Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nature ; 616(7958): 783-789, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076623

RESUMEN

DNA viruses have a major influence on the ecology and evolution of cellular organisms1-4, but their overall diversity and evolutionary trajectories remain elusive5. Here we carried out a phylogeny-guided genome-resolved metagenomic survey of the sunlit oceans and discovered plankton-infecting relatives of herpesviruses that form a putative new phylum dubbed Mirusviricota. The virion morphogenesis module of this large monophyletic clade is typical of viruses from the realm Duplodnaviria6, with multiple components strongly indicating a common ancestry with animal-infecting Herpesvirales. Yet, a substantial fraction of mirusvirus genes, including hallmark transcription machinery genes missing in herpesviruses, are closely related homologues of giant eukaryotic DNA viruses from another viral realm, Varidnaviria. These remarkable chimaeric attributes connecting Mirusviricota to herpesviruses and giant eukaryotic viruses are supported by more than 100 environmental mirusvirus genomes, including a near-complete contiguous genome of 432 kilobases. Moreover, mirusviruses are among the most abundant and active eukaryotic viruses characterized in the sunlit oceans, encoding a diverse array of functions used during the infection of microbial eukaryotes from pole to pole. The prevalence, functional activity, diversification and atypical chimaeric attributes of mirusviruses point to a lasting role of Mirusviricota in the ecology of marine ecosystems and in the evolution of eukaryotic DNA viruses.


Asunto(s)
Organismos Acuáticos , Virus Gigantes , Herpesviridae , Océanos y Mares , Filogenia , Plancton , Animales , Ecosistema , Eucariontes/virología , Genoma Viral/genética , Virus Gigantes/clasificación , Virus Gigantes/genética , Herpesviridae/clasificación , Herpesviridae/genética , Plancton/virología , Metagenómica , Metagenoma , Luz Solar , Transcripción Genética/genética , Organismos Acuáticos/virología
2.
Nature ; 554(7690): 118-122, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364876

RESUMEN

The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses. In fact, non-tailed viruses often dominate ocean samples numerically, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria-virus interactions.


Asunto(s)
Organismos Acuáticos/virología , Bacterias/virología , Virus ADN/clasificación , Virus ADN/patogenicidad , Filogenia , Archaea/virología , Sesgo , Proteínas de la Cápside/metabolismo , Virus ADN/genética , Virus ADN/aislamiento & purificación , Metagenómica , Vibrio/virología
3.
J Virol ; 96(17): e0043922, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35975997

RESUMEN

Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.


Asunto(s)
Organismos Acuáticos , Infecciones por Flavivirus , Flavivirus , Animales , Acuicultura , Organismos Acuáticos/aislamiento & purificación , Organismos Acuáticos/virología , Evolución Biológica , Peces/virología , Flavivirus/aislamiento & purificación , Infecciones por Flavivirus/virología , Humanos
4.
Proc Natl Acad Sci U S A ; 117(47): 29738-29747, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33172994

RESUMEN

Virus-microbe interactions have been studied in great molecular details for many years in cultured model systems, yielding a plethora of knowledge on how viruses use and manipulate host machinery. Since the advent of molecular techniques and high-throughput sequencing, methods such as cooccurrence, nucleotide composition, and other statistical frameworks have been widely used to infer virus-microbe interactions, overcoming the limitations of culturing methods. However, their accuracy and relevance is still debatable as cooccurrence does not necessarily mean interaction. Here we introduce an ecological perspective of marine viral communities and potential interaction with their hosts, using analyses that make no prior assumptions on specific virus-host pairs. By size fractionating water samples into free viruses and microbes (i.e., also viruses inside or attached to their hosts) and looking at how viral group abundance changes over time along both fractions, we show that the viral community is undergoing a change in rank abundance across seasons, suggesting a seasonal succession of viruses in the Red Sea. We use abundance patterns in the different size fractions to classify viral clusters, indicating potential diverse interactions with their hosts and potential differences in life history traits between major viral groups. Finally, we show hourly resolved variations of intracellular abundance of similar viral groups, which might indicate differences in their infection cycles or metabolic capacities.


Asunto(s)
Organismos Acuáticos/virología , Estaciones del Año , Agua de Mar/microbiología , Viroma/genética , Virus/genética , Organismos Acuáticos/genética , ADN Viral/aislamiento & purificación , Océano Índico , Metagenoma , Interacciones Microbianas/genética , Virus/clasificación , Virus/aislamiento & purificación
5.
Nature ; 536(7617): 425-30, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533034

RESUMEN

Viruses are the most abundant biological entities on Earth, but challenges in detecting, isolating, and classifying unknown viruses have prevented exhaustive surveys of the global virome. Here we analysed over 5 Tb of metagenomic sequence data from 3,042 geographically diverse samples to assess the global distribution, phylogenetic diversity, and host specificity of viruses. We discovered over 125,000 partial DNA viral genomes, including the largest phage yet identified, and increased the number of known viral genes by 16-fold. Half of the predicted partial viral genomes were clustered into genetically distinct groups, most of which included genes unrelated to those in known viruses. Using CRISPR spacers and transfer RNA matches to link viral groups to microbial host(s), we doubled the number of microbial phyla known to be infected by viruses, and identified viruses that can infect organisms from different phyla. Analysis of viral distribution across diverse ecosystems revealed strong habitat-type specificity for the vast majority of viruses, but also identified some cosmopolitan groups. Our results highlight an extensive global viral diversity and provide detailed insight into viral habitat distribution and host­virus interactions.


Asunto(s)
Planeta Tierra , Ecosistema , Genoma Viral/genética , Metagenómica , Virus/genética , Animales , Organismos Acuáticos/virología , Bacteriófagos/genética , Biodiversidad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Viral/análisis , ADN Viral/genética , Conjuntos de Datos como Asunto , Genes Virales , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Metagenoma/genética , Filogenia , Filogeografía , ARN de Transferencia/genética , Análisis de Secuencia , Virus/clasificación , Virus/aislamiento & purificación
6.
Proc Natl Acad Sci U S A ; 116(34): 16899-16908, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383764

RESUMEN

Long-term coexistence between unicellular cyanobacteria and their lytic viruses (cyanophages) in the oceans is thought to be due to the presence of sensitive cells in which cyanophages reproduce, ultimately killing the cell, while other cyanobacteria survive due to resistance to infection. Here, we investigated resistance in marine cyanobacteria from the genera Synechococcus and Prochlorococcus and compared modes of resistance against specialist and generalist cyanophages belonging to the T7-like and T4-like cyanophage families. Resistance was extracellular in most interactions against specialist cyanophages irrespective of the phage family, preventing entry into the cell. In contrast, resistance was intracellular in practically all interactions against generalist T4-like cyanophages. The stage of intracellular arrest was interaction-specific, halting at various stages of the infection cycle. Incomplete infection cycles proceeded to various degrees of phage genome transcription and translation as well as phage genome replication in numerous interactions. In a particularly intriguing case, intracellular capsid assembly was observed, but the phage genome was not packaged. The cyanobacteria survived the encounter despite late-stage infection and partial genome degradation. We hypothesize that this is tolerated due to genome polyploidy, which we found for certain strains of both Synechococcus and Prochlorococcus Our findings unveil a heavy cost of promiscuous entry of generalist phages into nonhost cells that is rarely paid by specialist phages and suggests the presence of unknown mechanisms of intracellular resistance in the marine unicellular cyanobacteria. Furthermore, these findings indicate that the range for virus-mediated horizontal gene transfer extends beyond hosts to nonhost cyanobacterial cells.


Asunto(s)
Organismos Acuáticos , Bacteriófagos/fisiología , Modelos Biológicos , Prochlorococcus , Synechococcus , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/virología , Prochlorococcus/crecimiento & desarrollo , Prochlorococcus/virología , Synechococcus/crecimiento & desarrollo , Synechococcus/virología
7.
Proc Natl Acad Sci U S A ; 116(31): 15645-15650, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311861

RESUMEN

Ammonia-oxidizing archaea (AOA) from the phylum Thaumarchaeota are ubiquitous in marine ecosystems and play a prominent role in carbon and nitrogen cycling. Previous studies have suggested that, like all microbes, thaumarchaea are infected by viruses and that viral predation has a profound impact on thaumarchaeal functioning and mortality, thereby regulating global biogeochemical cycles. However, not a single virus capable of infecting thaumarchaea has been reported thus far. Here we describe the isolation and characterization of three Nitrosopumilus spindle-shaped viruses (NSVs) that infect AOA and are distinct from other known marine viruses. Although NSVs have a narrow host range, they efficiently infect autochthonous Nitrosopumilus strains and display high rates of adsorption to their host cells. The NSVs have linear double-stranded DNA genomes of ∼28 kb that do not display appreciable sequence similarity to genomes of other known archaeal or bacterial viruses and could be considered as representatives of a new virus family, the "Thaspiviridae." Upon infection, NSV replication leads to inhibition of AOA growth, accompanied by severe reduction in the rate of ammonia oxidation and nitrite reduction. Nevertheless, unlike in the case of lytic bacteriophages, NSV propagation is not associated with detectable degradation of the host chromosome or a decrease in cell counts. The broad distribution of NSVs in AOA-dominated marine environments suggests that NSV predation might regulate the diversity and dynamics of AOA communities. Collectively, our results shed light on the diversity, evolution, and potential impact of the virosphere associated with ecologically important mesophilic archaea.


Asunto(s)
Amoníaco/metabolismo , Organismos Acuáticos , Archaea , Bacteriófagos/fisiología , ADN de Archaea , Replicación Viral , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Organismos Acuáticos/virología , Archaea/genética , Archaea/metabolismo , Archaea/virología , ADN de Archaea/genética , ADN de Archaea/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(31): 15590-15595, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31308237

RESUMEN

The building blocks of a virus derived from de novo biosynthesis during infection and/or catabolism of preexisting host cell biomass, and the relative contribution of these 2 sources has important consequences for understanding viral biogeochemistry. We determined the uptake of extracellular nitrogen (N) and its biosynthetic incorporation into both virus and host proteins using an isotope-labeling proteomics approach in a model marine cyanobacterium Synechococcus WH8102 infected by a lytic cyanophage S-SM1. By supplying dissolved N as 15N postinfection, we found that proteins in progeny phage particles were composed of up to 41% extracellularly derived N, while proteins of the infected host cell showed almost no isotope incorporation, demonstrating that de novo amino acid synthesis continues during infection and contributes specifically and substantially to phage replication. The source of N for phage protein synthesis shifted over the course of infection from mostly host derived in the early stages to more medium derived later on. We show that the photosystem II reaction center proteins D1 and D2, which are auxiliary metabolic genes (AMGs) in the S-SM1 genome, are made de novo during infection in an apparently light-dependent manner. We also identified a small set of host proteins that continue to be produced during infection; the majority are homologs of AMGs in S-SM1 or other viruses, suggesting selective continuation of host protein production during infection. The continued acquisition of nutrients by the infected cell and their utilization for phage replication are significant for both evolution and biogeochemical impact of viruses.


Asunto(s)
Organismos Acuáticos , Proteínas Bacterianas , Bacteriófagos , Nitrógeno/metabolismo , Complejo de Proteína del Fotosistema II , Synechococcus , Proteínas Virales , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Organismos Acuáticos/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechococcus/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Crit Rev Microbiol ; 47(3): 307-322, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33570448

RESUMEN

The ongoing COVID-19 pandemic has made us wonder what led to its occurrence and what can be done to avoid such events in the future. As we document, one changing circumstance that is resulting in the emergence and changing the expression of viral diseases in both plants and animals is climate change. Of note, the rapidly changing environment and weather conditions such as excessive flooding, droughts, and forest fires have raised concerns about the global ecosystem's security, sustainability, and balance. In this review, we discuss the main consequences of climate change and link these to how they impact the appearance of new viral pathogens, how they may facilitate transmission between usual and novel hosts, and how they may also affect the host's ability to manage the infection. We emphasize how changes in temperature and humidity and other events associated with climate change influence the reservoirs of viral infections, their transmission by insects and other intermediates, their survival outside the host as well the success of infection in plants and animals. We conclude that climate change has mainly detrimental consequences for the emergence, transmission, and outcome of viral infections and plead the case for halting and hopefully reversing this dangerous event.


Asunto(s)
COVID-19/transmisión , Cambio Climático , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Organismos Acuáticos/virología , COVID-19/complicaciones , COVID-19/etiología , COVID-19/inmunología , Quirópteros/virología , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/etiología , Enfermedades Transmisibles Emergentes/inmunología , Productos Agrícolas/virología , Reservorios de Enfermedades/virología , Vectores de Enfermedades/clasificación , Abastecimiento de Alimentos , Humanos , Humedad , Enfermedades de las Plantas/inmunología , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Primates , Lluvia , Estaciones del Año , Temperatura , Virosis/complicaciones , Virosis/etiología , Virosis/inmunología
10.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31068424

RESUMEN

Most described flaviviruses (family Flaviviridae) are disease-causing pathogens of vertebrates maintained in zoonotic cycles between mosquitoes or ticks and vertebrate hosts. Poor sampling of flaviviruses outside vector-borne flaviviruses such as Zika virus and dengue virus has presented a narrow understanding of flavivirus diversity and evolution. In this study, we discovered three crustacean flaviviruses (Gammarus chevreuxi flavivirus, Gammarus pulex flavivirus, and Crangon crangon flavivirus) and two cephalopod flaviviruses (Southern Pygmy squid flavivirus and Firefly squid flavivirus). Bayesian and maximum likelihood phylogenetic methods demonstrate that crustacean flaviviruses form a well-supported clade and share a more closely related ancestor with terrestrial vector-borne flaviviruses than with classical insect-specific flaviviruses. In addition, we identify variants of Wenzhou shark flavivirus in multiple gazami crab (Portunus trituberculatus) populations, with active replication supported by evidence of an active RNA interference response. This suggests that Wenzhou shark flavivirus moves horizontally between sharks and gazami crabs in ocean ecosystems. Analyses of the mono- and dinucleotide composition of marine flaviviruses compared to that of flaviviruses with known host status suggest that some marine flaviviruses share a nucleotide bias similar to that of vector-borne flaviviruses. Furthermore, we identify crustacean flavivirus endogenous viral elements that are closely related to elements of terrestrial vector-borne flaviviruses. Taken together, these data provide evidence of flaviviruses circulating between marine vertebrates and invertebrates, expand our understanding of flavivirus host range, and offer potential insights into the evolution and emergence of terrestrial vector-borne flaviviruses.IMPORTANCE Some flaviviruses are known to cause disease in vertebrates and are typically transmitted by blood-feeding arthropods such as ticks and mosquitoes. While an ever-increasing number of insect-specific flaviviruses have been described, we have a narrow understanding of flavivirus incidence and evolution. To expand this understanding, we discovered a number of novel flaviviruses that infect a range of crustaceans and cephalopod hosts. Phylogenetic analyses of these novel marine flaviviruses suggest that crustacean flaviviruses share a close ancestor to all terrestrial vector-borne flaviviruses, and squid flaviviruses are the most divergent of all known flaviviruses to date. Additionally, our results indicate horizontal transmission of a marine flavivirus between crabs and sharks. Taken together, these data suggest that flaviviruses move horizontally between invertebrates and vertebrates in ocean ecosystems. This study demonstrates that flavivirus invertebrate-vertebrate host associations have arisen in flaviviruses at least twice and may potentially provide insights into the emergence or origin of terrestrial vector-borne flaviviruses.


Asunto(s)
Organismos Acuáticos/virología , Evolución Biológica , Braquiuros/virología , Cefalópodos/virología , Enfermedades de los Peces , Infecciones por Flavivirus , Flavivirus , Tiburones/virología , Animales , Transmisión de Enfermedad Infecciosa , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Flavivirus/clasificación , Flavivirus/fisiología , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología
11.
J Invertebr Pathol ; 173: 107373, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272136

RESUMEN

Diseases in marine invertebrate corals have been reported worldwide and have been associated with infection by various microbial pathogens that cause massive mortality. Several bacterial species, especially Vibrio species but also members of the cyanobacteria, fungi, viruses, and protists, are described as important pathogens associated with coral disease and mortality. The present work provides an updated overview of main diseases and implicated microbial species affecting corals in Indian reefs. Further study on pathogen diversity, classification, spread and environmental factors on pathogen-host interactions may contribute a better understanding of the coral diseases.


Asunto(s)
Antozoos/microbiología , Antozoos/parasitología , Organismos Acuáticos/microbiología , Organismos Acuáticos/parasitología , Animales , Antozoos/virología , Organismos Acuáticos/virología , Arrecifes de Coral , Interacciones Huésped-Patógeno , India
12.
PLoS Genet ; 13(9): e1007018, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28945750

RESUMEN

Marine viruses play a critical role not only in the global geochemical cycles but also in the biology and evolution of their hosts. Despite their importance, viral diversity remains underexplored mostly due to sampling and cultivation challenges. Direct sequencing approaches such as viromics has provided new insights into the marine viral world. As a complementary approach, we analysed 24 microbial metagenomes (>0.2 µm size range) obtained from six sites in the Mediterranean Sea that vary by depth, season and filter used to retrieve the fraction. Filter-size comparison showed a significant number of viral sequences that were retained on the larger-pore filters and were different from those found in the viral fraction from the same sample, indicating that some important viral information is missing using only assembly from viromes. Besides, we were able to describe 1,323 viral genomic fragments that were more than 10Kb in length, of which 36 represented complete viral genomes including some of them retrieved from a cross-assembly from different metagenomes. Host prediction based on sequence methods revealed new phage groups belonging to marine prokaryotes like SAR11, Cyanobacteria or SAR116. We also identified the first complete virophage from deep seawater and a new endemic clade of the recently discovered Marine group II Euryarchaeota virus. Furthermore, analysis of viral distribution using metagenomes and viromes indicated that most of the new phages were found exclusively in the Mediterranean Sea and some of them, mostly the ones recovered from deep metagenomes, do not recruit in any database probably indicating higher variability and endemicity in Mediterranean bathypelagic waters. Together these data provide the first detailed picture of genomic diversity, spatial and depth variations of viral communities within the Mediterranean Sea using metagenome assembly.


Asunto(s)
Organismos Acuáticos/genética , Bacteriófagos/genética , Variación Genética , Metagenoma/genética , Organismos Acuáticos/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Mar Mediterráneo , Anotación de Secuencia Molecular
13.
Fish Shellfish Immunol ; 86: 1096-1105, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30557608

RESUMEN

Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.


Asunto(s)
Organismos Acuáticos/virología , Evasión Inmune , Virus , Animales , Organismos Acuáticos/inmunología , Interacciones Huésped-Patógeno/inmunología , Virosis/inmunología , Virosis/veterinaria , Fenómenos Fisiológicos de los Virus
14.
Nature ; 502(7473): 707-10, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24107993

RESUMEN

Cyanobacteria are photosynthetic organisms responsible for ∼25% of organic carbon fixation on the Earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen more than two billion years ago. Cyanophages, which infect these bacteria, have an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike phase contrast electron cryo-tomography (cryoET). This imaging modality yields dramatic enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identify distinct Syn5 assembly intermediates. Our results indicate that the procapsid releases scaffolding proteins and expands its volume at an early stage of genome packaging. Later in the assembly process, we detected full particles with a tail either with or without an additional horn. The morphogenetic pathway we describe here is highly conserved and was probably established long before that of double-stranded DNA viruses infecting more complex organisms.


Asunto(s)
Bacteriófagos/crecimiento & desarrollo , Bacteriófagos/ultraestructura , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Synechococcus/ultraestructura , Synechococcus/virología , Ensamble de Virus , Organismos Acuáticos/citología , Organismos Acuáticos/ultraestructura , Organismos Acuáticos/virología , Modelos Biológicos , Synechococcus/citología
15.
J Invertebr Pathol ; 160: 26-32, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30513284

RESUMEN

Abalone viral ganglioneuritis (AVG), caused by Haliotid herpesvirus-1 (HaHV-1) infection, has been reported as the main cause of mortality and heavy losses of wild and cultivated abalone in Taiwan and Australia since 2003. HaHV-1 DNA has also been reported in diseased abalone collected in early 2000s in China. However, no data is available about the susceptibility, disease process and pathological changes of HaHV-1 infection in the primary cultivated abalone species in China. In the present study, two cultivated abalone species, Haliotis diversicolor supertexta and Haliotis discus hannai, were challenged with HaHV-1-CN2003 collected in 2003 in China using three different methods. Results showed that H. diversicolor supertexta was highly susceptible to HaHV-1-CN2003 infection and suffered acute mortality using all three challenge methods. H. discus hannai was not susceptible to the viral infection. Histopathology combined with transmission electron microscopy and quantitative PCR analysis revealed that the tropism of HaHV-1-CN2003 includes both neural tissue and haemocytes.


Asunto(s)
Gastrópodos/virología , Infecciones por Herpesviridae/virología , Herpesviridae , Animales , Acuicultura , Organismos Acuáticos/virología , Australia , China , Susceptibilidad a Enfermedades , Herpesviridae/patogenicidad , Herpesviridae/ultraestructura , Infecciones por Herpesviridae/patología , Mariscos/virología , Taiwán
16.
BMC Genomics ; 18(1): 298, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28407753

RESUMEN

BACKGROUND: Over the past 20 years, many marine seabird populations have been gradually declining and the factors driving this ongoing deterioration are not always well understood. Avipoxvirus infections have been found in a wide range of bird species worldwide, however, very little is known about the disease ecology of avian poxviruses in seabirds. Here we present two novel avipoxviruses from pacific shearwaters (Ardenna spp), one from a Flesh-footed Shearwater (A. carneipes) (SWPV-1) and the other from a Wedge-tailed Shearwater (A. pacificus) (SWPV-2). RESULTS: Epidermal pox lesions, liver, and blood samples were examined from A. carneipes and A. pacificus of breeding colonies in eastern Australia. After histopathological confirmation of the disease, PCR screening was conducted for avipoxvirus, circovirus, reticuloendotheliosis virus, and fungal agents. Two samples that were PCR positive for poxvirus were further assessed by next generation sequencing, which yielded complete Shearwaterpox virus (SWPV) genomes from A. pacificus and A. carneipes, both showing the highest degree of similarity with Canarypox virus (98% and 67%, respectively). The novel SWPV-1 complete genome from A. carneipes is missing 43 genes compared to CNPV and contains 4 predicted genes which are not found in any other poxvirus, whilst, SWPV-2 complete genome was deemed to be missing 18 genes compared to CNPV and a further 15 genes significantly fragmented as to probably cause them to be non-functional. CONCLUSION: These are the first avipoxvirus complete genome sequences that infect marine seabirds. In the comparison of SWPV-1 and -2 to existing avipoxvirus sequences, our results indicate that the SWPV complete genome from A. carneipes (SWPV-1) described here is not closely related to any other avipoxvirus genome isolated from avian or other natural host species, and that it likely should be considered a separate species.


Asunto(s)
Avipoxvirus/genética , Enfermedades de las Aves/virología , Genoma Viral , Infecciones por Poxviridae/diagnóstico , Animales , Organismos Acuáticos/virología , Australia , Avipoxvirus/aislamiento & purificación , Avipoxvirus/patogenicidad , Aves/clasificación , Aves/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Infecciones por Poxviridae/virología , Análisis de Secuencia de ADN/métodos
17.
Virol J ; 14(1): 104, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592325

RESUMEN

BACKGROUND: Erythrobacter comprises a widespread and ecologically significant genus of marine bacteria. However, no phage infecting Erythrobacter spp. has been reported to date. This study describes the isolation and characterization of phage vB_EliS-R6L from Erythrobacter. METHODS: Standard virus enrichment and double-layer agar methods were used to isolate and characterize the phage. Morphology was observed by transmission electron microscopy, and a one-step growth curve assay was performed. The phage genome was sequenced using the Illumina Miseq platform and annotated using standard bioinformatics tools. Phylogenetic analyses were performed based on the deduced amino acid sequences of terminase, endolysin, portal protein, and major capsid protein, and genome recruitment analysis was conducted using Jiulong River Estuary Virome, Pacific Ocean Virome and Global Ocean Survey databases. RESULTS: A novel phage, vB_EliS-R6L, from coastal waters of Xiamen, China, was isolated and found to infect the marine bacterium Erythrobacter litoralis DSM 8509. Morphological observation and genome analysis revealed that phage vB_EliS-R6L is a siphovirus with a 65.7-kb genome that encodes 108 putative gene products. The phage exhibits growth at a wide range of temperature and pH conditions. Genes encoding five methylase-related proteins were found in the genome, and recognition site predictions suggested its resistance to restriction-modification host systems. Genomic comparisons and phylogenetic analyses indicate that phage vB_EliS-R6L is distinct from other known phages. Metagenomic recruitment analysis revealed that vB_EliS-R6L-like phages are widespread in marine environments, with likely distribution in coastal waters. CONCLUSIONS: Isolation of the first Erythrobacter phage (vB_EliS-R6L) will contribute to our understanding of host-phage interactions, the ecology of marine Erythrobacter and viral metagenome annotation efforts.


Asunto(s)
Organismos Acuáticos/virología , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Sphingomonadaceae/virología , Bacteriófagos/genética , Bacteriófagos/ultraestructura , China , Microscopía Electrónica de Transmisión , Anotación de Secuencia Molecular , Océano Pacífico , Análisis de Secuencia de ADN , Proteínas Virales/genética , Microbiología del Agua , Secuenciación Completa del Genoma
18.
New Phytol ; 210(1): 88-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26856244

RESUMEN

Viruses that infect marine photosynthetic microorganisms are major ecological and evolutionary drivers of microbial food webs, estimated to turn over more than a quarter of the total photosynthetically fixed carbon. Viral infection of the bloom-forming microalga Emiliania huxleyi induces the rapid remodeling of host primary metabolism, targeted towards fatty acid metabolism. We applied a liquid chromatography-mass spectrometry (LC-MS)-based lipidomics approach combined with imaging flow cytometry and gene expression profiling to explore the impact of viral-induced metabolic reprogramming on lipid composition. Lytic viral infection led to remodeling of the cellular lipidome, by predominantly inducing the biosynthesis of highly saturated triacylglycerols (TAGs), coupled with a significant accumulation of neutral lipids within lipid droplets. Furthermore, TAGs were found to be a major component (77%) of the lipidome of isolated virions. Interestingly, viral-induced TAGs were significantly more saturated than TAGs produced under nitrogen starvation. This study highlights TAGs as major products of the viral-induced metabolic reprogramming during the host-virus interaction and indicates a selective mode of membrane recruitment during viral assembly, possibly by budding of the virus from specialized subcellular compartments. These findings provide novel insights into the role of viruses infecting microalgae in regulating metabolism and energy transfer in the marine environment and suggest their possible biotechnological application in biofuel production.


Asunto(s)
Organismos Acuáticos/virología , Haptophyta/metabolismo , Haptophyta/virología , Metabolismo de los Lípidos , Metaboloma , Triglicéridos/biosíntesis , Virus/metabolismo , Organismos Acuáticos/metabolismo , Gotas Lipídicas/metabolismo , Virión/aislamiento & purificación , Virión/fisiología
19.
Nature ; 468(7320): 60-6, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21048761

RESUMEN

The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0 µm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.


Asunto(s)
Organismos Acuáticos/genética , Genómica , Metagenoma , Plancton/genética , Células Procariotas/metabolismo , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Organismos Acuáticos/virología , Biodiversidad , Biomasa , Bases de Datos de Proteínas , Genoma Bacteriano/genética , Modelos Biológicos , Océanos y Mares , Filogenia , Plancton/crecimiento & desarrollo , Plancton/aislamiento & purificación , Plancton/metabolismo , Células Procariotas/clasificación , Células Procariotas/virología , ARN Ribosómico 16S/genética , Microbiología del Agua
20.
Environ Microbiol ; 17(4): 1286-99, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25041521

RESUMEN

Cyanobacteria coexist in the oceans with a wealth of phages that infect them. While numerous studies have investigated Synechococcus phages, much less data are available for Prochlorococcus phages. Furthermore, little is known about cyanophage composition. Here, we examined the abundance and relative composition of cyanophages on six cyanobacterial hosts in samples collected during spring and summer from the Red Sea. Maximal abundances found on Synechococcus of 35 000 phages/ml are within ranges found previously, whereas the 24 000 phages/ml found on Prochlorococcus are approximately 10-fold higher than previous findings. T7-like, T4-like and 'unknown' phages were isolated on all hosts, including many T4-like phages on high-light adapted Prochlorococcus strains, whereas TIM5-like phages were found only on Synechococcus. Large differences in cyanophage abundance and composition were found for different hosts on the same sampling date, as well as for the same host on different dates, with few predictable patterns discerned. Host range analyses showed that T7-like and TIM5-like phages were quite host-specific, whereas the breadth of hosts for T4-like phages was related to host type: those isolated on high-light adapted Prochlorococcus were considerably more host-specific than those on low-light adapted Prochlorococcus or Synechococcus. These host-related differences likely contribute to the complexity of host-phage interactions in the oceans.


Asunto(s)
Especificidad del Huésped , Prochlorococcus/virología , Synechococcus/virología , Organismos Acuáticos/virología , Bacteriófagos/aislamiento & purificación , Océano Índico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA