Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34667125

RESUMEN

Two histidine-ligated heme-dependent monooxygenase proteins, TyrH and SfmD, have recently been found to resemble enzymes from the dioxygenase superfamily currently named after tryptophan 2,3-dioxygenase (TDO), that is, the TDO superfamily. These latest findings prompted us to revisit the structure and function of the superfamily. The enzymes in this superfamily share a similar core architecture and a histidine-ligated heme. Their primary functions are to promote O-atom transfer to an aromatic metabolite. TDO and indoleamine 2,3-dioxygenase (IDO), the founding members, promote dioxygenation through a two-step monooxygenation pathway. However, the new members of the superfamily, including PrnB, SfmD, TyrH, and MarE, expand its boundaries and mediate monooxygenation on a broader set of aromatic substrates. We found that the enlarged superfamily contains eight clades of proteins. Overall, this protein group is a more sizeable, structure-based, histidine-ligated heme-dependent, and functionally diverse superfamily for aromatics oxidation. The concept of TDO superfamily or heme-dependent dioxygenase superfamily is no longer appropriate for defining this growing superfamily. Hence, there is a pressing need to redefine it as a heme-dependent aromatic oxygenase (HDAO) superfamily. The revised concept puts HDAO in the context of thiol-ligated heme-based enzymes alongside cytochrome P450 and peroxygenase. It will update what we understand about the choice of heme axial ligand. Hemoproteins may not be as stringent about the type of axial ligand for oxygenation, although thiolate-ligated hemes (P450s and peroxygenases) more frequently catalyze oxygenation reactions. Histidine-ligated hemes found in HDAO enzymes can likewise mediate oxygenation when confronted with a proper substrate.


Asunto(s)
Hemoproteínas/química , Oxigenasas/química , Aminoácidos Aromáticos/metabolismo , Biocatálisis , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/clasificación , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemoproteínas/clasificación , Hemoproteínas/metabolismo , Humanos , Ligandos , Redes y Vías Metabólicas , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/clasificación , Oxigenasas/metabolismo , Filogenia , Conformación Proteica , Triptófano Oxigenasa/química , Triptófano Oxigenasa/clasificación , Triptófano Oxigenasa/metabolismo
2.
Int J Mol Sci ; 18(8)2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28820425

RESUMEN

Auxin is a main plant growth hormone crucial in a multitude of developmental processes in plants. Auxin biosynthesis via the tryptophan aminotransferase of arabidopsis (TAA)/YUCCA (YUC) route involving tryptophan aminotransferases and YUC flavin-dependent monooxygenases that produce the auxin indole-3-acetic acid (IAA) from tryptophan is currently the most researched auxin biosynthetic pathway. Previous data showed that, in maize and arabidopsis, TAA/YUC-dependent auxin biosynthesis can be detected in endoplasmic reticulum (ER) microsomal fractions, and a subset of auxin biosynthetic proteins are localized to the ER, mainly due to transmembrane domains (TMD). The phylogeny presented here for TAA/TAR (tryptophan aminotransferase related) and YUC proteins analyses phylogenetic groups as well as transmembrane domains for ER-membrane localisation. In addition, RNAseq datasets are analysed for transcript abundance of YUC and TAA/TAR proteins in Arabidopsis thaliana. We show that ER membrane localisation for TAA/YUC proteins involved in auxin biosynthesis is already present early on in the evolution of mosses and club mosses. ER membrane anchored YUC proteins can mainly be found in roots, while cytosolic proteins are more abundant in the shoot. The distribution between the different phylogenetic classes in root and shoot may well originate from gene duplications, and the phylogenetic groups detected also overlap with the biological function.


Asunto(s)
Proteínas de Arabidopsis/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oxigenasas/genética , Filogenia , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Microscopía Confocal , Oxigenasas/clasificación , Oxigenasas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
3.
Genet Mol Res ; 14(1): 2726-34, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25867421

RESUMEN

Anthocyanidin synthase (ANS), a 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase, catalyzes the penultimate step in anthocyanin biosynthesis, from leucoanthocyanidins to anthocyanidins, the first colored compound in the anthocyanin pathway. In this study, a full-length, 1427-bp long cDNA named RnANS1, which is homologous to the anthocyanidin synthase gene, was cloned from blackcurrant using a homologous cloning strategy. RnANS1 is highly homologous to other plant ANS genes at both the nucleotide and amino acid sequence levels. The deduced protein contains domains conserved in the 2OG and Fe(II)-dependent oxygenase, and is phylogenetically closely related to Paeonia suffruticosa and Paeonia lactiflora. The expression of RnANS1 was upregulated during fruit maturation, and correlated with the accumulation of anthocyanins and soluble carbohydrates in the fruit. Further characterization of the structure and expression patterns of RnANS1 will clarify our understanding of anthocyanin biosynthesis in blackcurrant, and support the development of molecular approaches to manipulate anthocyanin production in this plant.


Asunto(s)
Frutas/genética , Perfilación de la Expresión Génica , Oxigenasas/genética , Proteínas de Plantas/genética , Ribes/genética , Secuencia de Aminoácidos , Antocianinas/metabolismo , Carbohidratos/análisis , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Oxigenasas/clasificación , Oxigenasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribes/crecimiento & desarrollo , Ribes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
4.
Planta ; 240(5): 983-1002, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25183255

RESUMEN

MAIN CONCLUSION: This study confirmed pigment profiles in different colour groups, isolated key anthocyanin biosynthetic genes and established a basis to examine the regulation of colour patterning in flowers of Cymbidium orchid. Cymbidium orchid (Cymbidium hybrida) has a range of flower colours, often classified into four colour groups; pink, white, yellow and green. In this study, the biochemical and molecular basis for the different colour types was investigated, and genes involved in flavonoid/anthocyanin synthesis were identified and characterised. Pigment analysis across selected cultivars confirmed cyanidin 3-O-rutinoside and peonidin 3-O-rutinoside as the major anthocyanins detected; the flavonols quercetin and kaempferol rutinoside and robinoside were also present in petal tissue. ß-carotene was the major carotenoid in the yellow cultivars, whilst pheophytins were the major chlorophyll pigments in the green cultivars. Anthocyanin pigments were important across all eight cultivars because anthocyanin accumulated in the flower labellum, even if not in the other petals/sepals. Genes encoding the flavonoid biosynthetic pathway enzymes chalcone synthase, flavonol synthase, flavonoid 3' hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) were isolated from petal tissue of a Cymbidium cultivar. Expression of these flavonoid genes was monitored across flower bud development in each cultivar, confirming that DFR and ANS were only expressed in tissues where anthocyanin accumulated. Phylogenetic analysis suggested a cytochrome P450 sequence as that of the Cymbidium F3'H, consistent with the accumulation of di-hydroxylated anthocyanins and flavonols in flower tissue. A separate polyketide synthase, identified as a bibenzyl synthase, was isolated from petal tissue but was not associated with pigment accumulation. Our analyses show the diversity in flower colour of Cymbidium orchid derives not from different individual pigments but from subtle variations in concentration and pattern of pigment accumulation.


Asunto(s)
Antocianinas/biosíntesis , Vías Biosintéticas , Flores/metabolismo , Orchidaceae/metabolismo , Aciltransferasas/clasificación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Cromatografía Líquida de Alta Presión , Color , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucósidos/biosíntesis , Quempferoles/biosíntesis , Espectrometría de Masas , Orchidaceae/clasificación , Orchidaceae/genética , Oxidorreductasas/clasificación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Oxigenasas/clasificación , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Pigmentación/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/biosíntesis , Especificidad de la Especie , beta Caroteno/biosíntesis
5.
Arch Microbiol ; 196(12): 829-45, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25116410

RESUMEN

Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.


Asunto(s)
Acinetobacter/enzimología , FMN Reductasa/química , FMN Reductasa/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Acinetobacter/genética , Secuencia de Aminoácidos , Biocatálisis , FMN Reductasa/clasificación , FMN Reductasa/genética , Datos de Secuencia Molecular , NAD/metabolismo , Oxidorreductasas/metabolismo , Oxigenasas/clasificación , Oxigenasas/genética , Filogenia , Pseudomonas/enzimología , Pseudomonas/genética
6.
Arch Biochem Biophys ; 529(2): 86-91, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23220023

RESUMEN

CrtW and CrtO are two distinct non-homologous ß-carotene ketolases catalyzing the formation of echinenone and canthaxanthin. CrtO belongs to the CrtI family which comprises carotene desaturases and carotenoid oxidases. The CrtO protein from Synechocystis sp. PCC 6803 has been heterologously expressed, extracted and purified. Substrate specificity has been determined in vitro. The enzyme from Synechocystis is basically a mono ketolase. Nevertheless, small amounts of diketo canthaxanthin can be formed. The poor diketolation reaction could be explained by the low relative turnover numbers for the mono keto echinenone. Also other carotenoids with an unsubstituted ß-ionone ring were utilized with low conversion rates by CrtO regardless of the substitutions at the other end of the molecule. The CrtO ketolase was independent of oxygen and utilized an oxidized quinone as co-factor. In common to CrtI-type desaturases, the first catalytic step involved hydride transfer to the quinone. The stabilization reaction of the resulting carbo cation was a reaction with OH(-) forming a hydroxy group. Finally, the keto group resulted from two subsequent hydroxylations at the same C-atom and water elimination. This reaction mechanism was confirmed by in vitro conversion of the postulated hydroxy intermediates and by their enrichment and identification as trace intermediates during ketolation.


Asunto(s)
Carotenoides/química , Carotenoides/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Synechocystis/enzimología , Catálisis , Activación Enzimática , Estabilidad de Enzimas , Oxigenasas/clasificación
7.
J Biol Inorg Chem ; 17(3): 425-36, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22203449

RESUMEN

As metalloenzymes capable of transforming a broad range of substrates with high stereo- and regio-specificity, the multicomponent Rieske oxygenases (ROs) have been studied in bacterial systems for applications in bioremediation and industrial biocatalysis. These studies include genetic and biochemical investigations, determination of enzyme structure, phylogenetic analysis, and enzyme classification. Although RO terminal oxygenase components (RO-Os) share a conserved domain structure, their sequences are highly divergent and present significant challenges for identification and classification. Herein, we present the first global phylogenetic analysis of a broad range of RO-Os from diverse taxonomic groups. We employed objective, structure-based criteria to significantly reduce the inclusion of erroneously aligned sequences in the analysis. Our findings reveal that RO biochemical studies to date have been largely concentrated in an unexpectedly narrow portion of the RO-O sequence landscape. Additionally, our analysis demonstrates the existence two distinct groups of RO-O sequences. Finally, the sequence diversity recognized in this study necessitates a new RO-O classification scheme. We therefore propose a P450-like naming system. Our results reveal a diversity of sequence and potential catalytic functionality that has been wholly unappreciated in the RO literature. This study also demonstrates that many commonly used bioinformatic tools may not be sufficient to analyze the vast amount of data available in current databases. These findings facilitate the expanded exploration of RO catalytic capabilities in both biological and technological contexts and increase the potential for practical exploitation of their activities.


Asunto(s)
Bacterias/clasificación , Bacterias/enzimología , Variación Genética , Oxigenasas/clasificación , Filogenia , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Datos de Secuencia Molecular , Oxigenasas/química , Oxigenasas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
8.
Proc Natl Acad Sci U S A ; 105(39): 15196-201, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18799737

RESUMEN

The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.


Asunto(s)
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Oxigenasas/fisiología , Zea mays/crecimiento & desarrollo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutación , Oxigenasas/clasificación , Oxigenasas/genética , Filogenia , Reproducción/genética , Zea mays/enzimología , Zea mays/genética
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(11): 158665, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32061750

RESUMEN

The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15'-ß-carotene oxygenase (BCO1), 9',10'-ß-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon­carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.


Asunto(s)
Dioxigenasas/genética , Evolución Molecular , beta-Caroteno 15,15'-Monooxigenasa/genética , cis-trans-Isomerasas/genética , Animales , Carotenoides/metabolismo , Metabolismo de los Lípidos/genética , Mamíferos/genética , Oxigenasas/clasificación , Oxigenasas/genética
10.
J Bacteriol ; 191(15): 4996-5009, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19482928

RESUMEN

Sequence analysis of a 9-kb genomic fragment of the actinobacterium Rhodococcus opacus 1CP led to identification of an open reading frame encoding a novel fusion protein, StyA2B, with a putative function in styrene metabolism via styrene oxide and phenylacetic acid. Gene cluster analysis indicated that the highly related fusion proteins of Nocardia farcinica IFM10152 and Arthrobacter aurescens TC1 are involved in a similar physiological process. Whereas 413 amino acids of the N terminus of StyA2B are highly similar to those of the oxygenases of two-component styrene monooxygenases (SMOs) from pseudomonads, the residual 160 amino acids of the C terminus show significant homology to the flavin reductases of these systems. Cloning and functional expression of His(10)-StyA2B revealed for the first time that the fusion protein does in fact catalyze two separate reactions. Strictly NADH-dependent reduction of flavins and highly enantioselective oxygenation of styrene to (S)-styrene oxide were shown. Inhibition studies and photometric analysis of recombinant StyA2B indicated the absence of tightly bound heme and flavin cofactors in this self-sufficient monooxygenase. StyA2B oxygenates a spectrum of aromatic compounds similar to those of two-component SMOs. However, the specific activities of the flavin-reducing and styrene-oxidizing functions of StyA2B are one to two orders of magnitude lower than those of StyA/StyB from Pseudomonas sp. strain VLB120.


Asunto(s)
Proteínas Bacterianas/fisiología , Oxigenasas/fisiología , Rhodococcus/enzimología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Genoma Bacteriano/genética , Genoma Bacteriano/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Oxigenasas/clasificación , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Estireno/química , Estireno/metabolismo
11.
Planta ; 229(6): 1335-46, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19322584

RESUMEN

Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60-76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8'-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8'-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.


Asunto(s)
Ácido Abscísico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Flores/metabolismo , Oxigenasas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Abscísico/farmacología , Sistema Enzimático del Citocromo P-450/genética , Dioxigenasas , Flores/enzimología , Flores/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hibridación in Situ , Ácidos Indolacéticos/farmacología , Solanum lycopersicum/genética , Oxigenasas/clasificación , Oxigenasas/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas , Polinización/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Xantonas/farmacología
12.
Genes Genet Syst ; 84(6): 397-405, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20228577

RESUMEN

Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. Oxidative cleavage of cis-epoxycarotenoids catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the main regulatory step in the biosynthesis of ABA in higher plants. Using RACE technology, a full-length cDNA-encoding NCED gene was isolated and characterized from the leaves of Caragana korshinskii (Peashrub). The 2442-bp full-length CkNCED1 had a 1818-bp ORF, which encodes a peptide of 605 amino acids. The deduced amino acid sequence of CkNCED1 protein shared high identity with other NCEDs. Southern blot analysis revealed that the gene CkNCED1 was a single copy in the genome of C. korshinskii. When C. korshinskii plants were exposed to a water deficit, ABA accumulation was followed by large increases in CkNCED1 mRNA in leaves and stems, but only a moderate increase in the roots. Conversely, rehydration of stressed leaves caused a rapid decrease in CkNCED1 mRNA and ABA levels. RT-PCR and Quantitative real-time PCR analysis showed that salt stress rapidly induced the strong expression of CkNCED1 in leaves and roots of C. korshinskii, as well as ABA accumulation. The expression of CkNCED1 and ABA accumulation was also induced by cold stress and the application of exogenous ABA. Taken together, these results suggest that CkNCED1 likely plays a primary role in the biosynthesis of ABA in C. korshinskii.


Asunto(s)
Caragana/genética , Perfilación de la Expresión Génica , Oxigenasas/genética , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Caragana/enzimología , Caragana/metabolismo , Clonación Molecular , Frío , ADN Complementario/química , ADN Complementario/genética , Dioxigenasas , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Oxigenasas/clasificación , Oxigenasas/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Agua/farmacología
13.
J Microbiol Methods ; 76(3): 307-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19095015

RESUMEN

We have developed an easy-to-use multiplatform classification tool, ClassRHO, which facilitates classification and comparison of bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs). Visualization and analysis can be generated on-the-fly by entering or uploading RHO query sequences. Pre-computed classifications were implemented for 42 standard RHO sequences. These 42 RHO sequences can be flexibly selected based on user requests. ClassRHO provides users with many options to view and analyze RHO sequences.


Asunto(s)
Bacterias/metabolismo , Complejo III de Transporte de Electrones/clasificación , Oxigenasas/clasificación , Programas Informáticos , Análisis por Conglomerados , Bases de Datos de Proteínas , Complejo III de Transporte de Electrones/metabolismo , Oxigenasas/metabolismo , Interfaz Usuario-Computador
14.
Comput Biol Med ; 114: 103449, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31568976

RESUMEN

Plant carotenoid cleavage oxygenase (CCO) is an enzyme which catalyzes carotenoids to apocarotenoid products that are involved in several vital physiological functions. The CCO exists in two forms, namely, CCD (Carotenoid Cleavage Dioxygenase) and NCED (Nine-Cis Epoxycarotenoid Dioxygenase). This paper relates to a comparative study on CCD and NCED genes through phylogeny and codon usage analysis. The result of the phylogenetic analysis indicates a closer relationship between CCD and NCED subclass genes, while the RSCU values indicate a high preference for CUC codon in both CCD and NCED gene families. The mean ENc value of NCED genes was found to be 48.76, suggesting a higher codon bias compared to CCD genes. However, the ENc-GC3S plot suggests that both the gene families are under mutational pressure with variations according to their species-specific role. Similarly, the multivariate analysis also suggests that nucleotide mutation bias influences codon usage. Correlation analysis of Axis I and codon adaptation index values indicate a significant correlation between critical indices. Even though the prominence of the variations in codon usage between the two gene families, they are exerted towards the time-specific functional requirement for that plant species. This is evident from the cleaving roles of these enzymes against various carotenoids at different growth stages. The result of this investigation indicates that CCD and NCED genes are under mutational pressure. This codon bias study paves the way for increasing the production of apocarotenoids, which have a great significance in the industry.


Asunto(s)
Codón/genética , Genes de Plantas/genética , Oxigenasas/genética , Proteínas de Arabidopsis/genética , Mutación/genética , Oxigenasas/clasificación , Filogenia , Plantas/clasificación , Plantas/genética
15.
BMC Biochem ; 9: 11, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18387195

RESUMEN

BACKGROUND: Rieske non-heme iron aromatic ring-hydroxylating oxygenases (RHOs) are multi-component enzyme systems that are remarkably diverse in bacteria isolated from diverse habitats. Since the first classification in 1990, there has been a need to devise a new classification scheme for these enzymes because many RHOs have been discovered, which do not belong to any group in the previous classification. Here, we present a scheme for classification of RHOs reflecting new sequence information and interactions between RHO enzyme components. RESULT: We have analyzed a total of 130 RHO enzymes in which 25 well-characterized RHO enzymes were used as standards to test our hypothesis for the proposed classification system. From the sequence analysis of electron transport chain (ETC) components of the standard RHOs, we extracted classification keys that reflect not only the phylogenetic affiliation within each component but also relationship among components. Oxygenase components of standard RHOs were phylogenetically classified into 10 groups with the classification keys derived from ETC components. This phylogenetic classification scheme was converted to a new systematic classification consisting of 5 distinct types. The new classification system was statistically examined to justify its stability. Type I represents two-component RHO systems that consist of an oxygenase and an FNRC-type reductase. Type II contains other two-component RHO systems that consist of an oxygenase and an FNRN-type reductase. Type III represents a group of three-component RHO systems that consist of an oxygenase, a [2Fe-2S]-type ferredoxin and an FNRN-type reductase. Type IV represents another three-component systems that consist of oxygenase, [2Fe-2S]-type ferredoxin and GR-type reductase. Type V represents another different three-component systems that consist of an oxygenase, a [3Fe-4S]-type ferredoxin and a GR-type reductase. CONCLUSION: The new classification system provides the following features. First, the new classification system analyzes RHO enzymes as a whole. RwithSecond, the new classification system is not static but responds dynamically to the growing pool of RHO enzymes. Third, our classification can be applied reliably to the classification of incomplete RHOs. Fourth, the classification has direct applicability to experimental work. Fifth, the system provides new insights into the evolution of RHO systems based on enzyme interaction.


Asunto(s)
Proteínas Bacterianas/clasificación , Oxigenasas/clasificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bases de Datos de Proteínas , Ferredoxinas/química , Oxigenasas/química , Oxigenasas/genética , Filogenia
16.
Sci Rep ; 7(1): 13192, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038443

RESUMEN

Here we describe a new family of carotenoid cleavage oxygenases (CCOs) in metazoans, the BCO2-like (BCOL) clade, which contains lancelet, nematode, and molluscan carotenoid oxygenase sequences. Phylogenetic analysis of CCOs in all kingdoms of life confirmed that the BCOL enzymes are an independent clade of ancient origin. One of the predicted lancelet BCOL proteins, cloned and analyzed for carotenoid cleavage activity in a bacterial carotenoid expression system, had activity similar to lancelet BCO2 proteins, although with a preference for cis isomers. Our docking predictions correlated well with the cis-favored activity. The extensive expansions of the new animal BCOL family in some species (e.g., lancelet) suggests that the carotenoid cleavage oxygenase superfamily has evolved in the "extremely high turnover" fashion: numerous losses and duplications of this family are likely to reflect complex regulation processes during development, and interactions with the environment. These findings also serve to provide a rationale for the evolution of the BCO-related outlier RPE65 retinol isomerase, an enzyme that does not utilize carotenoids as substrate or perform double-bond cleavage.


Asunto(s)
Oxigenasas/genética , Animales , Carotenoides , Oxigenasas/clasificación , Oxigenasas/metabolismo , Filogenia
17.
Science ; 358(6368): 1336-1339, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29217579

RESUMEN

Methylphosphonate synthase (MPnS) produces methylphosphonate, a metabolic precursor to methane in the upper ocean. Here, we determine a 2.35-angstrom resolution structure of MPnS and discover that it has an unusual 2-histidine-1-glutamine iron-coordinating triad. We further solve the structure of a related enzyme, hydroxyethylphosphonate dioxygenase from Streptomyces albus (SaHEPD), and find that it displays the same motif. SaHEPD can be converted into an MPnS by mutation of glutamine-adjacent residues, identifying the molecular requirements for methylphosphonate synthesis. Using these sequence markers, we find numerous putative MPnSs in marine microbiomes and confirm that MPnS is present in the abundant Pelagibacter ubique. The ubiquity of MPnS-containing microbes supports the proposal that methylphosphonate is a source of methane in the upper, aerobic ocean, where phosphorus-starved microbes catabolize methylphosphonate for its phosphorus.


Asunto(s)
Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Compuestos Organofosforados/metabolismo , Oxigenasas/química , Alphaproteobacteria/enzimología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/ultraestructura , Dominio Catalítico , Glutamina/química , Histidina/química , Microbiota , Oxigenasas/clasificación , Oxigenasas/ultraestructura , Filogenia , Streptomyces/enzimología
18.
J Microbiol ; 55(10): 775-782, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28956349

RESUMEN

Aerobic methane oxidation is a key process in the global carbon cycle that acts as a major sink of methane. In this study, we describe a novel methanotroph designated EMGL16-1 that was isolated from a freshwater lake using the floating filter culture technique. Based on a phylogenetic analysis of 16S rRNA gene sequences, the isolate was found to be closely related to the genus Methylomonas in the family Methylococcaceae of the class Gammaproteobacteria with 94.2-97.4% 16S rRNA gene similarity to Methylomonas type strains. Comparison of chemotaxonomic and physiological properties further suggested that strain EMGL16-1 was taxonomically distinct from other species in the genus Methylomonas. The isolate was versatile in utilizing nitrogen sources such as molecular nitrogen, nitrate, nitrite, urea, and ammonium. The genes coding for subunit of the particulate form methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), and methanol dehydrogenase (mxaF) were detected in strain EMGL16-1. Phylogenetic analysis of mmoX indicated that mmoX of strain EMGL16-1 is distinct from those of other strains in the genus Methylomonas. This isolate probably represents a novel species in the genus. Our study provides new insights into the diversity of species in the genus Methylomonas and their environmental adaptations.


Asunto(s)
Methylomonas/enzimología , Methylomonas/genética , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Oxidorreductasas de Alcohol/genética , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Carbono/metabolismo , ADN Bacteriano/genética , Agua Dulce/microbiología , Genes Bacterianos/genética , Metano/metabolismo , Methylococcaceae/clasificación , Methylomonas/clasificación , Methylomonas/aislamiento & purificación , Nitrógeno , Fijación del Nitrógeno , Oxigenasas/clasificación , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Microbiología del Agua
19.
Sci Rep ; 6: 36412, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805044

RESUMEN

The role of the skin microbiota in human health is poorly understood. Here, we identified and characterized a novel antioxidant enzyme produced by the skin microbiota, designated RoxP for radical oxygenase of Propionibacterium acnes. RoxP is uniquely produced by the predominant skin bacterium P. acnes, with no homologs in other bacteria; it is highly expressed and strongly secreted into culture supernatants. We show that RoxP binds heme, reduces free radicals, and can protect molecules from oxidation. Strikingly, RoxP is crucial for the survival of P. acnes in oxic conditions and for skin colonization of P. acnes ex vivo. Taken together, our study strongly suggests that RoxP facilitates P. acnes' survival on human skin, and is an important beneficial factor for the host-commensal interaction. Thus, RoxP is the first described skin microbiota-derived mutualistic factor that potentially can be exploited for human skin protection.


Asunto(s)
Antioxidantes/metabolismo , Proteínas Bacterianas/metabolismo , Oxigenasas/metabolismo , Propionibacterium acnes/aislamiento & purificación , Piel/microbiología , Antioxidantes/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Hemo/metabolismo , Humanos , Microbiota , Mutagénesis , Oxidación-Reducción , Oxigenasas/clasificación , Oxigenasas/genética , Filogenia , Propionibacterium acnes/genética , Unión Proteica , ARN Bacteriano/química , ARN Bacteriano/aislamiento & purificación , ARN Bacteriano/metabolismo , Análisis de Secuencia de ARN
20.
Curr Opin Chem Biol ; 2(5): 607-12, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9818186

RESUMEN

The strategy that nature has used to evolve new catalytic activities from pre-existing enzymes (i.e. retention of substrate binding or of catalytic mechanism) has been controversial. Recent work supports a strategy in which a partial reaction, catalyzed by a progenitor, is retained, and the active-site architecture is modified to allow the intermediate generated to be directed to different products.


Asunto(s)
Amidohidrolasas/química , Proteínas Bacterianas , Evolución Biológica , Catálisis , Enoil-CoA Hidratasa/química , Fosfopiruvato Hidratasa/química , Amidohidrolasas/clasificación , Amidohidrolasas/genética , Enoil-CoA Hidratasa/clasificación , Enoil-CoA Hidratasa/genética , Glutatión Transferasa/química , Glutatión Transferasa/clasificación , Glutatión Transferasa/genética , Lactoilglutatión Liasa/química , Lactoilglutatión Liasa/clasificación , Lactoilglutatión Liasa/genética , Metaloproteínas/química , Metaloproteínas/clasificación , Metaloproteínas/genética , Oxigenasas/química , Oxigenasas/clasificación , Oxigenasas/genética , Fosfopiruvato Hidratasa/clasificación , Fosfopiruvato Hidratasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA