Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.230
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(52): 33549-33560, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318216

RESUMEN

Thymineless death in Escherichia coli thyA mutants growing in the absence of thymidine (dT) is preceded by a substantial resistance phase, during which the culture titer remains static, as if the chromosome has to accumulate damage before ultimately failing. Significant chromosomal replication and fragmentation during the resistance phase could provide appropriate sources of this damage. Alternatively, the initial chromosomal replication in thymine (T)-starved cells could reflect a considerable endogenous dT source, making the resistance phase a delay of acute starvation, rather than an integral part of thymineless death. Here we identify such a low-molecular-weight (LMW)-dT source as mostly dTDP-glucose and its derivatives, used to synthesize enterobacterial common antigen (ECA). The thyA mutant, in which dTDP-glucose production is blocked by the rfbA rffH mutations, lacks a LMW-dT pool, the initial DNA synthesis during T-starvation and the resistance phase. Remarkably, the thyA mutant that makes dTDP-glucose and initiates ECA synthesis normally yet cannot complete it due to the rffC defect, maintains a regular LMW-dT pool, but cannot recover dTTP from it, and thus suffers T-hyperstarvation, dying precipitously, completely losing chromosomal DNA and eventually lysing, even without chromosomal replication. At the same time, its ECA+thyA parent does not lyse during T-starvation, while both the dramatic killing and chromosomal DNA loss in the ECA-deficient thyA mutants precede cell lysis. We conclude that: 1) the significant pool of dTDP-hexoses delays acute T-starvation; 2) T-starvation destabilizes even nonreplicating chromosomes, while T-hyperstarvation destroys them; and 3) beyond the chromosome, T-hyperstarvation also destabilizes the cell envelope.


Asunto(s)
Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Viabilidad Microbiana , Polisacáridos Bacterianos/farmacología , Timina/metabolismo , Antígenos Bacterianos/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Glucosa/análogos & derivados , Glucosa/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Peso Molecular , Mutación/genética , Estrés Fisiológico/efectos de los fármacos , Timidina/metabolismo , Nucleótidos de Timina/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(48): 30344-30353, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203675

RESUMEN

The DNA polymerase (Pol) δ of Saccharomyces cerevisiae (S.c.) is composed of the catalytic subunit Pol3 along with two regulatory subunits, Pol31 and Pol32. Pol δ binds to proliferating cell nuclear antigen (PCNA) and functions in genome replication, repair, and recombination. Unique among DNA polymerases, the Pol3 catalytic subunit contains a 4Fe-4S cluster that may sense the cellular redox state. Here we report the 3.2-Šcryo-EM structure of S.c. Pol δ in complex with primed DNA, an incoming ddTTP, and the PCNA clamp. Unexpectedly, Pol δ binds only one subunit of the PCNA trimer. This singular yet extensive interaction holds DNA such that the 2-nm-wide DNA threads through the center of the 3-nm interior channel of the clamp without directly contacting the protein. Thus, a water-mediated clamp and DNA interface enables the PCNA clamp to "waterskate" along the duplex with minimum drag. Pol31 and Pol32 are positioned off to the side of the catalytic Pol3-PCNA-DNA axis. We show here that Pol31-Pol32 binds single-stranded DNA that we propose underlies polymerase recycling during lagging strand synthesis, in analogy to Escherichia coli replicase. Interestingly, the 4Fe-4S cluster in the C-terminal CysB domain of Pol3 forms the central interface to Pol31-Pol32, and this strategic location may explain the regulation of the oxidation state on Pol δ activity, possibly useful during cellular oxidative stress. Importantly, human cancer and other disease mutations map to nearly every domain of Pol3, suggesting that all aspects of Pol δ replication are important to human health and disease.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Microscopía por Crioelectrón , ADN/química , ADN Polimerasa III/ultraestructura , Didesoxinucleótidos/química , Didesoxinucleótidos/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Mutación/genética , Neoplasias/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
3.
Nucleic Acids Res ; 48(9): 5119-5134, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32282906

RESUMEN

Reactive oxygen species generate the genotoxic 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA) as major oxidative lesions. The mutagenicity of oxoG is attributed to the lesion's ability to evade the geometric discrimination of DNA polymerases by adopting Hoogsteen base pairing with adenine in a Watson-Crick-like geometry. Compared with oxoG, the mutagenesis mechanism of oxoA, which preferentially induces A-to-C mutations, is poorly understood. In the absence of protein contacts, oxoA:G forms a wobble conformation, the formation of which is suppressed in the catalytic site of most DNA polymerases. Interestingly, human DNA polymerase η (polη) proficiently incorporates dGTP opposite oxoA, suggesting the nascent oxoA:dGTP overcomes the geometric discrimination of polη. To gain insights into oxoA-mediated mutagenesis, we determined crystal structures of polη bypassing oxoA. When paired with dGTP, oxoA adopted a syn-conformation and formed Hoogsteen pairing while in a wobble geometry, which was stabilized by Gln38-mediated minor groove contacts to oxoA:dGTP. Gln38Ala mutation reduced misinsertion efficiency ∼55-fold, indicating oxoA:dGTP misincorporation was promoted by minor groove interactions. Also, the efficiency of oxoA:dGTP insertion by the X-family polß decreased ∼380-fold when Asn279-mediated minor groove contact to dGTP was abolished. Overall, these results suggest that, unlike oxoG, oxoA-mediated mutagenesis is greatly induced by minor groove interactions.


Asunto(s)
Adenina/análogos & derivados , ADN Polimerasa Dirigida por ADN/química , Mutagénesis , Adenina/química , Emparejamiento Base , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxiguanina/química , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Cinética , Mutación , Nucleótidos de Timina/metabolismo
4.
Nucleic Acids Res ; 48(1): 264-277, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31647103

RESUMEN

The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.


Asunto(s)
Nucleótidos de Desoxiuracil/metabolismo , Ácido Fólico/metabolismo , Genoma Fúngico , Péptido Sintasas/genética , Saccharomyces cerevisiae/genética , Nucleótidos de Timina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Daño del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Inestabilidad Genómica , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Péptido Sintasas/deficiencia , Saccharomyces cerevisiae/metabolismo , Uracilo/metabolismo
5.
Molecules ; 27(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36014553

RESUMEN

Rhamnose-associated molecules are attracting attention because they are present in bacteria but not mammals, making them potentially useful as antibacterial agents. Additionally, they are also valuable for tumor immunotherapy. Thus, studies on the functions and biosynthetic pathways of rhamnose-containing compounds are in progress. In this paper, studies on the biosynthetic pathways of three rhamnose donors, i.e., deoxythymidinediphosphate-L-rhamnose (dTDP-Rha), uridine diphosphate-rhamnose (UDP-Rha), and guanosine diphosphate rhamnose (GDP-Rha), are firstly reviewed, together with the functions and crystal structures of those associated enzymes. Among them, dTDP-Rha is the most common rhamnose donor, and four enzymes, including glucose-1-phosphate thymidylyltransferase RmlA, dTDP-Glc-4,6-dehydratase RmlB, dTDP-4-keto-6-deoxy-Glc-3,5-epimerase RmlC, and dTDP-4-keto-Rha reductase RmlD, are involved in its biosynthesis. Secondly, several known rhamnosyltransferases from Geobacillus stearothermophilus, Saccharopolyspora spinosa, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae are discussed. In these studies, however, the functions of rhamnosyltransferases were verified by employing gene knockout and radiolabeled substrates, which were almost impossible to obtain and characterize the products of enzymatic reactions. Finally, the application of rhamnose-containing compounds in disease treatments is briefly described.


Asunto(s)
Vías Biosintéticas , Ramnosa , Racemasas y Epimerasas/metabolismo , Nucleótidos de Timina/metabolismo , Uridina Difosfato/metabolismo
6.
Cell Mol Life Sci ; 77(8): 1645-1660, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31377845

RESUMEN

To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.


Asunto(s)
Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiuracil/metabolismo , Pirofosfatasas/metabolismo , Nucleótidos de Timina/metabolismo , Línea Celular , Proliferación Celular , Daño del ADN , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxiuracil/genética , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Humanos , Células MCF-7 , Mutación , Pirofosfatasas/genética , Nucleótidos de Timina/genética
7.
Biochemistry ; 58(6): 697-705, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571104

RESUMEN

Proteins forming dimers or larger complexes can be strongly influenced by their effector-binding status. We investigated how the effector-binding event is coupled with interface formation via computer simulations, and we quantified the correlation of two types of contact interactions: between the effector and its binding pocket and between protein monomers. This was achieved by connecting the protein dynamics at the monomeric level with the oligomer interface information. We applied this method to ribonucleotide reductase (RNR), an essential enzyme for de novo DNA synthesis. RNR contains two important allosteric sites, the s-site (specificity site) and the a-site (activity site), which bind different effectors. We studied these different binding states with atomistic simulation and used their coarse-grained contact information to analyze the protein dynamics. The results reveal that the effector-protein dynamics at the s-site and dimer interface formation are positively coupled. We further quantify the resonance level between these two events, which can be applied to other similar systems. At the a-site, different effector-binding states (ATP vs dATP) drastically alter the protein dynamics and affect the activity of the enzyme. On the basis of these results, we propose a new mechanism of how the a-site regulates enzyme activation.


Asunto(s)
Ribonucleótido Reductasas/metabolismo , Nucleótidos de Timina/metabolismo , Regulación Alostérica/fisiología , Sitio Alostérico , Dominio Catalítico , Humanos , Simulación de Dinámica Molecular , Multimerización de Proteína/fisiología , Ribonucleótido Reductasas/química , Nucleótidos de Timina/química
8.
J Biol Chem ; 293(46): 17685-17704, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29903914

RESUMEN

Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Nucleótidos de Timina/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Enlace de Hidrógeno , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Termodinámica
9.
J Cell Biochem ; 119(1): 1193-1203, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28722177

RESUMEN

5-Fluorouracil (5-FU) is a chemotherapeutic agent used to treat a variety of gastric cancers including oesophageal squamous cell carcinoma (OSCC), for which the 5-year mortality rate exceeds 85%. Our study investigated the effects of metformin, an antidiabetic drug with established anti-cancer activity, in combination with 5-FU as a novel chemotherapy strategy, using the OSCC cell lines, WHCO1 and WHCO5. Our results indicate that metformin treatment induces significant resistance to 5-FU in WHCO1 and WHCO5 cells, by more than five- and sixfolds, respectively, as assessed by MTT assay. We show that this is due to global alterations in nucleotide metabolism, including elevated expression of thymidylate synthase and thymidine kinase 1 (established 5-FU resistance mechanisms), which likely result in an increase in intracellular dTTP pools and a "dilution" of 5-FU anabolites. Metformin treatment also increases deoxycytidine kinase (dCK) expression and, as the chemotherapeutic agent gemcitabine relies on dCK for its efficient activity, we speculated that metformin would enhance the sensitivity of OSCC cells to gemcitabine. Indeed we show that metformin pre-treatment greatly increases gemcitabine toxicity and DNA fragmentation in comparison to gemcitabine alone. Taken together, our findings show that metformin alters nucleotide metabolism in OSCC cells and while responsible for inducing resistance to 5-FU, it conversely increases sensitivity to gemcitabine, thereby highlighting metformin and gemcitabine as a potentially novel combination therapy for OSCC.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos , Neoplasias Esofágicas/tratamiento farmacológico , Fluorouracilo/administración & dosificación , Metformina/administración & dosificación , Nucleótidos de Timina/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Desoxicitidina Quinasa/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metformina/efectos adversos , Ratones , Timidina Quinasa/genética , Timidilato Sintasa/genética , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
10.
J Am Chem Soc ; 140(18): 5886-5889, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29489347

RESUMEN

Innovative detection techniques to achieve precise m6A distribution within mammalian transcriptome can advance our understanding of its biological functions. We specifically introduced the atom-specific replacement of oxygen with progressively larger atoms (sulfur and selenium) at 4-position of deoxythymidine triphosphate to weaken its ability to base pair with m6A, while maintaining A-T* base pair virtually the same as the natural one. 4SedTTP turned out to be an outstanding candidate that endowed m6A with a specific signature of RT truncation, thereby making this "RT-silent" modification detectable with the assistance of m6A demethylase FTO through next-generation sequencing. This antibody-independent, 4SedTTP-involved and FTO-assisted strategy is applicable in m6A identification, even for two closely gathered m6A sites, within an unknown region at single-nucleotide resolution.


Asunto(s)
Anticuerpos/química , ADN de Cadena Simple/química , Metiltransferasas/análisis , Selenio/química , Nucleótidos de Timina/química , Anticuerpos/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , Metiltransferasas/metabolismo , Selenio/metabolismo , Nucleótidos de Timina/metabolismo
11.
J Org Chem ; 83(15): 8353-8363, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29952565

RESUMEN

Deoxynucleoside 5'-triphosphate was synthesized with 3-oxo-2 H-pyridazin-6-yl (PzO)-a uracil analogue lacking a 2-keto group-as the nucleobase. Theoretical analyses and hybridization experiments indicated that PzO recognizes adenine (A) for formation of a Watson-Crick base pair. Primer extension reactions using nucleoside 5'-triphosphate and the Klenow fragment revealed that the synthetic nucleoside 5'-triphosphate was incorporated into the 3' end of the primer through recognition of A in the template strand. Moreover, the 3'-nucleotide residue harboring PzO as the base was resistant to the 3'-exonuclease activity of Klenow fragment exo+. The primer bearing the PzO base at the 3' end could function in subsequent chain elongation. These properties of PzO were attributed to the presence of an endocyclic nitrogen atom at the position ortho to the glycosidic bond, which was presumed to form an H-bond with the amino acid residue of DNA polymerase for effective recognition of the 3' end of the primer for primer extension. These results provide a basis for designing new nucleobases by combining a nitrogen atom at the position ortho to the glycosidic bond and base-pairing sites for Watson-Crick hydrogen bonding.


Asunto(s)
Cartilla de ADN/genética , Piridazinas/química , Nucleótidos de Timina/química , Emparejamiento Base , Cartilla de ADN/metabolismo , Electrones , Enlace de Hidrógeno , Modelos Moleculares , Electricidad Estática , Nucleótidos de Timina/metabolismo
12.
Biochemistry ; 56(40): 5449-5456, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28862868

RESUMEN

The hydrophobic hinge region of DNA polymerase ß (pol ß) is located between the fingers and palm subdomains. The hydrophobicity of the hinge region is important for maintaining the geometry of the binding pocket and for the selectivity of the enzyme. Various cancer-associated pol ß variants in the hinge region have reduced fidelity resulting from a decreased discrimination at the level of dNTP binding. Specifically, I260M, a prostate cancer-associated variant of pol ß, has been shown to have a reduced discrimination during dNTP binding and also during nucleotidyl transfer. To test whether fidelity of the I260M variant is dependent on leaving group chemistry, we employed a toolkit comprising dNTP bisphosphonate analogues modified at the ß-γ bridging methylene to modulate leaving group (pCXYp mimicking PPi) basicity. Construction of linear free energy relationship plots for the dependence of log(kpol) on leaving group pKa4 revealed that I260M catalyzes dNMP incorporation with a marked negative dependence on leaving group basicity, consistent with a chemical transition state, during both correct and incorrect incorporation. Additionally, we provide evidence that I260M fidelity is altered in the presence of some of the analogues, possibly resulting from a lack of coordination between the fingers and palm subdomains in the presence of the I260M mutation.


Asunto(s)
ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Desoxirribonucleótidos/química , Desoxirribonucleótidos/metabolismo , Mutación , Neoplasias/genética , ADN Polimerasa beta/química , Cinética , Modelos Moleculares , Neoplasias/enzimología , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Nucleótidos de Timina/metabolismo
13.
Biochemistry ; 56(29): 3818-3825, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28665588

RESUMEN

The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N10-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 104 M-1 s-1. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N5-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times.


Asunto(s)
Proteínas Bacterianas/química , Transferasas de Hidroximetilo y Formilo/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Factores de Virulencia/química , Proteínas Bacterianas/metabolismo , Catálisis , Cristalografía por Rayos X , Desoxiazúcares/química , Desoxiazúcares/metabolismo , Formiltetrahidrofolatos/química , Formiltetrahidrofolatos/metabolismo , Transferasas de Hidroximetilo y Formilo/metabolismo , Cinética , Mycobacterium tuberculosis/patogenicidad , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo , Factores de Virulencia/metabolismo
14.
Biochemistry ; 56(13): 1841-1853, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28290677

RESUMEN

DNA can be damaged by many compounds in our environment, and the resulting damaged DNA is commonly replicated by translesion synthesis (TLS) polymerases. Because the mechanism and efficiency of TLS are affected by the type of DNA damage, obtaining information for a variety of DNA adducts is critical. However, there is no structural information for the insertion of a dNTP opposite an O6-dG adduct, which is a particularly harmful class of DNA lesions. We used molecular dynamics (MD) simulations to investigate structural and energetic parameters that dictate preferred dNTP insertion opposite O6-benzyl-guanine (Bz-dG) by DNA polymerase IV, a prototypical TLS polymerase. Specifically, MD simulations were completed on all possible ternary insertion complexes and ternary -1 base deletion complexes with different Bz-dG conformations. Our data suggests that the purines are unlikely to be inserted opposite anti- or syn-Bz-dG, and dTTP is unlikely to be inserted opposite syn-Bz-dG, because of changes in the active site conformation, including critical hydrogen-bonding interactions and/or reaction-ready parameters compared to natural dG replication. In contrast, a preserved active site conformation suggests that dCTP can be inserted opposite either anti- or syn-Bz-dG and dTTP can be inserted opposite anti-Bz-dG. This is the first structural explanation for the experimentally observed preferential insertion of dCTP and misincorporation of dTTP opposite Bz-dG. Furthermore, we provide atomic level insight into why Bz-dG replication does not lead to deletion mutations, which is in contrast with the replication outcomes of other adducts. These findings provide a basis for understanding the replication of related O6-dG adducts.


Asunto(s)
Compuestos de Bencilo/síntesis química , Aductos de ADN/química , ADN Polimerasa beta/química , Reparación del ADN , Replicación del ADN , Nucleótidos de Desoxiguanina/química , Proteínas de Escherichia coli/química , Guanina/síntesis química , Dominio Catalítico , Daño del ADN , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxicitosina/química , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanina/análogos & derivados , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutagénesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
15.
J Biol Chem ; 291(46): 24304-24313, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27694439

RESUMEN

O6-Methyl-2'-deoxyguanosine (O6-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O6-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O6-MeG and 2"-deoxythymidine-5"-[(α, ß)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O6- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O6-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O6-MeG:dC or O6-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN/química , Nucleótidos de Desoxicitosina/química , Nucleótidos de Timina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/biosíntesis , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Humanos , Sulfolobus solfataricus/enzimología , Nucleótidos de Timina/metabolismo
16.
Glycobiology ; 27(4): 358-369, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28096310

RESUMEN

The Gram-negative bacterium Campylobacter jejuni 81116 (Penner serotype HS:6) has a class E lipooligosaccharide (LOS) biosynthesis locus containing 19 genes, which encode for 11 putative glycosyltransferases, 1 lipid A acyltransferase and 7 enzymes thought to be involved in the biosynthesis of dideoxyhexosamine (ddHexN) moieties. Although the LOS outer core structure of C. jejuni 81116 is still unknown, recent mass spectrometry analyses suggest that it contains acetylated forms of two ddHexN residues. For this investigation, five of the genes encoding enzymes reportedly involved in the biosyntheses of these sugar residues were examined, rmlA, rmlB, wlaRA, wlaRB and wlaRG. Specifically, these genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified and tested for biochemical activity. Here we present data demonstrating that RmlA functions as a glucose-1-phosphate thymidylyltransferase and that RmlB is a thymidine diphosphate (dTDP)-glucose 4,6-dehydratase. We also show, through nuclear magnetic resonance spectroscopy and mass spectrometry analyses, that WlaRG, when utilized in coupled assays with either WlaRA or WlaRB and dTDP-4-keto-6-deoxyglucose, results in the production of either dTDP-3-amino-3,6-dideoxy-d-galactose (dTDP-Fuc3N) or dTDP-3-amino-3,6-dideoxy-d-glucose (dTDP-Qui3N), respectively. In addition, the X-ray crystallographic structures of the 3,4-ketoisomerases, WlaRA and WlaRB, were determined to 2.14 and 2.0 Å resolutions, respectively. Taken together, the data reported herein demonstrate that C. jejuni 81116 utilizes five enzymes to synthesize dTDP-Fuc3N or dTDP-Qui3N and that WlaRG, an aminotransferase, can function on sugars with differing stereochemistry about their C-4' carbons. Importantly, the data reveal that C. jejuni 81116 has the ability to synthesize two isomeric ddHexN forms.


Asunto(s)
Aciltransferasas/genética , Campylobacter jejuni/genética , Galactosa/genética , Glicosiltransferasas/genética , Nucleotidiltransferasas/genética , Aciltransferasas/química , Aciltransferasas/metabolismo , Vías Biosintéticas/genética , Campylobacter jejuni/enzimología , Cristalografía por Rayos X , Escherichia coli/genética , Galactosa/química , Galactosa/metabolismo , Glucosa/química , Glucosa/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Lipopolisacáridos/biosíntesis , Lipopolisacáridos/genética , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo
17.
Mol Microbiol ; 102(3): 365-385, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27426054

RESUMEN

Thymidine kinase (TK) is a key enzyme in the pyrimidine salvage pathway which catalyzes the transfer of the γ-phosphate of ATP to 2'-deoxythymidine (dThd) forming thymidine monophosphate (dTMP). Unlike other type II TKs, the Trypanosoma brucei enzyme (TbTK) is a tandem protein with two TK homolog domains of which only the C-terminal one is active. In this study, we establish that TbTK is essential for parasite viability and cell cycle progression, independently of extracellular pyrimidine concentrations. We show that expression of TbTK is cell cycle regulated and that depletion of TbTK leads to strongly diminished dTTP pools and DNA damage indicating intracellular dThd to be an essential intermediate metabolite for the synthesis of thymine-derived nucleotides. In addition, we report the X-ray structure of the catalytically active domain of TbTK in complex with dThd and dTMP at resolutions up to 2.2 Å. In spite of the high conservation of the active site residues, the structures reveal a widened active site cavity near the nucleobase moiety compared to the human enzyme. Our findings strongly support TbTK as a crucial enzyme in dTTP homeostasis and identify structural differences within the active site that could be exploited in the process of rational drug design.


Asunto(s)
Timidina Quinasa/metabolismo , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología , Puntos de Control del Ciclo Celular/fisiología , Nucleósido-Fosfato Quinasa/metabolismo , Relación Estructura-Actividad , Timidina/metabolismo , Timidina Quinasa/química , Timidina Monofosfato/metabolismo , Nucleótidos de Timina/metabolismo , Trypanosoma brucei brucei/metabolismo
18.
Nature ; 480(7377): 379-82, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22056990

RESUMEN

SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.


Asunto(s)
VIH-1/fisiología , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/metabolismo , Regulación Alostérica , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Células Dendríticas/metabolismo , Células Dendríticas/virología , Nucleótidos de Desoxiadenina/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Humanos , Hidrólisis , Modelos Biológicos , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/genética , Células Mieloides/virología , Nucleósido-Trifosfatasa/genética , Estructura Terciaria de Proteína , Transcripción Reversa , Proteína 1 que Contiene Dominios SAM y HD , Nucleótidos de Timina/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
19.
Nature ; 478(7367): 132-5, 2011 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-21927003

RESUMEN

Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Bacteriófago T7/enzimología , Biocatálisis/efectos de los fármacos , ADN Helicasas/química , ADN Helicasas/metabolismo , Subunidades de Proteína/metabolismo , Emparejamiento Base/efectos de los fármacos , Unión Competitiva , ADN/química , ADN/metabolismo , ADN Primasa/química , ADN Primasa/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Hidrólisis/efectos de los fármacos , Cinética , Modelos Biológicos , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Subunidades de Proteína/química , Termodinámica , Nucleótidos de Timina/metabolismo , Nucleótidos de Timina/farmacología
20.
Mol Cell ; 34(6): 710-21, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19560423

RESUMEN

We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.


Asunto(s)
Disparidad de Par Base , ARN Polimerasa II/fisiología , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Nucleótidos de Timina/química , Nucleótidos de Timina/metabolismo , Nucleótidos de Uracilo/química , Nucleótidos de Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA