Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Nature ; 619(7970): 606-615, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438521

RESUMEN

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Neuronas Dopaminérgicas , Supervivencia de Injerto , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Linfocitos T Reguladores , Tirosina 3-Monooxigenasa , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neuronas Dopaminérgicas/inmunología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/trasplante , Mesencéfalo/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/terapia , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/cirugía , Enfermedad de Parkinson/terapia , Tirosina 3-Monooxigenasa/deficiencia , Tirosina 3-Monooxigenasa/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Animales , Ratones , Ratas , Oxidopamina/metabolismo , Supervivencia de Injerto/inmunología , Muerte Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Neostriado/metabolismo , Factores de Tiempo , Proliferación Celular , Resultado del Tratamiento
2.
BMC Biol ; 21(1): 252, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950228

RESUMEN

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Asunto(s)
Caenorhabditis elegans , Enfermedades Neurodegenerativas , Animales , Humanos , Caenorhabditis elegans/metabolismo , Oxidopamina/efectos adversos , Oxidopamina/metabolismo , Dopamina/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Neuronas Dopaminérgicas/fisiología , Adenosina Trifosfato/metabolismo , Azúcares/efectos adversos , Azúcares/metabolismo , Fructosa/efectos adversos , Fructosa/metabolismo , Glucosa/metabolismo , Modelos Animales de Enfermedad
3.
Pharmacology ; 108(6): 550-564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37820589

RESUMEN

INTRODUCTION: Oxidative stress and inflammation are major factors contributing to the progressive death of dopaminergic neurons in Parkinson's disease (PD). Recent studies have demonstrated that morphine's biosynthetic pathway, coupled with nitric oxide (NO) release, is evolutionarily conserved throughout animals and humans. Moreover, dopamine is a key precursor for morphine biosynthesis. METHOD: The present study evaluated a series of preclinical experiments to evaluate the effects of low-level morphine treatment upon neuro-immune tissues exposed to rotenone and 6-OHDA as models of PD, followed by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell proliferation assay and cell/tissue computer-assisted imaging analyses to assess cell/neuronal viability. RESULTS: Morphine at normal physiological concentrations (i.e., 10-6 M and 10-7 M) provided neuroprotection, as it significantly inhibited rotenone and 6-OHDA dopaminergic insults; thereby, reducing and/or forestalling cell death in invertebrate ganglia and human nerve cells. To ensure that morphine caused this neuroprotective effect, naloxone, a potent opiate receptor antagonist, was employed and the results showed that it blocked morphine's neuroprotective effects. Additionally, co-incubation of NO synthase inhibitor L-NAME also blocked morphine's neuroprotective effects against rotenone and 6-OHDA insults. CONCLUSIONS: Taken together, the present preclinical study showed that while morphine can attenuate lipopolysaccharide-induced inflammation and cell death, both naloxone and L-NAME can abolish this effect. Preincubation of morphine precursors (i.e., L-3,4-dihydroxyphenylalanine, reticuline, and trihexyphenidyl [THP] at physiological concentrations) mimics the observed morphine effect. However, high concentrations of THP, a precursor of the morphine biosynthetic pathway, induced cell death, indicating the physiological importance of morphine biosynthesis in neural tissues. Thus, understanding the morphine biosynthetic pathway coupled with a NO signaling mechanism as a molecular target for neuroprotection against oxidative stress and inflammation in other preclinical models of PD is warranted.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Oxidopamina/metabolismo , Oxidopamina/farmacología , Oxidopamina/uso terapéutico , NG-Nitroarginina Metil Éster/farmacología , Rotenona/farmacología , Rotenona/metabolismo , Rotenona/uso terapéutico , Estrés Oxidativo , Morfina/farmacología , Naloxona/farmacología , Neuronas Dopaminérgicas , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transducción de Señal
4.
Neuroimage ; 247: 118842, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942366

RESUMEN

Degradation products of the essential amino acid tryptophan (Trp) are important signaling molecules in the mammalian brain. Trp is metabolized either through the kynurenine pathway or enters serotonin and melatonin syntheses. The aim of the present work was to examine the potential of the novel PET tracer 7-[18F]fluorotryptophan ([18F]FTrp) to visualize all three pathways in a unilateral 6-OHDA rat model. [18F]FDOPA-PET scans were performed in nine 6-OHDA-injected and six sham-operated rats to assess unilateral dopamine depletion severity four weeks after lesion placement. Afterwards, 7-[18F]FTrp-PET scans were conducted at different timepoints up to seven months after 6-OHDA injection. In addition, two 6-OHDA-injected rats were examined for neuroinflammation using [18F]DAA1106-PET. 7-[18F]FTrp-PET showed significantly increased tracer uptake at the 6-OHDA injection site which was negatively correlated to time after lesion placement. Accumulation of [18F]DAA1106 at the injection site was increased as well, suggesting that 7-[18F]FTrp uptake in this region may reflect kynurenine pathway activity associated with inflammation. Bilaterally in the dorsal hippocampus, 7-[18F]FTrp uptake was significantly decreased and was inversely correlated to dopamine depletion severity, indicating that it reflects reduced serotonin synthesis. Finally, 7-[18F]FTrp uptake in the pineal gland was significantly increased in relation with dopamine depletion severity, providing evidence that melatonin synthesis is increased in the 6-OHDA rat model. We conclude that 7-[18F]FTrp is able to detect alterations in both serotonin/melatonin and kynurenine metabolic pathways, and can be applied to visualize pathologic changes related to neurodegenerative processes.


Asunto(s)
Oxidopamina/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos/metabolismo , Triptófano/metabolismo , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Hipocampo/metabolismo , Quinurenina/metabolismo , Masculino , Melatonina/metabolismo , Oxidopamina/farmacología , Glándula Pineal/metabolismo , Ratas , Ratas Long-Evans , Serotonina/metabolismo , Triptófano/análogos & derivados
5.
Neuropathol Appl Neurobiol ; 48(6): e12829, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35727707

RESUMEN

AIMS: It has long been considered that accumulation of pathological alpha-synuclein (aSyn) leads to synaptic/neuronal loss which then results in behavioural and cognitive dysfunction. To investigate this claim, we investigated effects downstream of aSyn preformed fibrils (PFFs) and 6-hydroxydopamine (6-OHDA), because aSyn PFFs induce spreading/accumulation of aSyn, and 6-OHDA rapidly causes local neuronal loss. METHODS: We injected mouse aSyn PFFs into the medial forebrain bundle (MFB) of Sprague-Dawley rats. We investigated spread of pathological aSyn, phosphorylation of aSyn and tau, oxidative stress, synaptic/neuronal loss and cognitive dysfunction 60, 90 and 120 days after injection. Similarly, we injected 6-OHDA into the MFB and examined the same parameters 1 and 3 weeks after injection. RESULTS: Following aSyn PFF injection, phosphorylated aSyn was found distant from the injection site in the hippocampus and frontal cortex. However, despite neuron loss being evident close to the site of injection in the substantia nigra at 120 days post injection, there were no other neurodegeneration-associated features associated with aSyn including synaptic loss. In contrast, 6-OHDA caused severe neuronal loss in the substantia nigra at 3 weeks post injection that was accompanied by phosphorylation of aSyn and tau, oxidative stress, loss of synaptic proteins, cognitive and motor dysfunction. CONCLUSIONS: Our results demonstrate that spread/replication and slow accumulation of pathological aSyn may not be sufficient to induce neurodegenerative changes. In contrast, oxidative stress responses in addition to aSyn accumulation were associated with other Parkinson's disease (PD)-associated abnormalities and cognitive dysfunction. Our results may be important when considering why only some PD patients develop dementia.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , Oxidopamina/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/patología , alfa-Sinucleína/metabolismo
6.
Cytotherapy ; 24(11): 1105-1120, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35973920

RESUMEN

BACKGROUND AIMS: Gingival mesenchymal stem cells (GMSCs) demonstrate high proliferation, trilineage differentiation and immunomodulatory properties. Parkinson disease (PD) is the second most common type of neurodegenerative disease. This study aimed to explore the effect and mechanism of GMSC-based therapy in 6-hydroxydopamine-induced PD rats. METHODS: RNA sequencing and quantitative proteomics technology was used to validate the neuroprotective role of GMSCs therapeutic in 6-Hydroxydopamine -induced PD model in vitro and in vivo. Western blotting, immunofluorescence and real-time quantitative PCR verified the molecular mechanism of GMSCs treatment. RESULTS: Intravenous injection of GMSCs improved rotation and forelimb misalignment behavior, enhanced the anti-apoptotic B-cell lymphoma 2/B-cell lymphoma 2-associated X axis, protected tyrosine hydroxylase neurons, decreased the activation of astrocytes and reduced the astrocyte marker glial fibrillary acidic protein and microglia marker ionized calcium-binding adaptor molecule 1 in the substantia nigra and striatum of PD rats. The authors found that GMSCs upregulated nerve regeneration-related molecules and inhibited metabolic disorders and the activation of signal transducer and activator of transcription 3. GMSCs showed a strong ability to protect neurons and reduce mitochondrial membrane potential damage and reactive oxygen species accumulation. The safety of GMSC transplantation was confirmed by the lack of tumor formation following subcutaneous transplantation into nude mice for up to 8 weeks. CONCLUSIONS: The authors' research helps to explain the mechanism of GMSC-based therapeutic strategies and promote potential clinical application in Parkinson disease.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Calcio/metabolismo , Encía , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Desnudos , Neuronas/metabolismo , Oxidopamina/metabolismo , Oxidopamina/farmacología , Oxidopamina/uso terapéutico , Enfermedad de Parkinson/terapia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología , Factor de Transcripción STAT3/uso terapéutico , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Tirosina 3-Monooxigenasa/uso terapéutico
7.
J Nanobiotechnology ; 20(1): 198, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468855

RESUMEN

BACKGROUND: Neural stem cells (NSCs) have the ability to generate a variety of functional neural cell types and have a high potential for neuronal cell regeneration and recovery. Thus, they been recognized as the best source of cell therapy for neurodegenerative diseases, such as Parkinson's disease (PD). Owing to the possibility of paracrine effect-based therapeutic mechanisms and easier clinical accessibility, extracellular vesicles (EVs), which possess very similar bio-functional components from their cellular origin, have emerged as potential alternatives in regenerative medicine. MATERIAL AND METHODS: EVs were isolated from human fibroblast (HFF) and human NSC (F3 cells). The supernatant of the cells was concentrated by a tangential flow filtration (TFF) system. Then, the final EVs were isolated using a total EV isolation kit. RESULTS: In this study, we demonstrate the potential protective effect of human NSC-derived EVs, showing the prevention of PD pathologies in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo mouse models. Human NSC and F3 cell (F3)-derived EVs reduced the intracellular reactive oxygen species (ROS) and associated apoptotic pathways. In addition, F3-derived EVs induced downregulation of pro-inflammatory factors and significantly decreased 6-OHDA-induced dopaminergic neuronal loss in vivo. F3 specific microRNAs (miRNAs) such as hsa-mir-182-5p, hsa-mir-183-5p, hsa-mir-9, and hsa-let-7, which are involved in cell differentiation, neurotrophic function, and immune modulation, were found in F3-derived EVs. CONCLUSIONS: We report that human NSC-derived EVs show an effective neuroprotective property in an in vitro transwell system and in a PD model. The EVs clearly decreased ROS and pro-inflammatory cytokines. Taken together, these results indicate that NSC-derived EVs could potentially help prevent the neuropathology and progression of PD.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Células-Madre Neurales , Enfermedad de Parkinson , Animales , Vesículas Extracelulares/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Oxidopamina/metabolismo , Enfermedad de Parkinson/terapia , Especies Reactivas de Oxígeno/metabolismo
8.
Phytother Res ; 36(8): 3325-3334, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665972

RESUMEN

Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases, and developing new treatments from natural products is of particular interest. Essential oils from Cinnamomum osmophloeum ct. linalool leaves contain high levels (~95%) of S-(+)-linalool. The neuroprotective effects of linalool have been previously described, yet the underlying molecular mechanisms remain largely unknown. This study aimed to investigate the potential anti-Parkinsonian's effect of S-(+)-linalool on mitochondrial regulation and decipher the underlying molecular mechanisms in Caenorhabditis elegans PD model. Essential oils at 20 mg/L and 20 mg/L S-(+)-linalool each significantly attenuated the damaging effects of 6-hydroxydopamine (6-OHDA) on dopaminergic (DA) neurons and decreased the mitochondrial unfolded protein response (UPRmt ) to antimycin. RNAi knockdown of mitochondrial complex I (gas-1, nuo-1), and complex II (mev-1) genes prevented the improvement of mitochondrial activity by S-(+)-linalool. The protective effects of S-(+)-linalool on 6-OHDA-induced behavior changes were absent in a DA-specific strain of C. elegans produced by gas-1, nuo-1, and mev-1 RNAi knockdown. These results suggest the potential anti-Parkinsonian's effect of S-(+)-linalool is associated with mitochondrial activity and regulated by gas-1, nuo-1, and mev-1 in C. elegans. Our findings suggest that S-(+)-linalool might be a promising candidate for therapeutic application to inhibit the progression of PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cinnamomum , Aceites Volátiles , Enfermedad de Parkinson , Monoterpenos Acíclicos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacología , Aceites Volátiles/farmacología , Oxidopamina/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/tratamiento farmacológico
9.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(3): 421-426, 2022 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-35701117

RESUMEN

OBJECTIVE: To explore whether the using of mimetic peptide Gap27, a selective inhibitor of connexin 43 (Cx43), could block the death of dopamine neurons and influence the expression of Cx43 in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease mouse models. METHODS: Eighteen C57BL/6 mice were randomly divided into control group, 6-OHDA group and 6-OHDA+Gap27 group, with 6 mice in each group. Bilateral substantia nigra stereotactic injection was performed. The control group was injected with ascorbate solution, 6-OHDA group was injected with 6-OHDA solution, and 6-OHDA+Gap27 group was injected with 6-OHDA and Gap27 mixed solution. Immuno-histochemical staining was used to detect the number of dopamine neurons, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of Cx43 messenger ribonucleic acid (mRNA), immuno-fluorescence staining was used to detect the distribution of Cx43 protein, the contents of Cx43 protein and Cx43 phosphorylation at serine 368 (Cx43-ps368) in mouse midbrain were detected by Western blot. RESULTS: After injection of 6-OHDA, numerous dopamine neurons in substantia nigra died as Cx43 content increased, Cx43-ps368 content decreased. Mixing Gap27 while injecting 6-OHDA could reduce the number of death dopamine neurons and weaken the changes of Cx43 and Cx43-ps368 content caused by 6-OHDA. The number of tyrosine hydroxylase (TH) immunoreactive positive neurons in 6-OHDA group decreased to 27.7% ± 0.02% of the control group (P < 0.01); The number of TH immunoreactive positive neurons in 6-OHDA+Gap27 group was (1.64±0.16) times higher than that in 6-OHDA group (P < 0.05); The content of total Cx43 protein in 6-OHDA group was (1.44±0.07) times higher than that in 6-OHDA+Gap27 group (P < 0.05) while (1.68±0.07) times higher than that in control group (P < 0.01). In 6-OHDA group, the content of Cx43-ps368 protein and its proportion in total Cx43 protein were significantly lower than that in 6-OHDA+Gap27 group (P < 0.05). CONCLUSION: In 6-OHDA mouse models, mimetic peptide Gap27 played a protective role in reducing the damage to substantia nigra dopamine neurons, which was induced by 6-OHDA. The overexpression of Cx43 protein might have neurotoxicity to dopamine neuron. Meanwhile, decreasing Cx43 protein level and keeping Cx43-ps368 protein level may be the protective mechanisms of Gap27.


Asunto(s)
Enfermedad de Parkinson , Animales , Conexina 43/genética , Conexina 43/metabolismo , Conexina 43/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidopamina/efectos adversos , Oxidopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología
10.
Environ Toxicol ; 35(8): 840-848, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32167238

RESUMEN

Oxidative stress may play critically important roles in the etiology of Parkinson's disease (PD). 6-Hydroxydopamine (6-OHDA) is a physiological neurotoxin reported to induce oxidative-induced apoptosis of dopaminergic neurons in PD mice models. Valproic acid (VPA), a clinical mood stabilizer, is a HDAC inhibitor with neuroprotective capacities. In the study, we aim at examining the feasibility of VPA as a protector for dopaminergic neurons against damage from 6-OHDA, and the intracellular mechanisms. The 6-OHDA-induced neurotoxicity to the human dopaminergic cell line SH-SY5Y was applied for examining VPA protective effects. Pretreatment with VPA was able to improve cell viability and reduce 6-OHDA-induced reactive oxygen species. Furthermore, a significant suppression of apoptotic caspases including cleaved caspase-3, caspase-7, and caspase-9 was observed. The results also revealed VPA decreased the 6-OHDA-induced Bax/Bcl2 ratio, as measured at protein level. These novel findings indicate that VPA may be capable of protecting the SH-SY5Y dopaminergic neuronal cells from 6-OHDA-induced toxicity via the deceasing of apoptotic caspases (cleaved caspase-3, caspase-7, and caspase-9) and reducing of the Bax/Bcl2 ratio. Very possibly, VPA could serve as not only a mood stabilizer but also a potential antidote for PD prevention.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Ácido Valproico/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3 , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dopamina/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxidopamina/metabolismo , Oxidopamina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ácido Valproico/metabolismo
11.
Mol Biol Rep ; 46(4): 4423-4435, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31147858

RESUMEN

Parkinson disease (PD) is characterized by the loss of dopaminergic (DAergic) neurons linked to environmental toxicants that cause oxidative stress (OS). The aim of this investigation was to establish the molecular response of human mesenchymal stroma cells (MSCs) depleted of glutathione (GSH) by the specific inhibitor L-buthionine-sulfoximine (BSO) to 6-hydroxydopamine (6-OHDA) and/or N-acetylcysteine (NAC) co-treatment. We found that treatment with BSO (10 mM) plus 6-OHDA (200 µM) induced apoptosis in MSCs through an oxidative stress (OS) mechanism involving H2O2, reflected by the detection of dichlorofluorescein-positive (DCF+) cells and oxidation of DJ-1 Cys106-SH into DJ-1 Cys106-SO3; an almost complete reduction in glutathione peroxidase 1 (GPX1) expression; activation of the transcription factor c-JUN, the pro-apoptotic protein BAX and BH-3-only protein PUMA; loss of mitochondrial membrane potential (∆Ψm); activation of the protease caspase-3 (CASP3) and apoptosis-inducing factor (AIF); chromatin condensation; and DNA fragmentation. Strikingly, co-treatment of MSCs with NAC (5 mM) and BSO + 6-OHDA significantly reduced the expression of OS and cell death markers but were unable to restore the expression of GPX1 compared to the expression in untreated or treated cells with NAC only. These findings highlighted the importance of the maintenance of the GSH-dependent (e.g., GPX1, GSH synthesis) and -independent (e.g., ROS scavenger molecules and thiol reducing activity) antioxidant systems (e.g., NAC) in the protection of MSCs from detrimental stress stimuli, thereby increasing the survival of stromal cells.


Asunto(s)
Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Antioxidantes/metabolismo , Butionina Sulfoximina/metabolismo , Muerte Celular/efectos de los fármacos , Glutatión/metabolismo , Glutatión Peroxidasa , Humanos , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Oxidopamina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión Peroxidasa GPX1
12.
Stress ; 19(5): 528-34, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27416924

RESUMEN

Accumulated evidence indicates that sympathetic nerves may potentiate tumor growth, including melanoma. To elucidate possible mechanisms for this effect, we performed chemical sympathectomy by intraperitoneal (i.p.) injection of the neurotoxin 6-hydroxydopamine hydrobromide (100 mg/kg of body weight); in nine adult male C57BL/6J mice; nine control mice received i.p. vehicle (VEH). Seven days later, all mice were injected subcutaneously with 3 × 10(3) B16-F10 melanoma cells. Mice were euthanized 20 d after injection of melanoma cells, for measurement of tumor weight and expression of genes related to sympathetic signaling, apoptosis, hypoxia and angiogenesis in tumor tissue. To assess potential involvement of the hypothalamo-pituitary-adrenocortical axis in the effect of sympathectomy on melanoma growth, concentrations of plasma corticosterone and level of glucocorticoid receptor mRNA in tumor tissue were determined. We found that sympathectomy significantly attenuated melanoma growth (tumor weight 0.29 ± 0.16 g versus 1.02 ± 0.30 g in controls; p < 0.05). In tumor tissue from sympathectomized mice, we found significantly increased gene expression (measured by real-time PCR), relative to VEH-injected controls, of tyrosine hydroxylase, neuropeptide Y and glucocorticoid receptor (all p < 0.05), and alpha1, beta1 and beta3 adrenergic receptors (all p < 0.025), and factors related to apoptosis (Bcl-2 and caspase-3; p < 0.05) and hypoxia (hypoxia inducible factor 1 alpha) (p = 0.005). Plasma corticosterone concentrations were significantly elevated (p < 0.05) in these mice. Our findings indicate that sympathectomy induces complex changes in the tumor microenvironment reducing melanoma growth. Such complex changes should be considered in the prediction of responses of cancer patients to interventions affecting sympathetic signaling in tumor tissue and its environment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma Experimental/cirugía , Sistema Nervioso Simpático/cirugía , Animales , Apoptosis/fisiología , Caspasa 3/metabolismo , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neuropéptido Y/metabolismo , Oxidopamina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Simpatectomía Química , Carga Tumoral , Microambiente Tumoral , Tirosina 3-Monooxigenasa/metabolismo
13.
Acta Pharmacol Sin ; 36(11): 1300-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26364802

RESUMEN

AIM: Parkin has been shown to exert protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in different models of Parkinson disease. In the present study we investigated the molecular mechanisms underlying the neuroprotective action of parkin in vitro. METHODS: HEK293, HeLa and PC12 cells were transfected with parkin, parkin mutants, p62 or si-p62. Protein expression and ubiquitination were assessed using immunoblot analysis. Immunoprecipitation assay was performed to identify the interaction between parkin and scaffold protein p62. PC12 and SH-SY5Y cells were treated with 6-OHDA (200 µmol/L), and cell apoptosis was detected using PI and Hoechst staining. RESULTS: In HEK293 cells co-transfected with parkin and p62, parkin was co-immunoprecipitated with p62, and parkin overexpression increased p62 protein levels. In parkin-deficient HeLa cells, transfection with wild-type pakin, but not with ligase activity-deficient pakin mutants, significantly increased p62 levels, suggesting that parkin stabilized p62 through its E3 ligase activity. Transfection with parkin or p62 significantly repressed ERK1/2 phosphorylation in HeLa cells, but transfection with parkin did not repress ERK1/2 phosphorylation in p62-knockdown HeLa cells, suggesting that p62 was involved in parkin-induced inhibition on ERK1/2 phosphorylation. Overexpression of parkin or p62 significantly repressed 6-OHDA-induced ERK1/2 phosphorylation in PC12 cells, and parkin overexpression inhibited 6-OHDA-induced apoptosis in PC12 and SH-SY5Y cells. CONCLUSION: Parkin protects PC12 cells against 6-OHDA-induced apoptosis via ubiquitinating and stabilizing scaffold protein p62, and repressing ERK1/2 activation.


Asunto(s)
Apoptosis , Proteínas de Choque Térmico/metabolismo , Oxidopamina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Células HEK293 , Células HeLa , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células PC12 , Ratas , Proteína Sequestosoma-1 , Ubiquitinación
14.
Neurodegener Dis ; 15(1): 13-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25500798

RESUMEN

BACKGROUND: Dopaminergic degeneration is a major finding in brains of patients with Parkinson's disease (PD), together with Lewy bodies, intraneuronal inclusions mainly composed of the fibrillogenic protein α-synuclein (α-syn). The familial-PD-related protein DJ-1 was reported to reduce dopaminergic degeneration triggered by α-syn or by the dopaminergic-selective neurotoxin 6-hydroxydopamine (6-OHDA). OBJECTIVE: The aim was to further investigate the role of DJ-1 in dopaminergic degeneration and to see whether a cell-permeable recombinant form of DJ-1 (TAT-DJ-1) could restore dopamine depletion in vivo, thus representing an innovative therapeutic approach. METHODS: We developed in vitro (PC12/TetOn cells and mouse primary mesencephalic neurons) and in vivo models [including DJ-1 knockout (-/-) mice] to investigate DJ-1 in dopaminergic degeneration. RESULTS: We found that in PC12/TetOn cells overexpressing α-syn with the familial-PD linked mutation A30P, DJ-1 silencing increased α-syn (A30P) toxicity. Primary mesencephalic neurons from DJ-1 (-/-) mice were more vulnerable to a cell-permeable form of α-syn (TAT-α-syn) and to 6-OHDA. Intrastriatally administered TAT-DJ-1 reduced 6-OHDA toxicity in vivo in C57BL/6 mice. Finally, when we injected TAT-α-syn (A30P) in the striatum of DJ-1 (-/-) animals, dopamine was depleted more than in the control strain. CONCLUSION: DJ-1 appears to have a protective role against dopaminergic degeneration triggered by α-syn or 6-OHDA, reinforcing the possible therapeutic importance of this protein in PD.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Degeneración Nerviosa/prevención & control , Proteínas Oncogénicas/farmacología , Oxidopamina/farmacología , Peroxirredoxinas/farmacología , alfa-Sinucleína/farmacología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Oxidopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteína Desglicasa DJ-1 , Regulación hacia Arriba , alfa-Sinucleína/metabolismo
15.
Mol Ther ; 21(8): 1579-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23732989

RESUMEN

Cell therapy in animal models of Parkinson's disease (PD) is effective after intrastriatal grafting of dopamine (DA) neurons, whereas intranigral transplantation of dopaminergic cells does not cause consistent behavioral recovery. One strategy to promote axonal growth of dopaminergic neurons from the substantia nigra (SN) to the striatum is degradation of inhibitory components such as chondroitin sulphate proteoglycans (CSPG). An alternative is the guidance of DA axons by chemotropic agents. Semaphorins 3A and 3C enhance axonal growth of embryonic stem (ES) cell-derived dopaminergic neurons in vitro, while Semaphorin 3C also attracts them. We asked whether intranigral transplantation of DA neurons, combined with either degradation of CSPG or with grafts of Semaphorin 3-expressing cells, towards the striatum, is effective in establishing a new nigrostriatal dopaminergic pathway in rats with unilateral depletion of DA neurons. We found depolarization-induced DA release in dorsal striatum, DA axonal projections from SN to striatum, and concomitant behavioral improvement in Semaphorin 3-treated animals. These effects were absent in animals that received intranigral transplants combined with Chondroitinase ABC treatment, although partial degradation of CSPG was observed. These results are evidence that Semaphorin 3-directed long-distance axonal growth of dopaminergic neurons, resulting in behavioral improvement, is possible in adult diseased brains.


Asunto(s)
Axones/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/trasplante , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/terapia , Semaforinas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cuerpo Estriado/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Células HEK293/metabolismo , Células HEK293/trasplante , Humanos , Ratones , Oxidopamina/metabolismo , Trastornos Parkinsonianos/fisiopatología , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Semaforinas/genética , Sustancia Negra , Transmisión Sináptica , Transfección
16.
Biol Trace Elem Res ; 202(3): 1115-1125, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37386228

RESUMEN

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder characterized by the accumulation of accumulated alpha-synuclein (α-Syn) in substantia nigra. Research has shown that selenium (Se) can protect neural cells through the actions of selenoproteins, including selenoprotein P (SelP) and selenoprotein S (SelS), which participate in endoplasmic reticulum-associated protein degradation (ERAD). In this study, we investigated the potential protective role of Se in a pre-clinical PD rat model.We aimed to evaluate the therapeutic effects of Se administration in the 6-hydroxydopamine (6-OHDA) induced unilateral rat PD model. Male Wistar rats were utilised for unilateral PD animal model which were subjected to stereotaxic surgery and injected with 20 µg 6-OHDA/5 µl 0.2% ascorbate saline. After confirming the model, the rats were intraperitoneally injected with 0.1, 0.2, and 0.3 mg/kg of sodium selenite for 7 days. We then performed behavioral tests, including apomorphine-induced rotation, hanging, and rotarod tests. Following sacrifice, we analysed the substantia nigra area of the brain and serum for protein quantification, element analysis, and gene expression analysis.Our results indicate that the administration of 0.3 mg/kg of Se improved the motor deficiency in hanging, rotarod, and apomorphine-induced rotational tests. While there was no significant improvement in the expression of α-Syn, Se increased the expression of selenoproteins. Additionally, levels of selenoproteins, Se, and α-Syn both brain and serum were re-established by the treatment, suggesting the role of Se on the α-Syn accumulation. Furthermore, Se improved PD-induced biochemical deficits by increasing the levels of SelS and SelP (p<0.005).In conclusion, our findings suggest that Se may have a protective role in PD. 0.3 mg/kg dosage of Se increased the expression of selenoproteins, reduced the accumulation of α-Syn in the brain, and improved PD-induced motor deficits. These results suggest that Se may be a potential therapeutic option for PD treatment.


Asunto(s)
Enfermedad de Parkinson , Selenio , Ratas , Masculino , Animales , Enfermedad de Parkinson/tratamiento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapéutico , Porción Compacta de la Sustancia Negra/metabolismo , Selenio/metabolismo , Apomorfina/metabolismo , Apomorfina/uso terapéutico , Oxidopamina/farmacología , Oxidopamina/metabolismo , Oxidopamina/uso terapéutico , Ratas Wistar , Selenoproteínas/metabolismo , Modelos Animales de Enfermedad
17.
Brain Res ; 1824: 148691, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030102

RESUMEN

INTRODUCTION: Parkinson's disease (PD) is the most prevalent disorder of the basal ganglia, propagated by the degeneration of axon terminals within the striatum and subsequent loss of dopaminergic neurons in the substantia nigra (SN). Exposure of environmental neurotoxins and mutations of several mitochondrial and proteasomal genes are primarily responsible. METHODS: To determine whether signal transducer and activator of transcription 3 (STAT3) could protect dopaminergic neurons against degeneration, we first screened it in the in vitro capacity using immortalized rat dopaminergic N27 cells under 6-OHDA neurotoxicity. We then evaluated the effectiveness of constitutively active (ca) STAT3 as a neuroprotective agent on N27 cells in a 6-hydroxydopamine (6-OHDA) induced rat model of PD and compared it to control animals or animals where AAV/caRheb was expressed in SN. Behavioral outcomes were assessed using rotational and cylinder assays and mitochondrial function using reactive oxygen species (ROS) levels. RESULTS: Using flow cytometry, the in vitro analysis determined caSTAT3 significantly decreased dopaminergic neuronal death under 6-OHDA treatment conditions. Importantly, in vivo overexpression of caSTAT3 in SN dopaminergic neurons using AAV-mediated expression demonstrated significant neuroprotection of dopaminergic neurons following 6-OHDA. Both caSTAT3 and caRheb + caSTAT3 co-injection into substantia nigra reduced D-amphetamine-induced rotational behavior and increased ipsilateral forelimb function when compared to control animals. In addition, caSTAT3 decreased mitochondrial ROS production following 6-OHDA induced neurotoxicity. CONCLUSION: caSTAT3 confers resistance against ROS production in mitochondria of susceptible SN dopaminergic neurons potentially offering a new avenue for treatment against PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Oxidopamina/toxicidad , Oxidopamina/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción STAT3/metabolismo , Modelos Animales de Enfermedad , Sustancia Negra/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo
18.
Sci Rep ; 14(1): 3721, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355892

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 µg, 1 µg, 2 µg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 µg 6-OHDA lesioned mice, and more extensive in 1 µg group. Despite the loss of more neurons from 2 µg 6-OHDA, there was no further impairment in behaviors compared to 1 µg 6-OHDA. Our data have implications that 1 µg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , Oxidopamina/metabolismo , Haz Prosencefálico Medial/metabolismo , Haz Prosencefálico Medial/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Tirosina 3-Monooxigenasa/metabolismo
19.
Brain Behav ; 14(2): e3373, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38346718

RESUMEN

OBJECTIVE: Vitamin D deficiency is a risk factor for Parkinson's disease (PD) and vitamin D supplementation robustly alleviates neurodegeneration in PD models. However, the mechanisms underlying this effect require further clarification. Current evidence suggests that harnessing regulatory T cells (Treg) may mitigate neuronal degeneration. In this study, we investigated the therapeutic effects of vitamin D receptor activation by calcitriol on PD, specifically focusing on its role in Treg. METHODS: Hemiparkinsonian mice model was established through the injection of 6-OHDA into the striatum. Mice were pretreated with calcitriol before 6-OHDA injection. The motor performance, dopaminergic neuronal survival, contents of dopamine, and dopamine metabolites were evaluated. The pro-inflammatory cytokines levels, T-cell infiltration, mRNA expression of indicated microglial M1/M2 phenotypic markers, and microglial marker in the midbrain were detected. Populations of Treg in the splenic tissues were assessed using a flow cytometry assay. PC61 monoclonal antibody was applied to deplete Treg in vivo. RESULTS: We show that calcitriol supplementation notably improved motor performance and reduced dopaminergic degeneration in the 6-OHDA-induced PD model. Mechanistically, calcitriol promoted anti-inflammatory/neuroprotective Treg and inhibited pro-inflammatory/neurodestructive effector T-cell generation in this model. This process significantly inhibited T-cell infiltration in the midbrain, restrained microglial activation, microglial M1 polarization, and decreased pro-inflammatory cytokines release. This more favorable inflammatory microenvironment rescued dopaminergic degeneration. To further verify that the anti-inflammatory effects of calcitriol are associated with Treg expansion, we applied an antibody-mediated Treg depletion assay. As predicted, the anti-inflammatory effects of calcitriol in the PD model were diminished following Treg depletion. CONCLUSION: These findings suggest that calcitriol's anti-inflammatory and neuroprotective effects in PD are associated with its potential to boost Treg expansion.


Asunto(s)
Microglía , Enfermedad de Parkinson , Ratones , Animales , Dopamina/metabolismo , Calcitriol/farmacología , Linfocitos T Reguladores/metabolismo , Oxidopamina/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Antiinflamatorios/farmacología , Neuronas Dopaminérgicas , Citocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
20.
Development ; 137(24): 4127-34, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21068061

RESUMEN

In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Neurogénesis/fisiología , Vertebrados/metabolismo , Animales , Dopamina/metabolismo , Electroporación , Inmunohistoquímica , Mesencéfalo/citología , Mesencéfalo/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidopamina/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Urodelos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA