Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Cell ; 164(3): 406-19, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824654

RESUMEN

The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings.


Asunto(s)
Drosophila melanogaster/inmunología , Inmunidad Innata , Transducción de Señal , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiología , Escherichia coli/fisiología , Cuerpo Adiposo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/metabolismo , Masculino , Pectobacterium carotovorum/fisiología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Staphylococcus aureus/fisiología , Receptores Toll-Like/metabolismo
2.
Cell ; 153(4): 797-811, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663779

RESUMEN

All metazoan guts are subjected to immunologically unique conditions in which an efficient antimicrobial system operates to eliminate pathogens while tolerating symbiotic commensal microbiota. However, the molecular mechanisms controlling this process are only partially understood. Here, we show that bacterial-derived uracil acts as a ligand for dual oxidase (DUOX)-dependent reactive oxygen species generation in Drosophila gut and that the uracil production in bacteria causes inflammation in the gut. The acute and controlled uracil-induced immune response is required for efficient elimination of bacteria, intestinal cell repair, and host survival during infection of nonresident species. Among resident gut microbiota, uracil production is absent in symbionts, allowing harmonious colonization without DUOX activation, whereas uracil release from opportunistic pathobionts provokes chronic inflammation. These results reveal that bacteria with distinct abilities to activate uracil-induced gut inflammation, in terms of intensity and duration, act as critical factors that determine homeostasis or pathogenesis in gut-microbe interactions.


Asunto(s)
Drosophila/inmunología , Drosophila/microbiología , Inmunidad Mucosa , Pectobacterium carotovorum/fisiología , Simbiosis , Uracilo/metabolismo , Animales , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Homeostasis , Humanos , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
3.
BMC Genomics ; 25(1): 831, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227779

RESUMEN

Pectobacterium carotovorum and Pectobacterium aroidearum represent the primary pathogens causing variable soft rot disease. However, the fundamental defense responses of Pinellia ternata to pathogens remain unclear. Our investigation demonstrated that the disease produced by P. carotovorum is more serious than P. aroidearum. RNA-seq analysis indicated that many cell wall-related genes, receptor-like kinase genes, and resistance-related genes were induced by P. aroidearum and P. carotovorum similarly. But many different regulatory pathways exert a crucial function in plant immunity against P. aroidearum and P. carotovorum, including hormone signaling, whereas more auxin-responsive genes were responsive to P. carotovorum, while more ethylene and gibberellin-responsive genes were responsive to P. aroidearum. 12 GDSL esterase/lipase genes and 3 fasciclin-like arabinogalactan protein genes were specifically upregulated by P. carotovorum, whereas 11 receptor-like kinase genes and 8 disease resistance genes were up-regulated only by P. aroidearum. Among them, a lectin gene (part1transcript/39001) was induced by P. carotovorum and P. aroidearum simultaneously. Transient expression in N. benthamiana demonstrated that the lectin gene improves plant resistance to P. carotovorum. This study offers a comprehensive perspective on P. ternata immunity produced by different soft rot pathogens and reveals the importance of lectin in anti-soft rot of P. ternata for the first time.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Pectobacterium carotovorum , Pinellia , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Pinellia/genética , Pinellia/microbiología , Pectobacterium carotovorum/fisiología , Resistencia a la Enfermedad/genética , Pectobacterium/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma
4.
Physiol Plant ; 176(4): e14481, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39164920

RESUMEN

Potatoes (Solanum tuberosum L.) are one of the world's major staple crops. In stored potatoes, Pectobacterium carotovorum subsp carotovorum causes soft rot. As a result of the rapid spread of the disease during post-harvest storage, potato production suffers huge losses. By detecting disease early and controlling it promptly, losses can be minimized. The profile of volatiles of plants can be altered by phytopathogens. Identifying unique volatile organic compounds (VOCs) as biomarkers for early disease detection has attracted considerable research attention. This study compared the VOC profiles of healthy and soft rot inoculated potatoes (cv. "Kufri Pukhraj") over a time course using gas chromatography-mass spectrometry (GC-MS). It was found that there was a differential emission of 27 VOCs between healthy non-inoculated potatoes and soft rot inoculated potatoes. Among 27 VOCs, only five (1-octen-3-ol, 2-methylisoborneol, 3-octanone, 1,4-dimethyladamantane, and 2-methyl-2-bornene) were found exclusively in soft rot inoculated potatoes, suggesting them potential biomarker for non-destructive prediction of soft rot disease in potatoes. Reactive oxygen species (H2O2) and phytohormone methyl-jasmonate (MeJa) levels increased transiently on infection with soft rot. The analysis of the primary metabolism of soft rot infected tubers at three different stages suggests metabolic reprogramming that occurs at the early stage of infection, possibly leading to biomarker volatile emission. Based on these results, it appears that the initial potato-soft rot bacteria interaction initiates metabolic reprogramming mainly through H2O2 and the MeJa signalling pathway. In asymptomatic potatoes, these biomarkers may be promising candidates for non-destructive detection of soft rot at an early stage. These biomarkers can be used to develop an e-nose sensor to predict soft rot in the future.


Asunto(s)
Biomarcadores , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Solanum tuberosum , Compuestos Orgánicos Volátiles , Solanum tuberosum/microbiología , Solanum tuberosum/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Enfermedades de las Plantas/microbiología , Biomarcadores/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ciclopentanos/metabolismo , Pectobacterium carotovorum/patogenicidad , Pectobacterium carotovorum/fisiología , Oxilipinas/metabolismo , Oxilipinas/análisis , Tubérculos de la Planta/microbiología , Tubérculos de la Planta/metabolismo
5.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744835

RESUMEN

The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.


Asunto(s)
Solanum tuberosum , Compuestos Orgánicos Volátiles , Biomarcadores , Cromatografía de Gases y Espectrometría de Masas , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología
6.
Molecules ; 27(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014529

RESUMEN

The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.


Asunto(s)
Pectobacterium carotovorum , Rheum , Antibacterianos/metabolismo , Antibacterianos/farmacología , Pared Celular/metabolismo , Pectobacterium , Pectobacterium carotovorum/fisiología , Estreptomicina
7.
Mol Plant Microbe Interact ; 34(3): 297-308, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33231502

RESUMEN

Many plant-encoded E3 ligases are known to be involved in plant defense. Here, we report a novel role of E3 ligase SALT- AND DROUGHT-INDUCED RING FINGER1 (SDIR1) in plant immunity. Even though SDIR1 is reasonably well-characterized, its role in biotic stress response is not known. The silencing of SDIR1 in Nicotiana benthamiana reduced the multiplication of the virulent bacterial pathogen Pseudomonas syringae pv. tabaci. The Arabidopsis sdir1 mutant is resistant to virulent pathogens, whereas SDIR1 overexpression lines are susceptible to both host and nonhost hemibiotrophic bacterial pathogens. However, sdir1 mutant and SDIR1 overexpression lines showed hypersusceptibility and resistance, respectively, against the necrotrophic pathogen Erwinia carotovora. The mutant of SDIR1 target protein, i.e., SDIR-interacting protein 1 (SDIR1P1), also showed resistance to host and nonhost pathogens. In SDIR1 overexpression plants, transcripts of NAC transcription factors were less accumulated and the levels of jasmonic acid (JA) and abscisic acid were increased. In the sdir1 mutant, JA signaling genes JAZ7 and JAZ8 were downregulated. These data suggest that SDIR1 is a susceptibility factor and its activation or overexpression enhances disease caused by P. syringae pv. tomato DC3000 in Arabidopsis. Our results show a novel role of SDIR1 in modulating plant defense gene expression and plant immunity.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Ubiquitina-Proteína Ligasas , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Nicotiana/enzimología , Nicotiana/microbiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31953332

RESUMEN

Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. affect a wide range of crops, including potatoes, a major food crop. As of today, farmers mostly rely on sanitary practices, water management, and plant nutrition for control. We tested the bacterial predators Bdellovibrio and like organisms (BALOs) to control potato soft rot. BALOs are small, motile predatory bacteria found in terrestrial and aquatic environments. They prey on a wide range of Gram-negative bacteria, including animal and plant pathogens. To this end, BALO strains HD100, 109J, and a ΔmerRNA derivative of HD100 were shown to efficiently prey on various rot-causing strains of Pectobacterium and Dickeya solani BALO control of maceration caused by a highly virulent strain of Pectobacterium carotovorum subsp. brasilense was then tested in situ using a potato slice assay. All BALO strains were highly effective at reducing disease, up to complete prevention. Effectivity was concentration dependent, and BALOs applied before P. carotovorum subsp. brasilense inoculation performed significantly better than those applied after the disease-causing agent, maybe due to in situ consumption of glucose by the prey, as glucose metabolism by live prey bacteria was shown to prevent predation. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, indicating that predation was the major mechanism for the prevention of the disease. Finally, plastic resistance to predation was affected by prey and predator population parameters, suggesting that population dynamics affect prey response to predation.IMPORTANCE Bacterial soft rot diseases caused by Pectobacterium spp. and Dickeya spp. are among the most important plant diseases caused by bacteria. Among other crops, they inflict large-scale damage to potatoes. As of today, farmers have few options to control them. The bacteria Bdellovibrio and like organisms (BALOs) are obligate predators of bacteria. We tested their potential to prey on Pectobacterium spp. and Dickeya spp. and to protect potato. We show that different BALOs can prey on soft rot-causing bacteria and prevent their growth in situ, precluding tissue maceration. Dead predators and the supernatant of BALO cultures did not significantly prevent maceration, showing that the effect is due to predation. Soft rot control by the predators was concentration dependent and was higher when the predator was inoculated ahead of the prey. As residual prey remained, we investigated what determines their level and found that initial prey and predator population parameters affect prey response to predation.


Asunto(s)
Bdellovibrio/fisiología , Enterobacteriaceae/fisiología , Cadena Alimentaria , Enfermedades de las Plantas/prevención & control , Solanum tuberosum/microbiología , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología
9.
J Sci Food Agric ; 100(12): 4575-4582, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32424855

RESUMEN

BACKGROUND: Erwinia carotovora subsp. cause the potato soft rot, which is a major disease in agriculture. Antibacterial agents currently applied on potato soft rot often offer a restricted control and have several disadvantages. Propolis has shown a wide range of antimicrobial activity, although its effect has not been investigated on E. carotovora subsp. In this work, we tested extracts from propolis samples of Northwest Argentina against E. carotovora subsp. RESULTS: Ethanolic propolis extracts (EPEs) from samples of Santiago del Estero province, particularly from sample 4 (EPE4), showed the highest antibacterial activity, which was associated with the highest content of flavonoids. 2',4'-Dihydroxychalcone, 2',4'-dihydroxy-3'-methoxychalcone, galangin, and pinocembrin were identified as antibacterial constituents of EPE4. 2',4'-Dihydroxychalcone showed an antibacterial activity (minimum inhibitory concentration, MIC = 0.3-1.2 µg gallic acid equivalents (GAE) mL-1 ; minimum bactericidal concentration, MBC = 0.6-4.8 µg GAE mL-1 ) lower than that of bacterimycin (MIC = 2.4-9.6 µg mL-1 ; MBC = 19.2-38.4 µg GAE mL-1 ) and streptocycline (MIC = 19.2-38.4 µg mL-1 ; MBC = 38.4-76.8 µg mL-1 ). Preventive assays on unwounded and wounded potatoes showed that their immersion in EPE4 containing 87.5 µg GAE mL-1 or streptocycline containing 40 µg mL-1 was equally effective in controlling potato soft rot, reducing the disease incidence by 64.6-67.0% (unwounded tubers) and 88.0-86.0% (wounded tubers) and the disease severity by 49.8-49.8% (unwounded tubers) and 54.5-68.5% (wounded tubers). CONCLUSIONS: Flavonoid-rich propolis extracts from Northwest Argentina efficiently reduced in vivo the incidence and severity of potato soft rot caused by E. carotovora subsp.


Asunto(s)
Fungicidas Industriales/farmacología , Pectobacterium carotovorum/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Própolis/farmacología , Solanum tuberosum/microbiología , Argentina , Fungicidas Industriales/química , Pruebas de Sensibilidad Microbiana , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/prevención & control , Tubérculos de la Planta/microbiología , Própolis/química
10.
BMC Genomics ; 20(1): 486, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195968

RESUMEN

BACKGROUND: Pectobacterium carotovorum subsp. brasiliense is a broad host range bacterial pathogen, which causes blackleg of potatoes and bacterial soft rot of vegetables worldwide. Production of plant cell wall degrading enzymes is usually critical for Pectobacterium infection. However, other virulence factors and the mechanisms of genetic adaptation still need to be studied in detail. RESULTS: In this study, the complete genome of P. carotovorum subsp. brasiliense strain SX309 isolated from cucumber was compared with eight other pathogenic bacteria belonging to the Pectobacterium genus, which were isolated from various host plants. Genome comparison revealed that most virulence genes are highly conserved in the Pectobacterium strains, especially for the key virulence determinants involved in the biosynthesis of extracellular enzymes and others including the type II and III secretion systems, quorum sensing system, flagellar and chemotactic genes. Nevertheless, some variable regions of the T6SS and the CRISP-Cas immune system are unique for P. carotovorum subsp. brasiliense. CONCLUSIONS: The extensive comparative genomics analysis revealed highly conserved virulence genes in the Pectobacterium strains. However, several variable regions of type VI secretion system and two subtype Cas mechanism-Cas immune systems possibly contribute to the process of Pectobacterium infection and adaptive immunity.


Asunto(s)
Genómica , Pectobacterium carotovorum/genética , Fenotipo , Inmunidad Adaptativa/genética , Pared Celular/metabolismo , Quimiotaxis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Flagelos/genética , Interacciones Huésped-Patógeno , Lipopolisacáridos/biosíntesis , Pectobacterium carotovorum/citología , Pectobacterium carotovorum/inmunología , Pectobacterium carotovorum/fisiología , Análisis de Secuencia
11.
Environ Microbiol ; 21(3): 940-948, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30461142

RESUMEN

Archaea have inhabited the earth for a long period of time and are ubiquitously distributed in diverse environments. However, few studies have focused on the interactions of archaea with other organisms, including eukaryotes such as plants, since it is difficult to cultivate sufficient numbers of archaeal cells for analysis. In this study, we investigated the interaction between soil archaea and Arabidopsis thaliana. We demonstrate for the first time that soil archaea promote plant growth and trigger induced systemic resistance (ISR) against the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum SCC1 and biotrophic bacterium Pseudomonas syringae pv. tomato DC3000. Ammonia-oxidizing archaeon Nitrosocosmicus oleophilus MY3 cells clearly colonized the root surface of Arabidopsis plants, and increased resistance against both pathogenic species via the salicylic acid-independent signalling pathway. This mechanism of bacterial resistance resembles that underlying soil bacteria- and fungi-mediated ISR signalling. Additionally, volatile emissions from N. oleophilus MY3 were identified as major archaeal determinants that elicit ISR. Our results lay a foundation for archaea-plant interactions as a new field of research.


Asunto(s)
Arabidopsis/microbiología , Archaea/fisiología , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología , Resistencia a la Enfermedad , Desarrollo de la Planta , Ácido Salicílico/metabolismo , Transducción de Señal , Microbiología del Suelo
12.
Mar Drugs ; 17(7)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261836

RESUMEN

N-Acylhomoserine lactonase degrades the lactone ring of N-acylhomoserine lactones (AHLs) and has been widely suggested as a promising candidate for use in bacterial disease control. While a number of AHL lactonases have been characterized, none of them has been developed as a commercially available enzymatic product for in vitro AHL quenching due to their low stability. In this study, a highly stable AHL lactonase (AhlX) was identified and isolated from the marine bacterium Salinicola salaria MCCC1A01339. AhlX is encoded by a 768-bp gene and has a predicted molecular mass of 29 kDa. The enzyme retained approximately 97% activity after incubating at 25 °C for 12 days and ~100% activity after incubating at 60 °C for 2 h. Furthermore, AhlX exhibited a high salt tolerance, retaining approximately 60% of its activity observed in the presence of 25% NaCl. In addition, an AhlX powder made by an industrial spray-drying process attenuated Erwinia carotovora infection. These results suggest that AhlX has great potential for use as an in vitro preventive and therapeutic agent for bacterial diseases.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/enzimología , Proteínas Bacterianas/farmacología , Hidrolasas de Éster Carboxílico/farmacología , Halomonadaceae/enzimología , Acil-Butirolactonas/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Biotecnología , Brassica rapa/microbiología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Pruebas de Enzimas , Estabilidad de Enzimas , Pectobacterium carotovorum/efectos de los fármacos , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Percepción de Quorum/efectos de los fármacos , Solanum tuberosum/microbiología , Temperatura
13.
Plant Dis ; 103(3): 398-403, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30629463

RESUMEN

Neobuxbaumia tetetzo (Coulter) Backeberg (tetecho) is a columnar cactus endemic to Mexico. Tetecho plants, flowers, fruits, and seeds play an important role in the semiarid ecosystem, as they serve as a refuge and food for insects, bats, and birds, and are widely used by ethnic groups since pre-Hispanic times. Tetecho is affected by a soft rot that damages the whole plant and causes its fall and disintegration. Eight bacterial colonies of similar morphology were isolated from plants showing soft rot and inoculated in healthy tetecho plants, reproducing typical symptoms of soft rot 9 days after inoculation. Ten representative isolates were selected for phenotypic and genetic identification using 16s rDNA, IGS 16S-23S rDNA, and rpoS genes and for pathogenicity tests on several members of the cactus family and other plants. Based on the results, these bacterial isolates were identified as Pectobacterium carotovorum subsp. brasiliense. Inoculation of this bacteria caused soft rot in different cacti, fruits, leaves, and roots of other plants. This is the first report of the subspecies brasiliense of P. carotovorum causing soft rot and death in cacti in the world and the first report of this subspecies in Mexico.


Asunto(s)
Cactaceae , Pectobacterium carotovorum , Cactaceae/microbiología , ADN Bacteriano/genética , México , Pectobacterium carotovorum/clasificación , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología
14.
Molecules ; 24(24)2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31847295

RESUMEN

The aim of this paper was to study the polyphenols of peel and pulp of three Citrus taxa-Citrus medica, Citrus bergamia, and Citrus medica cv. Salò-cultivated in the Cosenza province, Southern Italy, and to evaluate their antioxidant and antibacterial activity, performed against Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Staphylococcus aureus, and Pectobacterium carotovorum. Furthermore, we assessed the inhibitory effect of the extracts on bacterial capacity to form biofilm, and on the metabolic activity of the cells present therein. The results indicated that such extracts could find new potential applications in the field of natural antioxidant and anti-bacterial agents in pharmaceutics, agriculture, and food fields.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Biopelículas/efectos de los fármacos , Citrus/química , Polifenoles/química , Antibacterianos/farmacología , Antioxidantes/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/fisiología , Pruebas de Sensibilidad Microbiana , Pectobacterium carotovorum/efectos de los fármacos , Pectobacterium carotovorum/fisiología , Extractos Vegetales/química , Polifenoles/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
15.
Mol Plant Microbe Interact ; 31(11): 1166-1178, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30198820

RESUMEN

Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Calla (Planta)/microbiología , Proteína de Factor 1 del Huésped/metabolismo , Pectobacterium carotovorum/enzimología , Enfermedades de las Plantas/microbiología , Sistemas de Secreción Tipo VI/metabolismo , Secuencia de Aminoácidos , Calla (Planta)/inmunología , Pared Celular/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucanos/metabolismo , Proteína de Factor 1 del Huésped/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/patogenicidad , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Alineación de Secuencia , Sistemas de Secreción Tipo VI/genética , Virulencia
16.
Biochem Biophys Res Commun ; 496(2): 462-467, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29337064

RESUMEN

Chlorogenic acid (CGA) plays an important role in protecting plants against pathogens and promoting human health. Although CGA accumulates to high levels in potato tubers, the key enzyme p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) for CGA biosynthesis has not been isolated and functionally characterized in potato. In this work, we cloned StC3'H from potato and showed that it catalyzed the formation of caffeoylshikimate and CGA (caffeoylquinate) from p-coumaroyl shikimate and p-coumaroyl quinate, respectively, but was inactive towards p-coumaric acid in in vitro enzyme assays. When the expression of StC3'H proteins was blocked through antisense (AS) inhibition under the control of a tuber-specific patatin promoter, moderate changes in tuber yield as well as phenolic metabolites in the core tuber tissue were observed for several AS lines. On the other hand, the AS and control potato lines exhibited similar responses to a bacterial pathogen Pectobacterium carotovorum. These results suggest that StC3'H is implicated in phenolic metabolism in potato. They also suggest that CGA accumulation in the core tissue of potato tubers is an intricately controlled process and that additional C3'H activity may also be involved in CGA biosynthesis in potato.


Asunto(s)
Ácido Clorogénico/metabolismo , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Tubérculos de la Planta/enzimología , Solanum tuberosum/enzimología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Ácido Clorogénico/análogos & derivados , Clonación Molecular , Expresión Génica , Oxigenasas de Función Mixta/antagonistas & inhibidores , Oxigenasas de Función Mixta/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Pectobacterium carotovorum/patogenicidad , Pectobacterium carotovorum/fisiología , Pichia/genética , Pichia/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/microbiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácido Shikímico/análogos & derivados , Ácido Shikímico/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/microbiología
17.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247060

RESUMEN

Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot.IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility are identified as contributors to the persistence of Salmonella spp. in soft rots.


Asunto(s)
Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/microbiología , Salmonella typhimurium/fisiología , Solanum lycopersicum/microbiología , Expresión Génica/fisiología , Genes Bacterianos/fisiología , Salmonella typhimurium/genética
18.
J Appl Microbiol ; 124(3): 797-809, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29297963

RESUMEN

AIM: Create a method for highly sensitive, selective, rapid and easy-to-use detection and identification of economically significant potato pathogens, including viruses, bacteria and oomycetes, be it single pathogen, or a range of various pathogens occurring simultaneously. METHODS AND RESULTS: Test-systems for real-time PCR, operating in the unified amplification regime, have been developed for Phytophthora infestans, Pectobacterium atrosepticum, Dickeya dianthicola, Dickeya solani, Ralstonia solanacearum, Pectobacterium carotovorum, Clavibacter michiganensis subsp. sepedonicus, potato viruses Y (ordinary and necrotic forms as well as indiscriminative test system, detecting all forms), A, X, S, M, potato leaf roll virus, potato mop top virus and potato spindle tuber viroid. The test-systems (including polymerase and revertase) were immobilized and lyophilized in miniature microreactors (1·2 µl) on silicon DNA/RNA microarrays (micromatrices) to be used with a mobile AriaDNA® amplifier. CONCLUSIONS: Preloaded 30-reaction micromatrices having shelf life of 3 and 6 months (for RNA- and DNA-based pathogens, respectively) at room temperature with no special conditions were successfully tested on both reference and field samples in comparison with traditional ELISA and microbiological methods, showing perfect performance and sensitivity (1 pg). SIGNIFICANCE AND IMPACT OF THE STUDY: The accurate, rapid and user-friendly diagnostic system in a micromatrix format may significantly contribute to pathogen screening and phytopathological studies.


Asunto(s)
Pectobacterium carotovorum/aislamiento & purificación , Phytophthora infestans/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Ralstonia solanacearum/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus/aislamiento & purificación , Cartilla de ADN/genética , Pectobacterium carotovorum/genética , Pectobacterium carotovorum/fisiología , Phytophthora infestans/clasificación , Phytophthora infestans/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/fisiología , Solanum tuberosum/microbiología , Solanum tuberosum/virología , Virus/clasificación , Virus/genética
19.
Exp Cell Res ; 361(2): 225-235, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29074370

RESUMEN

Pluripotent stem cell activity is essential to maintain regeneration and homeostasis in the Drosophila midgut following environmental challenges. Although multiple pathways have been implicated in epithelial renewal, the underlying regulatory mechanisms and correlations between relevant genes and pathways remain elusive. In this study, we show that the zinc finger protein CG12744 plays an important role in the differentiation and regeneration of epithelial cells in response to oral infection with Erwinia carotovora carotovora 15. Knocking down CG12744 in enteroblasts decreased the post-infection proportion of enteroblasts and enterocytes and increased the post-infection number of enteroendocrine cells. In addition, in precursors, CG12744 affected the Osa, jun-N-terminal kinase and bone morphogenetic protein signaling pathways to control enterocyte differentiation. Finally, CG12744 maintained epithelial architecture and cell fate in enterocytes following an acute infectious challenge.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Pectobacterium carotovorum/fisiología , Dedos de Zinc/genética , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/inmunología , Diferenciación Celular , Proteínas de Unión al ADN/inmunología , Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Drosophila melanogaster/microbiología , Enterocitos/inmunología , Enterocitos/microbiología , Células Enteroendocrinas/inmunología , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/microbiología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Intestinos/microbiología , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Masculino , Pectobacterium carotovorum/patogenicidad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regeneración/genética , Regeneración/inmunología , Transducción de Señal , Dedos de Zinc/inmunología
20.
Phytopathology ; 108(12): 1467-1474, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29975159

RESUMEN

Bacterial soft rot is a devastating disease affecting a variety of vegetable crops worldwide. One strategy for controlling this disease could be the ectopic expression of the plant ferredoxin-like protein (pflp) gene. PFLP was previously shown to intensify pathogen-associated molecular pattern-triggered immunity (PTI), an immune response triggered, for example, by the flagellin epitope flg22. To gain further insight into how PFLP intensifies PTI, flg22 was used as an elicitor in Arabidopsis thaliana. First, PFLP was confirmed to intensify the rapid generation of H2O2, callose deposition, and the hypersensitive response when coinfiltrated with flg22. This response correlated with increased expression of the FLG22-induced receptor kinase 1 gene, which is part of the mitogen-activated protein kinase (MAPK) pathway. Although the increased response to flg22 alone did not depend on the MAPK pathway genes MEKK1, MKK5, and MPK6, the protective effect of PFLP decreased when plants mutated in these genes were inoculated with Pectobacterium carotovorum subsp. carotovorum. Furthermore, expression of PR1 and PDF1.2 also increased upon treatment with flg22 in the presence of PFLP. Taken together, these results suggest that activation of the MAPK pathway contributes to the increased resistance to bacterial soft rot observed in plants treated with PFLP.


Asunto(s)
Arabidopsis/enzimología , Resistencia a la Enfermedad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Pectobacterium carotovorum/fisiología , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/genética , Flagelina/metabolismo , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA