethylase LSD1 and the OR-dependent expression of adenylyl cyclase 3 (Adcy3) as requirements for initiation and stabilization of OR expression. As a transcriptional coactivator, LSD1 is necessary for desilencing and initiating OR transcription, but as a transcriptional corepressor, it is incompatible with maintenance of OR expression, and its downregulation is imperative for stable OR choice. Adcy3, a sensor of OR expression and a transmitter of an OR-elicited feedback, mediates the downregulation of LSD1 and promotes the differentiation of olfactory sensory neurons (OSNs). This novel, three-node signaling cascade locks the epigenetic state of the chosen OR, stabilizes its singular expression, and prevents the transcriptional activation of additional OR alleles for the life of the neuron.


Asunto(s)
Adenilil Ciclasas/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Oxidorreductasas N-Desmetilantes/metabolismo , Receptores Odorantes/genética , Células Receptoras Sensoriales/metabolismo , Animales , Regulación hacia Abajo , Histona Demetilasas , Ratones , Ratones Noqueados , Mucosa Nasal/metabolismo , Neuronas Receptoras Olfatorias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA