Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
J Neuroinflammation ; 21(1): 222, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272155

RESUMEN

Gulf War Illness (GWI) is a chronic multisymptom disorder that affects approximately 25-32% of Gulf War veterans and is characterized by a number of symptoms such as cognitive impairment, psychiatric disturbances, chronic fatigue and gastrointestinal distress, among others. While the exact etiology of GWI is unknown, it is believed to have been caused by toxic exposures encountered during deployment in combination with other factors such as stress. In the present study we sought to evaluate the hypothesis that exposure to the toxin permethrin could prime neuroinflammatory stress response and elicit psychiatric symptoms associated with GWI. Specifically, we developed a mouse model of GWI, to evaluate the effects of chronic permethrin exposure followed by unpredictable stress. We found that subjecting mice to 14 days of chronic permethrin exposure followed by 7 days of unpredictable stress resulted in the development of depression-like behavior. This behavioral change coincided with distinct alterations in the microglia phenotype, indicating microglial activation in the hippocampus. We revealed that blocking microglial activation through Gi inhibitory DREADD receptors in microglia effectively prevented the behavioral change associated with permethrin and stress exposure. To elucidate the transcriptional networks impacted within distinct microglia populations linked to depression-like behavior in mice exposed to both permethrin and stress, we conducted a single-cell RNA sequencing analysis using 21,566 single nuclei collected from the hippocampus of mice. For bioinformatics, UniCell Deconvolve was a pre-trained, interpretable, deep learning model used to deconvolve cell type fractions and predict cell identity across spatial datasets. Our bioinformatics analysis identified significant alterations in permethrin exposure followed by stress-associated microglia population, notably pathways related to neuronal development, neuronal communication, and neuronal morphogenesis, all of which are associated with neural synaptic plasticity. Additionally, we observed permethrin exposure followed by stress-mediated changes in signal transduction, including modulation of chemical synaptic transmission, regulation of neurotransmitter receptors, and regulation of postsynaptic neurotransmitter receptor activity, a known contributor to the pathophysiology of depression in a subset of the hippocampal pyramidal neurons in CA3 subregions. Our findings tentatively suggest that permethrin may prime microglia towards a state of inflammatory activation that can be triggered by psychological stressors, resulting in depression-like behavior and alterations of neural plasticity. These findings underscore the significance of synergistic interactions between multi-causal factors associated with GWI.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Microglía , Enfermedades Neuroinflamatorias , Permetrina , Síndrome del Golfo Pérsico , Animales , Permetrina/toxicidad , Ratones , Síndrome del Golfo Pérsico/inducido químicamente , Síndrome del Golfo Pérsico/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Depresión/inducido químicamente , Depresión/etiología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Ratones Endogámicos C57BL , Estrés Psicológico
2.
Ecotoxicol Environ Saf ; 276: 116303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599157

RESUMEN

Certain insecticides are known to have estrogenic effects by activating estrogen receptors through genomic transcription. This has led researchers to associate specific insecticide use with an increased breast cancer risk. However, it is unclear if estrogen receptor-dependent pathways are the only way in which these compounds induce carcinogenic effects. The objective of this study was to determine the impact of the pyrethroid insecticide permethrin on the growth of estrogen receptor negative breast cancer cells MDA-MB-231. Using tandem mass spectrometric techniques, the effect of permethrin on cellular protein expression was investigated, and gene ontology and pathway function enrichment analyses were performed on the deregulated proteins. Finally, molecular docking simulations of permethrin with the candidate target protein was performed and the functionality of the protein was confirmed through gene knockdown experiments. Our findings demonstrate that exposure to 10-40 µM permethrin for 48 h enhanced cell proliferation and cell cycle progression in MDA-MB-231. We observed deregulated expression in 83 upregulated proteins and 34 downregulated proteins due to permethrin exposure. These deregulated proteins are primarily linked to transmembrane signaling and chemical carcinogenesis. Molecular docking simulations revealed that the overexpressed transmembrane signaling protein, G protein-coupled receptor 39 (GPR39), has the potential to bind to permethrin. Knockdown of GPR39 partially impeded permethrin-induced cellular proliferation and altered the expression of proliferation marker protein PCNA and cell cycle-associated protein cyclin D1 via the ERK1/2 signaling pathway. These findings offer novel evidence for permethrin as an environmental breast cancer risk factor, displaying its potential to impact breast cancer cell proliferation via an estrogen receptor-independent pathway.


Asunto(s)
Proliferación Celular , Receptor alfa de Estrógeno , Insecticidas , Simulación del Acoplamiento Molecular , Permetrina , Receptores Acoplados a Proteínas G , Permetrina/toxicidad , Humanos , Proliferación Celular/efectos de los fármacos , Insecticidas/toxicidad , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neoplasias de la Mama/patología , Femenino , Transducción de Señal/efectos de los fármacos
3.
Ecotoxicol Environ Saf ; 284: 117007, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39260213

RESUMEN

Aedes albopictus, a common mosquito in Zhejiang Province, is a carrier of more than twenty arboviruses. There are dozens or even hundreds of imported cases of dengue fever every year in Zhejiang Province, and there have also been many local outbreaks caused by imported cases of dengue fever. The objectives were to assess the resistance of larvae and adults of several Ae. albopictus strains in Zhejiang Province to commonly used pyrethroid insecticides (beta-cypermethrin, deltamethrin and permethrin), and detect mutations in the sodium channel gene, to further analyse the relationship between phenotypic resistance and the frequency of mutations. The resistance of eight field strains of Ae. albopictus larvae to beta-cypermethrin, deltamethrin and permethrin ranged from 8.17 to 36.06, 12.12-107.3 and 1.55-81.9, respectively, and there was a significant positive correlation of interaction resistance among the three insecticides. The mutation frequencies of I1532T and F1534S in the larvae of Ae. albopictus were 0-6.25 % and 42.19-100.00 %. Moreover, the diagnostic doses of the three pyrethroids for adult Ae. albopictus mosquitoes were 0.2510 g/L, 0.1562 g/L, and 0.9072 g/L. Except for the Zhoushan strain, which was suspected to be resistant to beta-cypermethrin, the other field strains were resistant to the three pyrethroids, and there was a significant positive correlation of cross-resistance among the three insecticides. The mutation frequencies of I1532T and F1534S of adult Ae. albopictus were 0-1.56 % and 62.50-100.00 %. In addition, the LC50 of the larvae and the mortality rate of adult Ae. albopictus after treatment with the three pyrethroids were significantly and positively correlated with the frequency of the F1534S mutation. F1534S mutation occurred earlier than I1532T mutation in both larvae and adult Ae. albopictus. F1534S mutation in the sodium channel gene may be a particular biomolecular detection marker for resistance to pyrethroid insecticides in Ae. albopictus in Zhejiang Province.


Asunto(s)
Aedes , Bioensayo , Resistencia a los Insecticidas , Insecticidas , Larva , Mutación , Nitrilos , Piretrinas , Animales , Aedes/genética , Aedes/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Larva/efectos de los fármacos , Larva/genética , Piretrinas/toxicidad , China , Nitrilos/toxicidad , Permetrina/toxicidad , Permetrina/farmacología , Canales de Sodio/genética , Canales de Sodio/efectos de los fármacos , Femenino , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética
4.
Pestic Biochem Physiol ; 203: 106020, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084808

RESUMEN

Mosquitoes are regularly exposed to adverse effects of insecticides employed in field during vector control campaigns. Its primary goal is to eliminate the vector population; nevertheless, this practise typically ignores the residual impacts and long-term repercussions on the remaining population. Here, the current study analysed how sublethal exposure of insecticides alter the life qualities, genotypic and biochemical characteristics of mosquitoes. The resistance ratio value in Laboratory Resistant (Lab-R) larvae increased 10 times (0.010 mg/l to 0.108 mg/l) compared to Laboratory Susceptible (LabS) larvae. It also revealed that the surviving mosquitoes had 50% reduction in hatchability but had longer larval and pupal periods (15 days and 2 days), respectively. The survival rates decrease in female by 2 days but increase in male by 7 days which is of concern and necessitates additional study. Moreover, major role of monooxygenase was confirmed behind resistance development which was further supported by piperonyl butoxide assay where reduction in Tolerance Ratio (TR50) by 12-fold occurred and gene expression profile also showed high expression level of CYP6P12 gene. In resistant strain, cuticular thickness increased by 1.23 times and alteration at codon 1532 (ATC to TTC) on VGSC gene leads to mutation I1532F. The data gleaned from our work highlights the threat of sublethal insecticides on vector control techniques and offers ample evidence that the larval selection alters adult life qualities, metabolic properties and transgenerational features which contributes to the damage caused by resistance.


Asunto(s)
Aedes , Resistencia a los Insecticidas , Insecticidas , Larva , Permetrina , Animales , Aedes/efectos de los fármacos , Aedes/genética , Permetrina/toxicidad , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Femenino , Larva/efectos de los fármacos , Masculino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
5.
Arch Environ Contam Toxicol ; 86(1): 25-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062179

RESUMEN

Ground applications of adulticides via a specialized truck-mounted sprayer are one of the most common practices for control of flying adult mosquitoes. Aerosols released to drift through a targeted area persist in the air column to contact and kill flying mosquitoes, but may also drift into adjacent areas not targeted by the applications where it may affect nontarget insects such as imperiled butterflies. This study compared the risk of permethrin to adult mosquitoes and adult butterflies to assess the likelihood that the butterflies would be affected following such sprays. Permethrin toxicity values were determined for Aedes aegypti and Culex quinquefasciatus (LD50s of 81.1 and 166.3 ng/g dw, respectively) and then combined with published toxicity data in a species sensitivity distribution for comparison with published permethrin toxicity data for adult butterflies. The sensitivity distributions indicated adult butterflies and mosquitoes are similarly sensitive, meaning relative risk would be a function of exposure. Exposure of adult butterflies and adult mosquitoes to permethrin was measured following their exposure to ULV sprays in an open field. Average permethrin concentrations on adult mosquitoes (912-38,061 ng/g dw) were typically an order of magnitude greater than on adult butterflies (110-11,004 ng/g dw) following each spray, indicating lower risk for butterflies relative to mosquitoes. Despite lower estimated risk, 100% mortality of adult butterflies occurred following some of the sprays. Additional studies could help understand exposure and risk for butterflies in densely vegetated habitats typical near areas treated by ULV sprays.


Asunto(s)
Aedes , Mariposas Diurnas , Culex , Insecticidas , Animales , Permetrina/toxicidad , Insecticidas/toxicidad , Riesgo , Vehículos a Motor , Control de Mosquitos
6.
Ecotoxicol Environ Saf ; 252: 114579, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706527

RESUMEN

Large amounts of insecticides bring selection pressure and then develop insecticide resistance in Aedes albopictus. This study demonstrated for the first time the effect of pyrethroid exposure on the internal microbiota in Ae. albopictus. 36, 48, 57 strains of virgin adult Ae. albopictus were exposed to the pyrethroids deltamethrin (Dme group), ß-cypermethrin (Bcy group), and cis-permethrin (Cper group), respectively, with n-hexane exposure (Hex group) as the controls (n = 36). The internal microbiota community and functions were analyzed based on the metagenomic analysis. The analysis of similarity (ANOSIM) results showed that the Hex/Bcy (p = 0.001), Hex/Cper (p = 0.006), Hex/Dme (p = 0.001) groups were well separated, and the internal microbes of Ae. albopictus vary in the composition and functions depending on the type of pyrethroid insecticide they are applied. Four short chain fatty acid-producing genera, Butyricimonas, Prevotellaceae, Anaerococcus, Pseudorhodobacter were specifically absent in the pyrethroid-exposed mosquitoes. Morganella and Streptomyces were significantly enriched in cis-permethrin-exposed mosquitoes. Wolbachia and Chryseobacterium showed significant enrichment in ß-cypermethrin-exposed mosquitoes. Pseudomonas was significantly abundant in deltamethrin-exposed mosquitoes. The significant proliferation of these bacteria may be closely related to insecticide metabolism. Our study recapitulated a specifically enhanced metabolic networks relevant to the exposure to cis-permethrin and ß-cypermethrin, respectively. Benzaldehyde dehydrogenase (EC 1.2.1.28), key enzyme in aromatic compounds metabolism, was detected enhanced in cis-permethrin and ß-cypermethrin exposed mosquitoes. The internal microbiota metabolism of aromatic compounds may be important influencing factors for pyrethroid resistance. Future work will be needed to elucidate the specific mechanisms by which mosquito microbiota influences host resistance and vector ability.


Asunto(s)
Aedes , Insecticidas , Microbiota , Piretrinas , Animales , Insecticidas/farmacología , Permetrina/toxicidad , Mosquitos Vectores , Piretrinas/farmacología , Resistencia a los Insecticidas/genética
7.
Ecotoxicology ; 32(5): 646-655, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37300635

RESUMEN

This study investigated changes in hematological and antioxidant parameters of carp exposed to two different doses of synthetic pyrethroid permethrin (control, vehicle, 10 ppm, and 20 ppm) for two different periods (4 days and 21 days). Hematological analyses were then performed on a veterinary Ms4 (Melet Schloesing, France) blood counter using commercially available kits (Cat. No. WD1153). Buege and Aust for MDA, Luck for CAT, McCord and Frivovich for SOD, Lawrence and Burk methods for GSH-Px were used to determine antioxidant parameters. Decreases in RBC count, Hb amount, Hct value, granulocyte ratios, and increases in total WBC and lymphocyte ratios were statistically significant in both dose groups treated with permethrin compared to the control group (p < 0.05). However, there was no statistically significant difference in monocyte ratios (p > 0.05). Overall, permethrin exposure caused an increase in MDA levels in the liver and gill tissues of carp in both dose and duration groups compared to the control group. Also, no statistically significant difference between the two dose groups in the liver tissue was observed in terms of duration (p > 0.05). Nonetheless, the increase in MDA levels in PERM10 and PERM20 dose groups in the gill tissues over 21 days was statistically significant (p < 0.05). Furthermore, permethrin exposure increased CAT, SOD, and GSH-Px enzyme activities in the gill tissue, while impacting in the opposite direction the liver tissue. Finally, regarding MDA, CAT, SOD, and GSH-Px levels, the control, and control acetone dose groups of all experimental groups were observed to be similar (p > 0.05). As a result, permethrin produced a toxic effect on Cyprinus carpio, triggering changes in blood parameters and inducing the antioxidant enzyme system.


Asunto(s)
Carpas , Piretrinas , Animales , Antioxidantes/metabolismo , Piretrinas/toxicidad , Permetrina/toxicidad , Carpas/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
8.
Pestic Biochem Physiol ; 189: 105296, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549822

RESUMEN

Microtransplantation of neurolemma tissue fragments from mammalian brain into the plasma membrane of Xenopus laevis oocytes is a tool to examine the endogenous structure and function of various ion channels and receptors associated with the central nervous system. Microtransplanted neurolemma can originate from a variety of sources, contain ion channels and receptors in their native configuration, and are applicable to examine diseases associated with different channelopathies. Here, we examined potential age-related differences in voltage-sensitive sodium channel (VSSC) expression and concentration-dependent responses to pyrethroids following the microtransplantation of juvenile or adult rat brain tissue (neurolemma) into X. laevis oocytes. Using automated western blotting, adult neurolemma exhibited a 2.5-fold higher level of expression of VSSCs compared with juvenile neurolemma. The predominant isoform expressed in both tissues was Nav1.2. However, adult neurolemma expressed 2.8-fold more Nav1.2 than juvenile and expressed Nav1.6 at a significantly higher level (2.2-fold). Microtransplanted neurolemma elicited ion currents across the plasma membrane of oocytes following membrane depolarization using two electrode voltage clamp electrophysiology. A portion of this current was sensitive to tetrodotoxin (TTX) and this TTX-sensitive current was abolished when external sodium ion was replaced by choline ion, functionally demonstrating the presence of native VSSC. Increasing concentrations of permethrin or deltamethrin exhibited concentration-dependent increases in inward TTX-sensitive current in the presence of niflumic acid from both adult and juvenile tissues following a pulsed depolarization of the oocyte plasma membrane. Concentration-dependent response curves illustrate that VSSCs associated with juvenile neurolemma were up to 2.5-fold more sensitive to deltamethrin than VSSCs in adult neurolemma. In contrast, VSSCs from juvenile neurolemma were less sensitive to permethrin than adult VSSCs at lower concentrations (0.6-0.8-fold) but were more sensitive at higher concentrations (up to 2.4-fold). Nonetheless, because the expected concentrations in human brains following realistic exposure levels are approximately 21- (deltamethrin) to 333- (permethrin) times below the threshold concentration for response in rat neurolemma-injected oocytes, age-related differences, if any, are not likely to be toxicologically relevant.


Asunto(s)
Insecticidas , Piretrinas , Ratas , Animales , Humanos , Insecticidas/toxicidad , Insecticidas/química , Permetrina/toxicidad , Canales de Sodio/metabolismo , Piretrinas/toxicidad , Piretrinas/química , Canales Iónicos/metabolismo , Oocitos/metabolismo , Encéfalo/metabolismo , Xenopus laevis/metabolismo , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047231

RESUMEN

The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 µM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.


Asunto(s)
Células de la Médula Ósea , Metilación de ADN , Expresión Génica , Insecticidas , Malatión , Organofosfatos , Permetrina , Expresión Génica/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Permetrina/toxicidad , Malatión/toxicidad , Insecticidas/toxicidad , Organofosfatos/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Humanos , Masculino , Adulto Joven , Células Cultivadas
10.
Crit Rev Toxicol ; 52(1): 1-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275035

RESUMEN

The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.


Asunto(s)
Adenoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Adenoma/metabolismo , Animales , Femenino , Humanos , Hígado , Neoplasias Hepáticas/inducido químicamente , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , PPAR alfa/metabolismo , PPAR alfa/farmacología , Permetrina/toxicidad , Ratas , Ratas Wistar
11.
J Biochem Mol Toxicol ; 36(10): e23172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35861702

RESUMEN

Permethrin (PER) is a pyrethroid pesticide that is extensively used as an insecticide in world because of its high activity and its low mammalian toxicity. The current study was conducted to investigate the protective action of Fumaria officinalis against PER-induced liver injury in male rats. However, HPLC-DAD showed the richness of 6 components in F. officinalis (F) including quercetin, ferulic acid, and naringenin which were the most abundant. Total polyphenols, total flavonoids, and condensed tannins were studied by phytochemical screening. In vitro, antioxidant properties showed that F. officinalis exhibited the highest DPPH radical, FRAP, and H2 O2 tests and total antioxidant capacity. Wistar rats were divided into four groups: negative control group (C), positive control group (F) (200 mg F. officinalis/kg BW), PER group (34.05 mg permethrin/kg BW), and PER + F group (34.05 mg permethrin/kg BW and 200 mg F. officinalis/kg BW). Oral administration of PER led to promote a decrease of body weight and Ca2+ -ATPases and Mg2+ -ATPases activities and an increase of plasma C-reactive protein level, transaminases, and hepatic ϒ-GT activities as well as hepatic and mitochondrial oxidative stress. An increase in plasma lactate-to pyruvate ratio and a reduction in complexes enzymes I, III, and IV activities were also observed. In addition, histoarchitecture of liver in PER-treated rats showed apoptosis and necrosis as confirmed by DNA fragmentation. F. officinalis significantly exerted hepatoprotective effect by modulating hepatic alteration and mitochondrial dysfunction as well as genotoxicity. This effect could be attributed to phenolics compounds such as polyphenols, condensed tannins, and flavonoids.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Fumaria , Insecticidas , Permetrina , Proantocianidinas , Adenosina Trifosfatasas/metabolismo , Animales , Antioxidantes/metabolismo , Apoptosis , Proteína C-Reactiva/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Daño del ADN , Flavonoides/farmacología , Fumaria/química , Insecticidas/toxicidad , Lactatos/metabolismo , Hígado/metabolismo , Masculino , Mamíferos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Permetrina/toxicidad , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Polifenoles/farmacología , Proantocianidinas/farmacología , Piruvatos/farmacología , Quercetina/farmacología , Ratas , Ratas Wistar , Transaminasas
12.
PLoS Genet ; 15(2): e1007975, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30763314

RESUMEN

Chemicals that are highly prevalent in our environment, such as phthalates and pesticides, have been linked to problems associated with reproductive health. However, rapid assessment of their impact on reproductive health and understanding how they cause such deleterious effects, remain challenging due to their fast-growing numbers and the limitations of various current toxicity assessment model systems. Here, we performed a high-throughput screen in C. elegans to identify chemicals inducing aneuploidy as a result of impaired germline function. We screened 46 chemicals that are widely present in our environment, but for which effects in the germline remain poorly understood. These included pesticides, phthalates, and chemicals used in hydraulic fracturing and crude oil processing. Of the 46 chemicals tested, 41% exhibited levels of aneuploidy higher than those detected for bisphenol A (BPA), an endocrine disruptor shown to affect meiosis, at concentrations correlating well with mammalian reproductive endpoints. We further examined three candidates eliciting aneuploidy: dibutyl phthalate (DBP), a likely endocrine disruptor and frequently used plasticizer, and the pesticides 2-(thiocyanomethylthio) benzothiazole (TCMTB) and permethrin. Exposure to these chemicals resulted in increased embryonic lethality, elevated DNA double-strand break (DSB) formation, activation of p53/CEP-1-dependent germ cell apoptosis, chromosomal abnormalities in oocytes at diakinesis, impaired chromosome segregation during early embryogenesis, and germline-specific alterations in gene expression. This study indicates that this high-throughput screening system is highly reliable for the identification of environmental chemicals inducing aneuploidy, and provides new insights into the impact of exposure to three widely used chemicals on meiosis and germline function.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Contaminantes Ambientales/toxicidad , Células Germinativas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Aneugénicos/toxicidad , Aneuploidia , Animales , Animales Modificados Genéticamente , Benzotiazoles/toxicidad , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Roturas del ADN de Doble Cadena , Dibutil Ftalato/toxicidad , Exposición a Riesgos Ambientales , Insecticidas/toxicidad , Meiosis/efectos de los fármacos , Permetrina/toxicidad , Plastificantes/toxicidad , Tiocianatos/toxicidad
13.
Int J Mol Sci ; 23(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36012388

RESUMEN

New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila-a non-target in vivo eukaryotic model organism-in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies.


Asunto(s)
Cobre , Permetrina , Animales , Cobre/toxicidad , Drosophila , Drosophila melanogaster , Humanos , Hidróxidos , Inositol/análogos & derivados , Mamíferos , Compuestos Organotiofosforados , Permetrina/toxicidad , Fosforamidas
14.
J Sci Food Agric ; 102(10): 4079-4085, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34997580

RESUMEN

BACKGROUND: Exposure to environmental chemicals has been linked with endothelial dysfunction, which is a leading cause of human diseases, including atherosclerosis. Permethrin is a frequently used synthetic pyrethroid insecticide for which longer exposure may cause toxicity in several types of tissues and the development of metabolic diseases, including atherosclerosis, obesity and diabetes. The present study was designed to evaluate the potential adverse effect of permethrin on the function and activity of human endothelial cells. RESULTS: Permethrin was found to repress migration and tube formation by human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, as well as to significantly repress their viability after 24 and 48 h of treatment. Furthermore, increased reactive oxygen species (ROS) production was observed in cells treated with permethrin, and the permethrin-induced repression of cell viability was ROS-dependent. Permethrin did not influence apoptosis, necrosis or mitochondrial membrane potential in HUVECs. CONCLUSION: The results of the present study suggest that permethrin represses angiogenesis and viability through ROS-dependent and cell growth-, apoptosis- and necrosis-independent means. © 2022 Society of Chemical Industry.


Asunto(s)
Aterosclerosis , Permetrina , Apoptosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Necrosis , Permetrina/toxicidad , Especies Reactivas de Oxígeno/metabolismo
15.
J Phys Chem A ; 125(35): 7705-7715, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459596

RESUMEN

Pyrethroid, a pesticide widely used worldwide, could mimic, block, or synergize the effects of endogenous hormones in humans or mammals after entering into the atmosphere and after being sprayed and applied in large quantities. This research aims to study the mechanism, kinetics, and eco-toxicity evaluation of the ozonolysis of permethrin (PER)-one of the typical pyrethroid (type I) pesticides. Existing experimental studies only predicted that ozonolysis of PER could generate a cycloperoxy analogue of PER (IM13-1-11), and the reaction mechanism has not yet been completed. To make up for the lack of experimental results, the 13 primary reaction pathways of PER and ozone, as well as the subsequent reactions of Criegee intermediates with small molecules such as NOx, COx, SO2, and O2, have been studied to propose new reaction paths by quantum chemical calculations in this work. We calculated the total reaction rate constant of PER and ozone at 298 K and 1 atm based on the calculated thermodynamic data and the transition state theory (TST), which was compared with the experimental values to prove the reliability of our results. Based on the quantitative structure and activity relationship, we predicted the acute and chronic toxicity of PER and its products of ozonolysis to three representative organisms-fish, daphnia, and green algae to avoid animal experiments. The results show that ozonolysis products of PER are still extremely harmful to the environment and should be taken seriously, although the products have less toxicity than PER.


Asunto(s)
Atmósfera/química , Ozono/química , Permetrina/química , Permetrina/toxicidad , Humanos , Cinética , Reproducibilidad de los Resultados , Termodinámica
16.
Environ Res ; 192: 110281, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33031810

RESUMEN

Human biomonitoring data provide evidence to exposure of environmental chemicals. Physiologically based pharmacokinetic (PBPK) modelling together with an adequate exposure scenario allows to transpose measured concentrations of chemicals or their metabolites into exposure levels, as daily intakes. In France, high levels of urinary pyrethroids metabolites have been measured in populations. Our work aims at estimating the exposure of the French ENNS cohort to mixtures of four pyrethroids (deltamethrin, permethrin, cypermethrin, and cyfluthrin) from the urinary concentrations of five pyrethroids' metabolites commonly measured in biomonitoring studies. We developed a modelling approach based on a global toxicokinetic model that accounts for the cumulative exposure to pyrethroids as some of the metabolites can be shared by several parent compounds and for human inter-individual variability in metabolism. The median of the individual daily intakes was estimated to 8.1 ng/kg bw/day for permethrin, 17.7 ng/kg bw/day for cypermethrin, 20.4 ng/kg bw/day for cyfluthrin and 34.3 ng/kg bw/day for deltamethrin leading to similar weights for the pair permethrin and cypermethrin (36%), cyfluthrin (31%) and deltamethrin (33%) to the cumulative exposure. Accounting for human variability enabled to explain some of the variations in the metabolites' levels within the cohort. The cumulative exposure was then weighted by their toxicities towards three neurotoxic effects to calculate margins of exposure (MOE). Low MOE values were always associated with high measured concentrations of metabolites in urine and the lowest MOEs were observed for the autonomic division. No risks associated with reconstructed mixtures of pyrethroids were expected for the ENNS cohort. Our approach is an asset to analyse the biomarkers of exposure to pyrethroids simultaneously and could be easily adapted to any local or national specificities in pyrethroids' exposure or populations.


Asunto(s)
Insecticidas , Piretrinas , Monitoreo Biológico , Francia , Humanos , Permetrina/toxicidad
17.
Ecotoxicol Environ Saf ; 222: 112461, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224971

RESUMEN

This study characterized the impact of post-weaning high-fat diet (HFD) and/or permethrin (PER) treatment on heart dysfunction and fibrosis, as well as atherogenic risk, in rats by investigating interactions between HFD and PER. Our results revealed that HFD and/or PER induced remarkable cardiotoxicity by promoting cardiac injury, biomarker leakage into the plasma and altering heart rate and electrocardiogram pattern, as well as plasma ion levels. HFD and/or PER increased plasma total cholesterol, triacylglycerols, and low-density lipoprotein (LDL) cholesterol levels but significantly reduced high-density lipoprotein (HDL) cholesterol. Cardiac content of peroxidation malonaldehyde, protein carbonyls, and reactive oxygen species were remarkably elevated, while glutathione levels and superoxide dismutase, catalase and glutathione peroxidase activities were inhibited in animals receiving a HFD and/or PER. Furthermore, cardiac DNA fragmentation and upregulation of Bax and caspase-3 gene expression supported the ability of HFD and/or PER to induce apoptosis and inflammation in rat hearts. High cardiac TGF-ß1 expression explained the profibrotic effects of PER either with the standard diet or HFD. Masson's Trichrome staining clearly demonstrated that HFD and PER could cause cardiac fibrosis. Additionally, increased oxidized LDL and the presence of several lipid droplets in arterial tissues highlighted the atherogenic effects of HFD and/or PER in rats. Such PER-induced cardiac and vascular dysfunctions were aggravated by and associated with a HFD, implying that obese individuals may be more vulnerable to PER exposure. Collectively, post-weaning exposure to HFD and/or PER may promote heart failure and fibrosis, demonstrating the pleiotropic effects of exposure to environmental factors early in life.


Asunto(s)
Dieta Alta en Grasa , Permetrina , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad , Estrés Oxidativo , Permetrina/toxicidad , Ratas , Ratas Wistar
18.
Ecotoxicol Environ Saf ; 207: 111269, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911180

RESUMEN

This study is the first to examine the possible mechanism by which long-term exposure to permethrin (PER) can promote arterial retention of proatherogenic lipid and lipoproteins and related vascular dysfunction in rats. Experimental animals were administered two doses of oral PER, PER-1 (2.5 mg/kg/bw) and PER-2 (5 mg/kg/bw), for 90 consecutive days. The results indicated that both PER-1 and PER-2 increased plasmatic and aortic total cholesterol, low-density lipoprotein cholesterol (LDL-C), apo B-100, and oxidized LDL together with arterial scavenger LDL receptors (CD36) but markedly reduced plasmatic and hepatic high-density lipoprotein cholesterol and native LDL receptors in aortic and hepatic tissue. The levels of malondialdehyde, protein carbonyl, and reactive oxygen species were significantly higher, and glutathione content as well as catalase, superoxide dismutase, and glutathione peroxidase activities were suppressed in the aorta of the PER-1 and PER-2 groups. The arterial oxidative damage possibly caused by PER was clearly demonstrated by hematoxylin and eosin histological analysis. Moreover, PER treatment aggravated the inflammatory responses through enhancement of the production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-2, and interleukin-6) in both plasma and aorta. Furthermore, PER-1 and PER-2 potentiated the dysregulation of the aortic extracellular matrix (ECM) content by increasing mRNA activation of collagens I and III. The abundant histological collagen deposition observed in the media and adventitia of intoxicated rats using Masson's trichrome staining corroborates the observed change in ECM. These data showed that oxidative stress related to PER exposure increases the arterial accumulation of lipoprotein biomarkers, likely by actions on both LDL and CD36 receptors, together with the disruption of the aortic ECM.


Asunto(s)
Colágeno/genética , Insecticidas/toxicidad , Lipoproteínas LDL/sangre , Estrés Oxidativo/fisiología , Permetrina/toxicidad , Animales , Aorta/metabolismo , Aorta/patología , Apolipoproteína B-100/metabolismo , Antígenos CD36/metabolismo , Inflamación/metabolismo , Lípidos/sangre , Masculino , Malondialdehído/metabolismo , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores de LDL/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Environ Toxicol ; 36(7): 1447-1456, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33844419

RESUMEN

Permethrin is a commonly used, highly effective pesticide in poultry agriculture, and has recently been trialed in conservation efforts to protect Galápagos finch hatchlings from an invasive ectoparasite. Although permethrin is considered safe for adults, pesticides can have health consequences when animals are exposed during early life stages. The few studies that have examined permethrin's effects in embryonic chicks and rats have shown hydrocephaly, anencephaly, reduced cellular energy conversion, and disruption of developing heart muscle. To test whether trans-ovo exposure of permethrin affects early development in birds, we exposed Japanese quail (Coturnix japonica) eggs to cotton treated with 1% permethrin that was incorporated into nests in two amounts (0.2, 0.8 g), each with a paired untreated cotton control group. When measured on incubation Day 15, we found permethrin-treated developing birds were smaller and showed signs of microcephaly, although mortality rates were the same. Despite no difference in heart mass, ventricular tissue was less compact, cardiac arteries were reduced and heart rates were slower in permethrin-treated birds. Differences in heart development were also observed at 5 days of incubation, indicating that abnormalities are present from early in cardiac development. Future studies are needed to examine permethrin's effects on developmental pathways and to determine if these effects persist after hatching to affect offspring health. This study provides evidence that permethrin can cross the eggshell to cause non-lethal but adverse effects on embryonic development, and studies should look beyond hatching when monitoring the efficacy of permethrin on wild bird populations.


Asunto(s)
Coturnix , Codorniz , Animales , Encéfalo , Corazón , Permetrina/toxicidad , Ratas
20.
Biomarkers ; 25(1): 94-99, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31762333

RESUMEN

Background: Permethrin is a type of widely used pyrethroid pesticide. Although acute toxicity of permethrin has been well-characterised, the non-acute toxicity of permethrin upon long-term exposure at low dose has been seldom studied yet. The current study investigates the time-course change of the metabolomic profiles of urine following the low level long-term exposure of permethrin and identified biomarkers of the chronic toxicity of permethrin.Methods: Male Wistar rats were administrated orally with permethrin (75 mg/kg body weight/day, 1/20 LD50) daily for consecutive 90 days. The urine samples from day 30, day 60, and day 90 after the first dosing were collected and analysed by 1H NMR spectrometry. Serum biochemical analysis was also carried out.Results: Permethrin caused significant changes in the urine metabolites such as taurine, creatinine, acetate, lactate, dimethylamine, dimethylglycine, and trimethylamine-N-oxide. These biological markers indicated prominent kidney and liver toxicity induced by permethrin. However, there was no change in serum biochemical parameters for the toxicity, indicating that metabolomic approach was much more sensitive in detecting the chronic toxicity.Conclusion: The time-course alteration of metabolomic profiles of the urine based on 1H NMR reflects the progressive development of the chronic toxicity with the long-term low-level exposure of permethrin.


Asunto(s)
Insecticidas/toxicidad , Metaboloma/efectos de los fármacos , Permetrina/toxicidad , Animales , Biomarcadores/orina , Masculino , Metabolómica , Espectroscopía de Protones por Resonancia Magnética , Ratas Wistar , Medición de Riesgo , Factores de Tiempo , Pruebas de Toxicidad Crónica , Urinálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA