Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 300(5): 107273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588806

RESUMEN

The stability of ribosomal DNA (rDNA) is maintained through transcriptional silencing by the NAD+-dependent histone deacetylase Sir2 in Saccharomyces cerevisiae. Alongside proteostasis, rDNA stability is a crucial factor regulating the replicative lifespan of S. cerevisiae. The unfolded protein response (UPR) is induced by misfolding of proteins or an imbalance of membrane lipid composition and is responsible for degrading misfolded proteins and restoring endoplasmic reticulum (ER) membrane homeostasis. Recent investigations have suggested that the UPR can extend the replicative lifespan of yeast by enhancing protein quality control mechanisms, but the relationship between the UPR and rDNA stability remains unknown. In this study, we found that the deletion of ARV1, which encodes an ER protein of unknown molecular function, activates the UPR by inducing lipid bilayer stress. In arv1Δ cells, the UPR and the cell wall integrity pathway are activated independently of each other, and the high osmolarity glycerol (HOG) pathway is activated in a manner dependent on Ire1, which mediates the UPR. Activated Hog1 translocates the stress response transcription factor Msn2 to the nucleus, where it promotes the expression of nicotinamidase Pnc1, a well-known Sir2 activator. Following Sir2 activation, rDNA silencing and rDNA stability are promoted. Furthermore, the loss of other ER proteins, such as Pmt1 or Bst1, and ER stress induced by tunicamycin or inositol depletion also enhance rDNA stability in a Hog1-dependent manner. Collectively, these findings suggest that the induction of the UPR enhances rDNA stability in S. cerevisiae by promoting the Msn2-Pnc1-Sir2 pathway in a Hog1-dependent manner.


Asunto(s)
ADN Ribosómico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Respuesta de Proteína Desplegada , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN Ribosómico/metabolismo , ADN Ribosómico/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Nicotinamidasa/metabolismo , Nicotinamidasa/genética , Sirtuina 2/metabolismo , Sirtuina 2/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Glicoproteínas de Membrana
2.
J Bacteriol ; 202(2)2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31636108

RESUMEN

Mycobacterium tuberculosis nicotinamidase-pyrazinamidase (PZAse) is a metalloenzyme that catalyzes conversion of nicotinamide-pyrazinamide to nicotinic acid-pyrazinoic acid. This study investigated whether a metallochaperone is required for optimal PZAse activity. M. tuberculosis and Escherichia coli PZAses (PZAse-MT and PZAse-EC, respectively) were inactivated by metal depletion (giving PZAse-MT-Apo and PZAse-EC-Apo). Reactivation with the E. coli metallochaperone ZnuA or Rv2059 (the M. tuberculosis analog) was measured. This was repeated following proteolytic and thermal treatment of ZnuA and Rv2059. The CDC1551 M. tuberculosis reference strain had the Rv2059 coding gene knocked out, and PZA susceptibility and the pyrazinoic acid (POA) efflux rate were measured. ZnuA (200 µM) achieved 65% PZAse-EC-Apo reactivation. Rv2059 (1 µM) and ZnuA (1 µM) achieved 69% and 34.3% PZAse-MT-Apo reactivation, respectively. Proteolytic treatment of ZnuA and Rv2059 and application of three (but not one) thermal shocks to ZnuA significantly reduced the capacity to reactivate PZAse-MT-Apo. An M. tuberculosis Rv2059 knockout strain was Wayne positive and susceptible to PZA and did not have a significantly different POA efflux rate than the reference strain, although a trend toward a lower efflux rate was observed after knockout. The metallochaperone Rv2059 restored the activity of metal-depleted PZAse in vitro Although Rv2059 is important in vitro, it seems to have a smaller effect on PZA susceptibility in vivo. It may be important to mechanisms of action and resistance to pyrazinamide in M. tuberculosis Further studies are needed for confirmation.IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis and remains one of the major causes of disease and death worldwide. Pyrazinamide is a key drug used in the treatment of tuberculosis, yet its mechanism of action is not fully understood, and testing strains of M. tuberculosis for pyrazinamide resistance is not easy with the tools that are presently available. The significance of the present research is that a metallochaperone-like protein may be crucial to pyrazinamide's mechanisms of action and of resistance. This may support the development of improved tools to detect pyrazinamide resistance, which would have significant implications for the clinical management of patients with tuberculosis: drug regimens that are appropriately tailored to the resistance profile of a patient's individual strain lead to better clinical outcomes, reduced onward transmission of infection, and reduction of the development of resistant strains that are more challenging and expensive to treat.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Nicotinamidasa/metabolismo , Pirazinamida/farmacología , Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Metalochaperonas , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/análogos & derivados
3.
Plant Physiol ; 179(4): 1810-1821, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692220

RESUMEN

DNA methylation plays an important role in diverse developmental processes in many eukaryotes, including the response to environmental stress. Abscisic acid (ABA) is a plant hormone that is up-regulated under stress. The involvement of DNA methylation in the ABA response has been reported but is poorly understood. DNA demethylation is a reverse process of DNA methylation and often induces structural changes of chromatin leading to transcriptional activation. In Arabidopsis (Arabidopsis thaliana), active DNA demethylation depends on the activity of REPRESSOR OF SILENCING 1 (ROS1), which directly excises 5-methylcytosine from DNA. Here we showed that ros1 mutants were hypersensitive to ABA during early seedling development and root elongation. Expression levels of some ABA-inducible genes were decreased in ros1 mutants, and more than 60% of their proximal regions became hypermethylated, indicating that a subset of ABA-inducible genes are under the regulation of ROS1-dependent DNA demethylation. Notable among them is NICOTINAMIDASE 3 (NIC3) that encodes an enzyme that converts nicotinamide to nicotinic acid in the NAD+ salvage pathway. Many enzymes in this pathway are known to be involved in stress responses. The nic3 mutants display hypersensitivity to ABA, whereas overexpression of NIC3 restores normal ABA responses. Our data suggest that NIC3 is responsive to ABA but requires ROS1-mediated DNA demethylation at the promoter as a prerequisite to transcriptional activation. These findings suggest that ROS1-induced active DNA demethylation maintains the active state of NIC3 transcription in response to ABA.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Desmetilación del ADN , Proteínas Nucleares/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Metilación de ADN , Epigenómica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Mol Cell ; 42(3): 390-400, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549315

RESUMEN

Altered mitochondrial functionality can extend organism life span, but the underlying mechanisms are obscure. Here we report that inactivating SOV1, a member of the yeast mitochondrial translation control (MTC) module, causes a robust Sir2-dependent extension of replicative life span in the absence of respiration and without affecting oxidative damage. We found that SOV1 interacts genetically with the cAMP-PKA pathway and the chromatin remodeling apparatus. Consistently, Sov1p-deficient cells displayed reduced cAMP-PKA signaling and an elevated, Sir2p-dependent, genomic silencing. Both increased silencing and life span extension in sov1Δ cells require the PKA/Msn2/4p target Pnc1p, which scavenges nicotinamide, a Sir2p inhibitor. Inactivating other members of the MTC module also resulted in Sir2p-dependent life span extension. The data demonstrate that the nuclear silencing apparatus senses and responds to the absence of MTC proteins and that this response converges with a pathway for life span extension elicited by reducing TOR signaling.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Western Blotting , División Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Mitocondriales/metabolismo , Mutación , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Tiempo , Factores de Transcripción
5.
J Bacteriol ; 200(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29555696

RESUMEN

Many organisms possess pathways that regenerate NAD+ from its degradation products, and two pathways are known to salvage NAD+ from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD+, respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD+ salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway.IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD+ from nicotinamide (Nm) in the hyperthermophilic archaeon Thermococcus kodakarensis The organism utilizes a four-step pathway that initially hydrolyzes the amide bond of Nm to generate nicotinic acid (Na), followed by phosphoribosylation, adenylylation, and amidation. Although the two-step pathway, consisting of only phosphoribosylation of Nm and adenylylation, seems to be more efficient, Nm mononucleotide in the two-step pathway is much more thermolabile than Na mononucleotide, the corresponding intermediate in the four-step pathway. Although NAD+ itself is thermolabile, this may represent an example of a metabolism that has evolved to avoid the use of thermolabile intermediates.


Asunto(s)
NAD/metabolismo , Nicotinamidasa/metabolismo , Nucleotidiltransferasas/metabolismo , Pentosiltransferasa/metabolismo , Thermococcus/metabolismo , Desaminación , Calor , Niacinamida/metabolismo , Nicotinamidasa/genética , Mononucleótido de Nicotinamida/análogos & derivados , Mononucleótido de Nicotinamida/metabolismo , Ácidos Nicotínicos/metabolismo , Nucleotidiltransferasas/genética , Pentosiltransferasa/genética , Proteínas Recombinantes , Especificidad por Sustrato , Thermococcus/genética , Thermococcus/crecimiento & desarrollo
6.
EMBO Rep ; 17(12): 1829-1843, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27799288

RESUMEN

Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.


Asunto(s)
Restricción Calórica , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Acetiltransferasa D N-Terminal/deficiencia , Acetiltransferasa D N-Terminal/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Acetilación , Cromatina/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Longevidad , Acetiltransferasa D N-Terminal/genética , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Activación Transcripcional
7.
J Bacteriol ; 199(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28630126

RESUMEN

NAD (NAD+) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD+ from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD+de novo synthesis pathway. Herein, we report the importance of the NAD+ salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD+ salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide (Km of 17 µM, kcat of 50 s-1, kcat/Km of 3.0 × 103 s-1 · mM-1). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD+ salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD+ and NADH.IMPORTANCE NAD+ and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD+ decomposition is, in general, more rapid. This study emphasizes that NAD+ instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures.


Asunto(s)
Eliminación de Gen , NAD/metabolismo , Nicotinamidasa/metabolismo , Thermus thermophilus/enzimología , Thermus thermophilus/efectos de la radiación , Calor , Cinética , Niacinamida/metabolismo , Nicotinamidasa/genética , Thermus thermophilus/genética , Thermus thermophilus/crecimiento & desarrollo
8.
Biochim Biophys Acta ; 1863(1): 148-56, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26516056

RESUMEN

Saccharomyces cerevisiae glycerol phosphate dehydrogenase 1 (Gpd1) and nicotinamidase (Pnc1) are two stress-induced enzymes. Both enzymes are predominantly localised to peroxisomes at normal growth conditions, but were reported to localise to the cytosol and nucleus upon exposure of cells to stress. Import of both proteins into peroxisomes depends on the peroxisomal targeting signal 2 (PTS2) receptor Pex7. Gpd1 contains a PTS2, however, Pnc1 lacks this sequence. Here we show that Pnc1 physically interacts with Gpd1, which is required for piggy-back import of Pnc1 into peroxisomes. Quantitative fluorescence microscopy analyses revealed that the levels of both proteins increased in peroxisomes and in the cytosol upon exposure of cells to stress. However, upon exposure of cells to stress we also observed enhanced cytosolic levels of the control PTS2 protein thiolase, when produced under control of the GPD1 promoter. This suggests that these conditions cause a partial defect in PTS2 protein import, probably because the PTS2 import pathway is easily saturated.


Asunto(s)
Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Nicotinamidasa/metabolismo , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Nicotinamidasa/genética , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Peroxisomas/genética , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 290(42): 25333-42, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26276932

RESUMEN

Proteins designated for peroxisomal protein import harbor one of two common peroxisomal targeting signals (PTS). In the yeast Saccharomyces cerevisiae, the oleate-induced PTS2-dependent import of the thiolase Fox3p into peroxisomes is conducted by the soluble import receptor Pex7p in cooperation with the auxiliary Pex18p, one of two supposedly redundant PTS2 co-receptors. Here, we report on a novel function for the co-receptor Pex21p, which cannot be fulfilled by Pex18p. The data establish Pex21p as a general co-receptor in PTS2-dependent protein import, whereas Pex18p is especially important for oleate-induced import of PTS2 proteins. The glycerol-producing PTS2 protein glycerol-3-phosphate dehydrogenase Gpd1p shows a tripartite localization in peroxisomes, in the cytosol, and in the nucleus under osmotic stress conditions. We show the following: (i) Pex21p is required for peroxisomal import of Gpd1p as well as a key enzyme of the NAD(+) salvage pathway, Pnc1p; (ii) Pnc1p, a nicotinamidase without functional PTS2, is co-imported into peroxisomes by piggyback transport via Gpd1p. Moreover, the specific transport of these two enzymes into peroxisomes suggests a novel regulatory role for peroxisomes under various stress conditions.


Asunto(s)
Proteínas Portadoras/fisiología , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Nicotinamidasa/metabolismo , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Dimerización , Transporte de Proteínas , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico
10.
Appl Environ Microbiol ; 82(19): 5815-23, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27451449

RESUMEN

UNLABELLED: Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. IMPORTANCE: Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb2ΔpncA led to a decrease in the NAD(+) content, which was associated with decreased capacity for invasion and attenuated virulence in ducks. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Altogether, these results suggest that PncA contributes to the virulence of R. anatipestifer and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate.


Asunto(s)
Proteínas Bacterianas/genética , Patos , Infecciones por Flavobacteriaceae/veterinaria , Nicotinamidasa/genética , Enfermedades de las Aves de Corral/inmunología , Riemerella/genética , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/microbiología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Expresión Génica , Inmunización/veterinaria , Nicotinamidasa/inmunología , Nicotinamidasa/metabolismo , Enfermedades de las Aves de Corral/microbiología , Riemerella/inmunología , Riemerella/metabolismo , Eliminación de Secuencia , Vacunas Atenuadas/inmunología , Factores de Virulencia/inmunología , Factores de Virulencia/metabolismo
11.
Org Biomol Chem ; 12(8): 1265-77, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24413890

RESUMEN

Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications.


Asunto(s)
Nicotinamidasa/química , Nicotinamidasa/metabolismo , Saccharomyces cerevisiae/enzimología , Sitios de Unión , Modelos Moleculares , Conformación Proteica , Teoría Cuántica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Zinc/metabolismo
12.
Biochemistry (Mosc) ; 79(1): 54-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24512664

RESUMEN

Nicotinamidase is involved in the maintenance of NAD+ homeostasis and in the NAD+ salvage pathway of most prokaryotes, and it is considered as a possible drug target. The gene (ASAC_0847) encoding a hypothetical nicotinamidase has been found in the genome of the thermophilic archaeon Acidilobus saccharovorans. The product of this gene, NA_As0847, has been expressed in Escherichia coli, isolated, and characterized as a Fe(2+)-containing nicotinamidase (k(cat)/K(m) = 427 mM(-1)·sec(-1))/pyrazinamidase (k(cat)/K(m) = 331 mM(-1)·sec(-1)). NA_As0847 is a homodimer with molecular mass 46.4 kDa. The enzyme has high thermostability (T(1/2) (60°C) = 180 min, T(1/2) (80°C) = 35 min) and thermophilicity (T(opt) = 90°C, E(a) = 30.2 ± 1.0 kJ/mol) and broad pH interval of activity, with the optimum at pH 7.5. Special features of NA_As0847 are the presence of Fe2+ instead of Zn2+ in the active site of the enzyme and inhibition of the enzyme activity by Zn2+ at micromolar concentrations. Analysis of the amino acid sequence revealed a new motif of the metal-binding site (DXHXXXDXXEXXXWXXH) for homological archaeal nicotinamidases.


Asunto(s)
Proteínas Arqueales/metabolismo , Crenarchaeota/enzimología , Nicotinamidasa/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Dominio Catalítico , Crenarchaeota/genética , Dimerización , Escherichia coli/metabolismo , Genoma Arqueal , Iones/química , Cinética , Datos de Secuencia Molecular , Nicotinamidasa/química , Nicotinamidasa/genética , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Temperatura , Zinc/química , Zinc/metabolismo
13.
Molecules ; 19(10): 15735-53, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25268724

RESUMEN

Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The overall mechanism occurs in two stages: (i) formation of a thioester enzyme-intermediate (IC2) and (ii) hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ·mol-1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103) is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Nicotinamidasa/química , Nicotinamidasa/metabolismo , Streptococcus pneumoniae/enzimología , Sitios de Unión , Catálisis , Dominio Catalítico , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
14.
J Biol Chem ; 287(25): 20957-66, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22539348

RESUMEN

Sirtuins are an evolutionarily conserved family of NAD(+)-dependent protein deacetylases that function in the regulation of gene transcription, cellular metabolism, and aging. Their activity requires the maintenance of an adequate intracellular NAD(+) concentration through the combined action of NAD(+) biosynthesis and salvage pathways. Nicotinamide (NAM) is a key NAD(+) precursor that is also a byproduct and feedback inhibitor of the deacetylation reaction. In Saccharomyces cerevisiae, the nicotinamidase Pnc1 converts NAM to nicotinic acid (NA), which is then used as a substrate by the NAD(+) salvage pathway enzyme NA phosphoribosyltransferase (Npt1). Isonicotinamide (INAM) is an isostere of NAM that stimulates yeast Sir2 deacetylase activity in vitro by alleviating the NAM inhibition. In this study, we determined that INAM stimulates Sir2 through an additional mechanism in vivo, which involves elevation of the intracellular NAD(+) concentration. INAM enhanced normal silencing at the rDNA locus but only partially suppressed the silencing defects of an npt1Δ mutant. Yeast cells grown in media lacking NA had a short replicative life span, which was extended by INAM in a SIR2-dependent manner and correlated with increased NAD(+). The INAM-induced increase in NAD(+) was strongly dependent on Pnc1 and Npt1, suggesting that INAM increases flux through the NAD(+) salvage pathway. Part of this effect was mediated by the NR salvage pathways, which generate NAM as a product and require Pnc1 to produce NAD(+). We also provide evidence suggesting that INAM influences the expression of multiple NAD(+) biosynthesis and salvage pathways to promote homeostasis during stationary phase.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , NAD/metabolismo , Niacinamida/farmacología , Nicotinamidasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Silenciador del Gen/fisiología , Sitios Genéticos/fisiología , NAD/genética , Niacinamida/metabolismo , Nicotinamidasa/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética
15.
EMBO Rep ; 12(10): 1062-8, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21836634

RESUMEN

Exposure of yeast to high osmolarity induces a transient activation of the Hog1 stress-activated protein kinase (SAPK), which is required for cell survival under these conditions. However, sustained activation of the SAPK results in a severe growth defect. We found that prolonged SAPK activation leads to cell death, which is not observed in nma111 cells, by causing accumulation of reactive oxygen species (ROS). Mutations of the SCF(CDC4) ubiquitin ligase complex suppress cell death by preventing the degradation of Msn2 and Msn4 transcription factors. Accumulation of Msn2 and Msn4 leads to the induction of PNC1, which is an activator of the Sir2 histone acetylase. Sir2 is involved in protection against Hog1-induced cell death and can suppress Hog1-induced ROS accumulation. Therefore, cell death seems to be dictated by the balance of ROS induced by Hog1 and the protective effect of Sir2.


Asunto(s)
Apoptosis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Estrés Fisiológico , Apoptosis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación/genética , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Nucleic Acids Res ; 39(4): 1336-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20947565

RESUMEN

The target of rapamycin (TOR) kinase is an evolutionarily conserved key regulator of eukaryotic cell growth and proliferation. Recently, it has been reported that inhibition of TOR signaling pathway can delay aging and extend lifespan in several eukaryotic organisms, but how lifespan extension is mediated by inhibition of TOR signaling is poorly understood. Here we report that rapamycin treatment and nitrogen starvation, both of which cause inactivation of TOR complex 1 (TORC1), lead to enhanced association of Sir2 with ribosomal DNA (rDNA) in Saccharomyces cerevisiae. TORC1 inhibition increases transcriptional silencing of RNA polymerase II-transcribed gene integrated at the rDNA locus and reduces homologous recombination between rDNA repeats that causes formation of toxic extrachromosomal rDNA circles. In addition, TORC1 inhibition induces deacetylation of histones at rDNA. We also found that Pnc1 and Net1 are required for enhancement of association of Sir2 with rDNA under TORC1 inhibition. Taken together, our findings suggest that inhibition of TORC1 signaling stabilizes the rDNA locus by enhancing association of Sir2 with rDNA, thereby leading to extension of replicative lifespan in S. cerevisiae.


Asunto(s)
ADN Ribosómico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Sirtuina 2/metabolismo , Acetilación , Proteínas de Ciclo Celular/fisiología , Nucléolo Celular/efectos de los fármacos , Nucléolo Celular/ultraestructura , Silenciador del Gen , Histonas/metabolismo , Nicotinamidasa/metabolismo , Nitrógeno/metabolismo , Proteínas Nucleares/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transducción de Señal
17.
Mol Microbiol ; 82(1): 4-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21854468

RESUMEN

NAD+ plays multiple, essential roles in the cell. As a cofactor in many redox reactions it is key in the cellular energy metabolism and as a substrate it participates in many reactions leading to a variety of covalent modifications of enzymes with major roles in regulation of expression and metabolism. Cells may have the ability to produce this metabolite either via alternative de novo synthesis pathways and/or by different salvage pathways. In this issue of Molecular Microbiology, Gazanion et al. (2011) demonstrate that Leishmania species can only rely on the salvage of NAD+ building blocks. One of the enzymes involved, nicotinamidase, is absent from human cells. The enzyme is important for growth of Leishmania infantum and essential for establishing an infection. The crystal structure of the parasite protein has been solved and shows prospects for design of inhibitors to be used as leads for development of new drugs. Indeed, NAD+ metabolism is currently being considered as a promising drug target in various diseases and the vulnerability of Leishmania for interference of this metabolism has been proved in previous work by the same group, by showing that administration of NAD+ precursors has detrimental effect on the pathogenic, amastigote stage of this parasite.


Asunto(s)
Leishmania infantum/enzimología , Leishmania infantum/crecimiento & desarrollo , Leishmaniasis Visceral/parasitología , NAD/biosíntesis , Nicotinamidasa/metabolismo , Proteínas Protozoarias/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Leishmania infantum/efectos de los fármacos , Leishmania infantum/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Nicotinamidasa/antagonistas & inhibidores , Nicotinamidasa/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética
18.
Mol Microbiol ; 82(1): 21-38, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21819459

RESUMEN

NAD+ is a central cofactor that plays important roles in cellular metabolism and energy production in all living cells. Genomics-based reconstruction of NAD+ metabolism revealed that Leishmania protozoan parasites are NAD+ auxotrophs. Consequently, these parasites require assimilating NAD+ precursors (nicotinamide, nicotinic acid, nicotinamide riboside) from their host environment to synthesize NAD+ by a salvage pathway. Nicotinamidase is a key enzyme of this salvage pathway that catalyses conversion of nicotinamide (NAm) to nicotinic acid (Na), and that is absent in higher eukaryotes. We present here the biochemical and functional characterizations of the Leishmania infantum nicotinamidase (LiPNC1). Generation of Lipnc1 null mutants leads to a decrease in NAD+ content, associated with a metabolic shutdown-like phenotype with an extensive lag phase of growth. Both phenotypes could be rescued by an add-back construct or by addition of exogenous Na. In addition, Lipnc1 null mutants were unable to establish a sustained infection in a murine experimental model. Altogether, these results illustrate that NAD+ homeostasis is a fundamental component of Leishmania biology and virulence, and that NAm constitutes its main NAD+ source in the mammalian host. The crystal structure of LiPNC1 we solved allows now the design of rational inhibitors against this new promising therapeutic target.


Asunto(s)
Proliferación Celular , Leishmania infantum/citología , Leishmania infantum/enzimología , Leishmaniasis Visceral/parasitología , NAD/biosíntesis , Nicotinamidasa/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Leishmania infantum/química , Leishmania infantum/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Nicotinamidasa/química , Nicotinamidasa/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Alineación de Secuencia
19.
Development ; 136(21): 3637-46, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19820182

RESUMEN

Nicotinamide adenine dinucleotide (NAD(+)) is a central molecule in cellular metabolism and an obligate co-substrate for NAD(+)-consuming enzymes, which regulate key biological processes such as longevity and stress responses. Although NAD(+) biosynthesis has been intensely studied, little analysis has been done in developmental models. We have uncovered novel developmental roles for a nicotinamidase (PNC), the first enzyme in the NAD(+) salvage pathway of invertebrates. Mutations in the Caenorhabditis elegans nicotinamidase PNC-1 cause developmental and functional defects in the reproductive system; the development of the gonad is delayed, four uterine cells die by necrosis and the mutant animals are egg-laying defective. The temporal delay in gonad development results from depletion of the salvage pathway product NAD(+), whereas the uv1 cell necrosis and egg-laying defects result from accumulation of the substrate nicotinamide. Thus, regulation of both substrate and product level is key to the biological activity of PNC-1. We also find that diet probably affects the levels of these metabolites, as it affects phenotypes. Finally, we identified a secreted isoform of PNC-1 and confirmed its extracellular localization and functional activity in vivo. We demonstrate that nicotinamide phosphoribosyltransferase (Nampt), the equivalent enzyme in nicotinamide recycling to NAD(+) in vertebrates, can functionally substitute for PNC-1. As Nampt is also secreted, we postulate an evolutionarily conserved extracellular role for NAD(+) biosynthetic enzymes during development and physiology.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , NAD/biosíntesis , Niacinamida/metabolismo , Nicotinamidasa/metabolismo , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Supervivencia Celular , Femenino , Nicotinamidasa/genética , Óvulo/crecimiento & desarrollo , Útero/citología , Útero/fisiología
20.
Microbiol Spectr ; 10(1): e0098521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35171012

RESUMEN

Nicotinamidase (Nic) (E.C.3.5.1.19) is a representative protein of the isochorismatase superfamily from Escherichia coli. Despite showing no (+) γ-lactamase activity, its active site constellations (ASCs) are very similar to those of two other known (+) γ-lactamases (Mhpg and RutB), indicating that it could be a latent (+) γ-lactamase. In this study, the primary sequences of the five representative proteins of the isochorismatase superfamily from E. coli were aligned, and a "lid"-like unit of a six-residue loop (112GENPLV117) was established. The Nic protein was converted to a (+) γ-lactamase by eliminating the loop. A conversion mechanism was proposed in which a more compact binding pocket is formed after lid deletion. In addition, the "shrunk" binding pocket stabilized the small substrate and the catalysis intermediate, which triggered catalysis. Moreover, we identified another latent (+) γ-lactamase in the E. coli isochorismatase superfamily and successfully converted it into an active (+) γ-lactamase. In summary, the isochorismatase superfamily is potentially a good candidate for obtaining novel (+) γ-lactamases. IMPORTANCE γ-Lactamases are important enzymatic catalysts in preparing optically pure γ-lactam enantiomers, which are high-value chiral intermediates. Different studies have presumed that the isochorismatase superfamily is a candidate to obtain novel (+) γ-lactamases. By engineering its substrate entrance tunnel, Nic, a representative protein of the isochorismatase superfamily, is converted to a (+) γ-lactamase. Tunnel engineering has proven effective in enhancing enzyme promiscuity. Therefore, the latent or active γ-lactamase activities of the isochorismatase superfamily members indicate their evolutionary path positions.


Asunto(s)
Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Escherichia coli/enzimología , Hidrolasas/genética , Hidrolasas/metabolismo , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Amidohidrolasas/química , Biocatálisis , Escherichia coli/química , Escherichia coli/genética , Hidrolasas/química , Familia de Multigenes , Nicotinamidasa/química , Ingeniería de Proteínas , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA