Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.774
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 166(4): 881-893, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27518563

RESUMEN

Classically, hormones elicit specific cellular responses by activating dedicated receptors. Nevertheless, the biosynthesis and turnover of many of these hormone molecules also produce chemically related metabolites. These molecules may also possess hormonal activities; therefore, one or more may contribute to the adaptive plasticity of signaling outcomes in host organisms. Here, we show that a catabolite of the plant hormone abscisic acid (ABA), namely phaseic acid (PA), likely emerged in seed plants as a signaling molecule that fine-tunes plant physiology, environmental adaptation, and development. This trait was facilitated by both the emergence-selection of a PA reductase that modulates PA concentrations and by the functional diversification of the ABA receptor family to perceive and respond to PA. Our results suggest that PA serves as a hormone in seed plants through activation of a subset of ABA receptors. This study demonstrates that the co-evolution of hormone metabolism and signaling networks can expand organismal resilience.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sesquiterpenos/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADP/metabolismo , Transducción de Señal
2.
Nature ; 607(7919): 571-577, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794472

RESUMEN

Individuals can exhibit differences in metabolism that are caused by the interplay of genetic background, nutritional input, microbiota and other environmental factors1-4. It is difficult to connect differences in metabolism to genomic variation and derive underlying molecular mechanisms in humans, owing to differences in diet and lifestyle, among others. Here we use the nematode Caenorhabditis elegans as a model to study inter-individual variation in metabolism. By comparing three wild strains and the commonly used N2 laboratory strain, we find differences in the abundances of both known metabolites and those that have not to our knowledge been previously described. The latter metabolites include conjugates between 3-hydroxypropionate (3HP) and several amino acids (3HP-AAs), which are much higher in abundance in one of the wild strains. 3HP is an intermediate in the propionate shunt pathway, which is activated when flux through the canonical, vitamin-B12-dependent propionate breakdown pathway is perturbed5. We show that increased accumulation of 3HP-AAs is caused by genetic variation in HPHD-1, for which 3HP is a substrate. Our results suggest that the production of 3HP-AAs represents a 'shunt-within-a-shunt' pathway to accommodate a reduction-of-function allele in hphd-1. This study provides a step towards the development of metabolic network models that capture individual-specific differences of metabolism and more closely represent the diversity that is found in entire species.


Asunto(s)
Caenorhabditis elegans , Redes y Vías Metabólicas , Animales , Humanos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Aminoácidos/metabolismo , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido Láctico/análogos & derivados , Ácido Láctico/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Animales , Propionatos/metabolismo , Vitamina B 12/metabolismo
3.
Immunity ; 49(6): 1103-1115.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566883

RESUMEN

Retinoic acid (RA), a vitamin A metabolite, regulates transcriptional programs that drive protective or pathogenic immune responses in the intestine, in a manner dependent on RA concentration. Vitamin A is obtained from diet and is metabolized by intestinal epithelial cells (IECs), which operate in intimate association with microbes and immune cells. Here we found that commensal bacteria belonging to class Clostridia modulate RA concentration in the gut by suppressing the expression of retinol dehydrogenase 7 (Rdh7) in IECs. Rdh7 expression and associated RA amounts were lower in the intestinal tissue of conventional mice, as compared to germ-free mice. Deletion of Rdh7 in IECs diminished RA signaling in immune cells, reduced the IL-22-dependent antimicrobial response, and enhanced resistance to colonization by Salmonella Typhimurium. Our findings define a regulatory circuit wherein bacterial regulation of IEC-intrinsic RA synthesis protects microbial communities in the gut from excessive immune activity, achieving a balance that prevents colonization by enteric pathogens.


Asunto(s)
Disbiosis/metabolismo , Células Epiteliales/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Disbiosis/microbiología , Células Epiteliales/microbiología , Interacciones Microbiota-Huesped , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Linfocitos/metabolismo , Linfocitos/microbiología , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/fisiología , ARN Ribosómico 16S/genética , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Simbiosis , Interleucina-22
4.
PLoS Pathog ; 20(7): e1012431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39078845

RESUMEN

Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus, Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane. MaGlox targeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of the MaGlox mutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGlox mutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression of MaGlox promoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGlox mutant. These findings demonstrate that MaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Fúngicas , Metarhizium , Virulencia , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Metarhizium/patogenicidad , Metarhizium/genética , Metarhizium/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Estrés Oxidativo
5.
Mol Cell ; 71(6): 956-972.e9, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30146317

RESUMEN

Gene regulation requires selective targeting of DNA regulatory enhancers over megabase distances. Here we show that Evf2, a cloud-forming Dlx5/6 ultraconserved enhancer (UCE) lncRNA, simultaneously localizes to activated (Umad1, 1.6 Mb distant) and repressed (Akr1b8, 27 Mb distant) chr6 target genes, precisely regulating UCE-gene distances and cohesin binding in mouse embryonic forebrain GABAergic interneurons (INs). Transgene expression of Evf2 activates Lsm8 (12 Mb distant) but fails to repress Akr1b8, supporting trans activation and long-range cis repression. Through both short-range (Dlx6 antisense) and long-range (Akr1b8) repression, the Evf2-5'UCE links homeodomain and mevalonate pathway-regulated enhancers to IN diversity. The Evf2-3' end is required for long-range activation but dispensable for RNA cloud localization, functionally dividing the RNA into 3'-activator and 5'UCE repressor and targeting regions. Together, these results support that Evf2 selectively regulates UCE interactions with multi-megabase distant genes through complex effects on chromosome topology, linking lncRNA-dependent topological and transcriptional control with interneuron diversity and seizure susceptibility.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Prosencéfalo/embriología , Oxidorreductasas de Alcohol/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/fisiología , Interneuronas/fisiología , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , ARN Largo no Codificante/genética , Factores de Transcripción , Cohesinas
6.
J Biol Chem ; 300(1): 105490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000659

RESUMEN

The C-terminal binding protein (CtBP) is a transcriptional corepressor that plays critical roles in development, tumorigenesis, and cell fate. CtBP proteins are structurally similar to alpha hydroxyacid dehydrogenases and feature a prominent intrinsically disordered region in the C terminus. In the mammalian system, CtBP proteins lacking the C-terminal domain (CTD) are able to function as transcriptional regulators and oligomerize, putting into question the significance of this unstructured domain for gene regulation. Yet, the presence of an unstructured CTD of ∼100 residues, including some short motifs, is conserved across Bilateria, indicating the importance of maintaining this domain over evolutionary time. To uncover the significance of the CtBP CTD, we functionally tested naturally occurring Drosophila isoforms of CtBP that possess or lack the CTD, namely CtBP(L) and CtBP(S). We used the CRISPRi system to recruit dCas9-CtBP(L) and dCas9-CtBP(S) to endogenous promoters to directly compare their transcriptional impacts in vivo. Interestingly, CtBP(S) was able to significantly repress transcription of the Mpp6 promoter, while CtBP(L) was much weaker, suggesting that the long CTD may modulate CtBP's repression activity. In contrast, in cell culture, the isoforms behaved similarly on a transfected Mpp6 reporter gene. The context-specific differences in activity of these two developmentally regulated isoforms suggests that the CTD may help provide a spectrum of repression activity suitable for developmental programs.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas de Drosophila , Regulación de la Expresión Génica , Dominios Proteicos , Proteínas Represoras , Animales , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Drosophila/enzimología , Drosophila/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Dominios Proteicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Línea Celular , Regulación de la Expresión Génica/genética
7.
Genomics ; 116(3): 110846, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38642856

RESUMEN

Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.


Asunto(s)
Movimiento Celular , Proliferación Celular , Mieloma Múltiple , Proteínas Circadianas Period , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Línea Celular Tumoral , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Apoptosis , Regulación Neoplásica de la Expresión Génica
8.
Biochemistry ; 63(14): 1808-1823, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38962820

RESUMEN

Theoretical concepts linking the structure, function, and evolution of a protein, while often intuitive, necessitate validation through investigations in real-world systems. Our study empirically explores the evolutionary implications of multiple gene copies in an organism by shedding light on the structure-function modulations observed in Pseudomonas aeruginosa's second copy of ketopantoate reductase (PaKPR2). We demonstrated with two apo structures that the typical active site cleft of the protein transforms into a two-sided pocket where a molecular gate made up of two residues controls the substrate entry site, resulting in its inactivity toward the natural substrate ketopantoate. Strikingly, this structural modification made the protein active against several important α-keto-acid substrates with varied efficiency. Structural constraints at the binding site for this altered functional trait were analyzed with two binary complexes that show the conserved residue microenvironment faces restricted movements due to domain closure. Finally, its mechanistic highlights gathered from a ternary complex structure help in delineating the molecular perspectives behind its kinetic cooperativity toward these broad range of substrates. Detailed structural characteristics of the protein presented here also identified four key amino acid residues responsible for its versatile α-keto-acid reductase activity, which can be further modified to improve its functional properties through protein engineering.


Asunto(s)
Proteínas Bacterianas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Evolución Molecular , Dominio Catalítico , Especificidad por Sustrato , Modelos Moleculares , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Cristalografía por Rayos X , Conformación Proteica , Cinética
9.
J Biol Chem ; 299(7): 104898, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37295774

RESUMEN

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Asunto(s)
Oxidorreductasas de Alcohol , Ascomicetos , Biocatálisis , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Ascomicetos/enzimología , Fenoles/química , Fenoles/metabolismo , Especificidad por Sustrato , Hidroxilación , Éteres/química , Éteres/metabolismo
10.
BMC Genomics ; 25(1): 425, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684983

RESUMEN

BACKGROUND: Purple non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis] has become popular because of its richness in anthocyanin. However, anthocyanin only accumulates in the upper epidermis of leaves. Further studies are needed to investigate the molecular mechanisms underlying the specific accumulation of it. RESULTS: In this study, we used the laser capture frozen section method (LCM) to divide purple (ZBC) and green (LBC) non-heading Chinese cabbage leaves into upper and lower epidermis parts (Pup represents the purple upper epidermis, Plow represents the purple lower epidermis, Gup represents the green upper epidermis, Glow represents the green lower epidermis). Through transcriptome sequencing, we found that the DIHYDROFLAVONOL 4-REDUCTASE-encoding gene BcDFR, is strongly expressed in Pup but hardly in others (Plow, Gup, Glow). Further, a deletion and insertion in the promoter of BcDFR in LBC were found, which may interfere with BcDFR expression. Subsequent analysis of gene structure and conserved structural domains showed that BcDFR is highly conserved in Brassica species. The predicted protein-protein interaction network of BcDFR suggests that it interacts with almost all functional proteins in the anthocyanin biosynthesis pathway. Finally, the results of the tobacco transient expression also demonstrated that BcDFR promotes the synthesis and accumulation of anthocyanin. CONCLUSIONS: BcDFR is specifically highly expressed on the upper epidermis of purple non-heading Chinese cabbage leaves and regulates anthocyanin biosynthesis and accumulation. Our study provides new insights into the functional analysis and transcriptional regulatory network of anthocyanin-related genes in purple non-heading Chinese cabbage.


Asunto(s)
Antocianinas , Brassica , Proteínas de Plantas , Antocianinas/biosíntesis , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Captura por Microdisección con Láser , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , RNA-Seq , Regiones Promotoras Genéticas
11.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625090

RESUMEN

Evolution of sequence-specific transcription factors clearly drives lineage-specific innovations, but less is known about how changes in the central transcriptional machinery may contribute to evolutionary transformations. In particular, transcriptional regulators are rich in intrinsically disordered regions that appear to be magnets for evolutionary innovation. The C-terminal Binding Protein (CtBP) is a transcriptional corepressor derived from an ancestral lineage of alpha hydroxyacid dehydrogenases; it is found in mammals and invertebrates, and features a core NAD-binding domain as well as an unstructured C-terminus (CTD) of unknown function. CtBP can act on promoters and enhancers to repress transcription through chromatin-linked mechanisms. Our comparative phylogenetic study shows that CtBP is a bilaterian innovation whose CTD of about 100 residues is present in almost all orthologs. CtBP CTDs contain conserved blocks of residues and retain a predicted disordered property, despite having variations in the primary sequence. Interestingly, the structure of the C-terminus has undergone radical transformation independently in certain lineages including flatworms and nematodes. Also contributing to CTD diversity is the production of myriad alternative RNA splicing products, including the production of "short" tailless forms of CtBP in Drosophila. Additional diversity stems from multiple gene duplications in vertebrates, where up to five CtBP orthologs have been observed. Vertebrate lineages show fewer major modifications in the unstructured CTD, possibly because gene regulatory constraints of the vertebrate body plan place specific constraints on this domain. Our study highlights the rich regulatory potential of this previously unstudied domain of a central transcriptional regulator.


Asunto(s)
Proteínas Represoras , Factores de Transcripción , Animales , Proteínas Represoras/genética , Proteínas Represoras/química , Filogenia , Factores de Transcripción/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Drosophila/metabolismo , Vertebrados/metabolismo , Empalme Alternativo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Unión Proteica , Fosfoproteínas/genética , Mamíferos/metabolismo
12.
Cancer Sci ; 115(5): 1492-1504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38476086

RESUMEN

Long noncoding RNAs (lncRNAs) have emerged as important molecules and potential new targets for human cancers. This study investigates the function of lncRNA CTBP1 antisense RNA (CTBP1-AS) in prostate cancer (PCa) and explores the entailed molecular mechanism. Aberrantly expressed genes potentially correlated with PCa progression were probed using integrated bioinformatics analyses. A cohort of 68 patients with PCa was included, and their tumor and para-cancerous tissues were collected. CTBP1-AS was highly expressed in PCa tissues and cells and associated with poor patient prognosis. By contrast, tumor protein p63 (TP63) and S100 calcium binding protein A14 (S100A14) were poorly expressed in the PCa tissues and cells. CTBP1-AS did not affect TP63 expression; however it blocked the TP63-mediated transcriptional activation of S100A14, thereby reducing its expression. CTBP1-AS silencing suppressed proliferation, apoptosis resistance, migration, invasion, and tumorigenicity of PCa cell lines, while its overexpression led to inverse results. The malignant phenotype of cells was further weakened by TP63 overexpression but restored following artificial S100A14 silencing. In conclusion, this study demonstrates that CTBP1-AS plays an oncogenic role in PCa by blocking TP63-mediated transcriptional activation of S100A14. This may provide insight into the management of PCa.


Asunto(s)
Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata , ARN Largo no Codificante , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Humanos , Masculino , Ratones , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , ARN sin Sentido/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Hum Mol Genet ; 31(8): 1263-1277, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34726233

RESUMEN

Pathogenic variants in retinol dehydrogenase 5 (RDH5) attenuate supply of 11-cis-retinal to photoreceptors leading to a range of clinical phenotypes including night blindness because of markedly slowed rod dark adaptation and in some patients, macular atrophy. Current animal models (such as Rdh5-/- mice) fail to recapitulate the functional or degenerative phenotype. Addressing this need for a relevant animal model we present a new domestic cat model with a loss-of-function missense mutation in RDH5 (c.542G > T; p.Gly181Val). As with patients, affected cats have a marked delay in recovery of dark adaptation. In addition, the cats develop a degeneration of the area centralis (equivalent to the human macula). This recapitulates the development of macular atrophy that is reported in a subset of patients with RDH5 mutations and is shown in this paper in seven patients with biallelic RDH5 mutations. There is notable variability in the age at onset of the area centralis changes in the cat, with most developing changes as juveniles but some not showing changes over the first few years of age. There is similar variability in development of macular atrophy in patients and while age is a risk factor, it is hypothesized that genetic modifying loci influence disease severity, and we suspect the same is true in the cat model. This novel cat model provides opportunities to improve molecular understanding of macular atrophy and test therapeutic interventions for RDH5-associated retinopathies.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Oxidorreductasas de Alcohol/genética , Animales , Atrofia , Gatos , Electrorretinografía , Humanos , Ratones , Modelos Animales , Fenotipo , Enfermedades de la Retina/genética
14.
Biochem Biophys Res Commun ; 709: 149809, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38552555

RESUMEN

Hyperuricemia is a chronic metabolic disease caused by purine metabolism disorder. And several gene loci and transporter proteins that associated with uric acid transport functions have been identified. Retinol Dehydrogenase 12 (RDH12), recognized for its role in safeguarding photoreceptors, and our study investigated the potential impact of Rdh12 mutations on other organs and diseases, particularly hyperuricemia. We assessed Rdh12 mRNA expression levels in various tissues and conducted serum biochemical analyses in Rdh12-/- mice. Compared with the wild type, significant alterations in serum uric acid levels and kidney-related biochemical indicators have been revealed. Then further analysis, including quantitative RT-PCR of gene expression in the liver and kidney, highlighted variations in the expression levels of specific genes linked to hyperuricemia. And renal histology assessment exposed mild pathological lesions in the kidneys of Rdh12-/- mice. In summary, our study suggests that Rdh12 mutations impact not only retinal function but also contribute to hyperuricemia and renal disease phenotypes in mice. Our finding implies that individuals with Rdh12 mutations may be prone to hyperuricemia and gout, emphasizing the significance of preventive measures and regular examinations in daily life.


Asunto(s)
Hiperuricemia , Ratones , Animales , Hiperuricemia/genética , Ácido Úrico , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Fenotipo
15.
Biochem Biophys Res Commun ; 728: 150314, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959528

RESUMEN

BACKGROUND: Breast cancer ranks among the most prevalent tumor types worldwide. Copy number amplification of chromosome 8q24 is frequently detected in breast cancer. ZNF623 is a relatively unexplored gene mapped to 8q24. Here, we explore the expression profile, prognostic significance, and biological action of ZNF623 in breast carcinogenesis. METHODS: To evaluate the mRNA expression pattern and prognostic relevance of ZNF623 across different cancer types, we conducted bioinformatic analyses. The expression of the gene was suppressed using ZNF623 shRNAs/siRNAs and augmented through transfection with plasmids containing ZNF623 cDNA. Cell viability assay, clonogenic assay, and transwell migration assay were utilized to assess the proliferation, viability, and invasion capacity of breast cancer cell lines. Luciferase reporter assay served as a pivotal tool to ascertain the transcriptional activity of ZNF623. IP-MS and co-IP were employed to validate that ZNF623 interacted with CtBP1. ChIP analysis and ChIP-qPCR were conducted to assess the genes targeted by ZNF623/CtBP1 complex. Flow cytometry was conducted to evaluate the phosphorylation status of p65. RESULTS: ZNF623 expression was notably elevated in breast cancer (BC). Prognostic analysis indicated higher expression of ZNF623 indicated worse survival. Functional experiments discovered that the upregulation of ZNF623 significantly enhanced both the proliferative and migratory capacities of breast cancer cells. Luciferase reporter assay indicated that ZNF623 was a transcription repressor. Immunoprecipitation coupled mass spectrometry analysis revealed a physical association between ZNF623 and CtBP1 in the interaction group. The conjoint analysis of ChIP-seq and TCGA DEG analysis revealed that the ZNF623/CtBP1 complex repressed a series of genes, such as negative regulation of the NF-kappaB signaling pathway. Flow cytometry analysis discovered that knockdown of ZNF623 decreased the phosphorylation level of p65, indicating that ZNF623 could regulate the activity of the NF-κB pathway. CONCLUSION: ZNF623 predicts poor prognosis of BC and enhances breast cancer growth and metastasis. By recruiting CtBP1, ZNF623 could suppress NF-κB inhibitors, including COMMD1, NFKBIL1, PYCARD, and BRMS1, expression from the transcription level.


Asunto(s)
Oxidorreductasas de Alcohol , Neoplasias de la Mama , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , FN-kappa B , Proteínas Nucleares , Fosfoproteínas , Femenino , Humanos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , FN-kappa B/metabolismo , Pronóstico , Transducción de Señal , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
16.
Appl Environ Microbiol ; 90(7): e0101424, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38953370

RESUMEN

Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.


Asunto(s)
Cobre , Oxidorreductasas , Filogenia , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Cobre/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimología , Especificidad por Sustrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/química , Galactosa Oxidasa/genética , Galactosa Oxidasa/metabolismo , Galactosa Oxidasa/química , Alineación de Secuencia , Secuencia de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Dominio Catalítico
17.
Clin Genet ; 106(3): 258-266, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38576124

RESUMEN

This research aims to compile recent clinical and genetic data from Turkish patients with inherited retinal disorders and evaluate the effectiveness of targeted Next-generation sequencing panels. The study included Turkish individuals with hereditary retinal diseases who visited the Medical Genetic Department of Erciyes University between 2019 and 2022. One proband per family was selected based on eligibility. We used Hereditary Disorder Solution (HDS) by Sophia Genetics and performed next-generation sequencing (NGS) with Illumina NextSeq-500. Bioinformatics analysis using Sophia DDM® SaaS algorithms and ACMG guidelines classified genomic changes. The study involved 354 probands. Disease-causing variants were found in 58.1% of patients, with ABCA4, USH2A, RDH12, and EYS being the most frequently implicated genes. Forty-eight novel variants were detected. This study enhances the knowledge of clinical diagnoses, symptom onset, inheritance patterns, and genetic details for Turkish individuals with hereditary retinal disease. It contributes to broader health strategies by enabling comparisons with other studies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Enfermedades de la Retina , Humanos , Turquía , Masculino , Enfermedades de la Retina/genética , Enfermedades de la Retina/diagnóstico , Femenino , Adulto , Niño , Adolescente , Persona de Mediana Edad , Linaje , Proteínas del Ojo/genética , Predisposición Genética a la Enfermedad , Oxidorreductasas de Alcohol/genética , Transportadoras de Casetes de Unión a ATP/genética , Preescolar , Biología Computacional/métodos , Estudios de Cohortes , Adulto Joven , Pruebas Genéticas/métodos , Lactante , Proteínas de la Matriz Extracelular
18.
BMC Cancer ; 24(1): 554, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698344

RESUMEN

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Regulación Neoplásica de la Expresión Génica , Factor 1 de Transcripción de Unión a Octámeros , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratones , Animales , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Regulación hacia Arriba , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Microambiente Tumoral , Transducción de Señal
19.
Biotechnol Bioeng ; 121(5): 1532-1542, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265115

RESUMEN

Carbonyl reductases are useful for producing optically active alcohols from their corresponding prochiral ketones. Herein, we applied a computer-assisted strategy to increase the thermostability of a previously constructed carbonyl reductase, LsCRM4 (N101D/A117G/F147L/E145A), which showed an outstanding activity in the synthesis of the ticagrelor precursor (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol. The stability changes introduced by mutations at the flexible sites were predicted using the computational tools FoldX, I-Mutant 3.0, and DeepDDG, which demonstrated that 12 virtually screened mutants could be thermally stable; 11 of these mutants exhibited increased thermostability. Then a superior mutant LsCRM4-V99L/D150F was screened out from the library that was constructed by iteratively combining the beneficial sites, which showed a 78% increase in activity and a 17.4°C increase in melting temperature compared to LsCRM4. Our computer-assisted design and combinatorial strategy dramatically increased the efficiency of thermostable enzyme production.


Asunto(s)
Oxidorreductasas de Alcohol , Etanol , Ticagrelor , Estabilidad de Enzimas , Oxidorreductasas de Alcohol/genética , Temperatura , Computadores
20.
Microb Cell Fact ; 23(1): 198, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39014373

RESUMEN

BACKGROUND: Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS: Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS: The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.


Asunto(s)
Ingeniería Metabólica , Metanol , Saccharomycetales , Metanol/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Ingeniería Metabólica/métodos , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Formaldehído/metabolismo , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , NAD/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA