Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Chem Biol ; 17(2): 138-145, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33077978

RESUMEN

The plant cuticle is the final barrier for volatile organic compounds (VOCs) to cross for release to the atmosphere, yet its role in the emission process is poorly understood. Here, using a combination of reverse-genetic and chemical approaches, we demonstrate that the cuticle imposes substantial resistance to VOC mass transfer, acting as a sink/concentrator for VOCs and hence protecting cells from the potentially toxic internal accumulation of these hydrophobic compounds. Reduction in cuticle thickness has differential effects on individual VOCs depending on their volatility, and leads to their internal cellular redistribution, a shift in mass transfer resistance sources and altered VOC synthesis. These results reveal that the cuticle is not simply a passive diffusion barrier for VOCs to cross, but plays the aforementioned complex roles in the emission process as an integral member of the overall VOC network.


Asunto(s)
Flores/química , Petunia/química , Compuestos Orgánicos Volátiles/química , Regulación hacia Abajo , Genes de Plantas/genética , Fenilalanina/química , Interferencia de ARN , Solventes
2.
J Biol Chem ; 295(13): 4181-4193, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32071083

RESUMEN

Strigolactones (SLs) are terpenoid-derived plant hormones that regulate various developmental processes, particularly shoot branching, root development, and leaf senescence. The SL receptor has an unusual mode of action. Upon binding SL, it hydrolyzes the hormone, and then covalently binds one of the hydrolytic products. These initial events enable the SL receptor DAD2 (in petunia) to interact with the F-box protein PhMAX2A of the Skp-Cullin-F-box (SCF) complex and/or a repressor of SL signaling, PhD53A. However, it remains unclear how binding and hydrolysis structurally alters the SL receptor to enable its engagement with signaling partners. Here, we used mutagenesis to alter DAD2 and affect SL hydrolysis or DAD2's ability to interact with its signaling partners. We identified three DAD2 variants whose hydrolytic activity had been separated from the receptor's interactions with PhMAX2A or PhD53A. Two variants, DAD2N242I and DAD2F135A, having substitutions in the core α/ß hydrolase-fold domain and the hairpin, exhibited hormone-independent interactions with PhMAX2A and PhD53A, respectively. Conversely, the DAD2D166A variant could not interact with PhMAX2A in the presence of SL, but its interaction with PhD53A remained unaffected. Structural analyses of DAD2N242I and DAD2D166A revealed only small differences compared with the structure of the WT receptor. Results of molecular dynamics simulations of the DAD2N242I structure suggested that increased flexibility is a likely cause for its SL-independent interaction with PhMAX2A. Our results suggest that PhMAX2A and PhD53A have distinct binding sites on the SL receptor and that its flexibility is a major determinant of its interactions with these two downstream regulators.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/química , Lactonas/química , Petunia/química , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/química , Proteínas F-Box/química , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/genética , Hidrolasas/química , Hidrolasas/genética , Petunia/genética , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/genética , Unión Proteica/genética , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Transducción de Señal/genética
3.
Biochem J ; 476(12): 1843-1856, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31186286

RESUMEN

Strigolactones (SLs) are multifunctional plant hormones regulating essential physiological processes affecting growth and development. In vascular plants, SLs are recognized by α/ß hydrolase-fold proteins from the D14/DAD2 (Dwarf14/Decreased Apical Dominance 2) family in the initial step of the signaling pathway. We have previously discovered that N-phenylanthranilic acid derivatives (e.g. tolfenamic acid) are potent antagonists of SL receptors, prompting us to design quinazolinone and quinazolinedione derivatives (QADs and QADDs, respectively) as second-generation antagonists. Initial in silico docking studies suggested that these compounds would bind to DAD2, the petunia SL receptor, with higher affinity than the first-generation compounds. However, only one of the QADs/QADDs tested in in vitro assays acted as a competitive antagonist of SL receptors, with reduced affinity and potency compared with its N-phenylanthranilic acid 'parent'. X-ray crystal structure analysis revealed that the binding mode of the active QADD inside DAD2's cavity was not that predicted in silico, highlighting a novel inhibition mechanism for SL receptors. Despite a ∼10-fold difference in potency in vitro, the QADD and tolfenamic acid had comparable activity in planta, suggesting that the QADD compensates for lower potency with increased bioavailability. Altogether, our results establish this QADD as a novel lead compound towards the development of potent and bioavailable antagonists of SL receptors.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Petunia , Quinazolinonas , Receptores de Superficie Celular , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Petunia/química , Petunia/genética , Petunia/metabolismo , Unión Proteica , Quinazolinonas/síntesis química , Quinazolinonas/química , Quinazolinonas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo
4.
J Biol Chem ; 293(17): 6530-6543, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29523686

RESUMEN

The strigolactone (SL) family of plant hormones regulates a broad range of physiological processes affecting plant growth and development and also plays essential roles in controlling interactions with parasitic weeds and symbiotic fungi. Recent progress elucidating details of SL biosynthesis, signaling, and transport offers many opportunities for discovering new plant-growth regulators via chemical interference. Here, using high-throughput screening and downstream biochemical assays, we identified N-phenylanthranilic acid derivatives as potent inhibitors of the SL receptors from petunia (DAD2), rice (OsD14), and Arabidopsis (AtD14). Crystal structures of DAD2 and OsD14 in complex with inhibitors further provided detailed insights into the inhibition mechanism, and in silico modeling of 19 other plant strigolactone receptors suggested that these compounds are active across a large range of plant species. Altogether, these results provide chemical tools for investigating SL signaling and further define a framework for structure-based approaches to design and validate optimized inhibitors of SL receptors for specific plant targets.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Modelos Moleculares , Oryza , Petunia , Receptores de Superficie Celular , ortoaminobenzoatos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Oryza/química , Oryza/genética , Oryza/metabolismo , Petunia/química , Petunia/genética , Petunia/metabolismo , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Relación Estructura-Actividad , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
5.
J Sci Food Agric ; 99(7): 3644-3652, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30637758

RESUMEN

BACKGROUND: Edible flowers have both great nutritional value and sensory appeal; however, their shelf-life is limited to a few days because they are highly perishable. RESULTS: The impact of postharvest ethanol (ET) treatment and modified atmosphere packaging (MAP) on the quality and storage of edible flowers collected from short-term salt-stressed plants was tested. Hydroponically grown petunia (Petunia x hybrita L.) plants were subjected to salinity (0-50-100 mmol L-1 NaCl) and harvested flowers were stored for up to 14 days in MAP and/ET vapours. The salinity of 100 mmol L-1 NaCl decreased plant biomass and negatively affected physiological processes as a result of stomata closure. Flower polyphenols, antioxidants, carotenoids and anthocyanins increased with 50 mmol L-1 of NaCl, indicating a higher nutritional value. Short-term exposure of petunia to salinity decreased the flower N, K and Ca concentrations. During storage for 7 days, salinity lead to deteriorated flowers that showed browning as a result of tissue breakdown, whereas CO2 production and weight loss were unaffected by salinity. After 14 days of storage, salinity decreased flower respiration and increased weight loss, whereas ET application completely destroyed the flowers. Carotenoids and anthocyanins were decreased by a combination of salinity and ET. Petunia flowers revealed the induction of both non-enzymatic (i.e. proline content) and enzymatic (catalase) mechanisms to overcome the stress caused by salinity at harvest stage and/or ethanol at storage. CONCLUSION: The results of the present study demonstrate that a short-stress salinity of 50 mmol L-1 NaCl can be used for petunia growth and also that flowers of nutritional value can be stored for up to 7 days, whereas ET application failed to preserve petunia flowers. © 2019 Society of Chemical Industry.


Asunto(s)
Flores/química , Flores/efectos de los fármacos , Conservación de Alimentos/métodos , Petunia/crecimiento & desarrollo , Antocianinas/análisis , Antocianinas/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Carotenoides/análisis , Carotenoides/metabolismo , Etanol/farmacología , Flores/crecimiento & desarrollo , Flores/metabolismo , Embalaje de Alimentos , Petunia/química , Petunia/efectos de los fármacos , Petunia/metabolismo , Cloruro de Sodio/metabolismo
6.
Arch Biochem Biophys ; 623-624: 31-41, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28522117

RESUMEN

1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a non heme iron(II) containing enzyme that catalyzes the final step of the ethylene biosynthesis in plants. The iron(II) ion is bound in a facial triad composed of two histidines and one aspartate (H177, D179 and H234). Several active site variants were generated to provide alternate binding motifs and the enzymes were reconstituted with copper(II). Continuous wave (cw) and pulsed Electron Paramagnetic Resonance (EPR) spectroscopies as well as Density Functional Theory (DFT) calculations were performed and models for the copper(II) binding sites were deduced. In all investigated enzymes, the copper ion is equatorially coordinated by the two histidine residues (H177 and H234) and probably two water molecules. The copper-containing enzymes are inactive, even when hydrogen peroxide is used in peroxide shunt approach. EPR experiments and DFT calculations were undertaken to investigate substrate's (ACC) binding on the copper ion and the results were used to rationalize the lack of copper-mediated activity.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Cobre/metabolismo , Petunia/enzimología , Aminoácido Oxidorreductasas/química , Sitios de Unión , Dominio Catalítico , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Petunia/química , Petunia/metabolismo , Conformación Proteica , Especificidad por Sustrato
7.
Nat Genet ; 39(7): 901-5, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17589508

RESUMEN

It is commonly thought that deep phylogenetic conservation of plant microRNAs (miRNAs) and their targets indicates conserved regulatory functions. We show that the blind (bl) mutant of Petunia hybrida and the fistulata (fis) mutant of Antirrhinum majus, which have similar homeotic phenotypes, are recessive alleles of two homologous miRNA-encoding genes. The BL and FIS genes control the spatial restriction of homeotic class C genes to the inner floral whorls, but their ubiquitous early floral expression patterns are in contradiction with a potential role in patterning C gene expression. We provide genetic evidence for the unexpected function of the MIRFIS and MIRBL genes in the center of the flower and propose a dynamic mechanism underlying their regulatory role. Notably, Arabidopsis thaliana, a more distantly related species, also contains this miRNA module but does not seem to use it to confine early C gene expression to the center of the flower.


Asunto(s)
Antirrhinum/genética , Secuencia Conservada , Flores/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes Homeobox/fisiología , MicroARNs/fisiología , Petunia/genética , Antirrhinum/química , Tipificación del Cuerpo/fisiología , MicroARNs/química , Datos de Secuencia Molecular , Petunia/química
8.
Plant J ; 67(5): 917-28, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21585571

RESUMEN

Fragrance production in petunia flowers is highly regulated. Two transcription factors, ODORANT1 (ODO1) and EMISSION OF BENZENOIDS II (EOBII) have recently been identified as regulators of the volatile benzenoid/phenylpropanoid pathway in petals. Unlike the non-fragrant Petunia hybrida cultivar R27, the fragrant cultivar Mitchell highly expresses ODO1. Using stable reporter lines, we identified the 1.2-kbp ODO1 promoter from Mitchell that is sufficient for tissue-specific, developmental and rhythmic expression. This promoter fragment can be activated in non-fragrant R27 petals, indicating that the set of trans-acting factors driving ODO1 expression is conserved in these two petunias. Conversely, the 1.2-kbp ODO1 promoter of R27 is much less active in Mitchell petals. Transient transformation of 5' deletion and chimeric Mitchell and R27 ODO1 promoter reporter constructs in petunia petals identified an enhancer region, which is specific for the fragrant Mitchell cultivar and contains a putative MYB binding site (MBS). Mutations in the MBS of the Mitchell promoter decreased overall promoter activity by 50%, highlighting the importance of the enhancer region. We show that EOBII binds and activates the ODO1 promoter via this MBS, establishing a molecular link between these two regulators of floral fragrance biosynthesis in petunia.


Asunto(s)
Derivados del Benceno/metabolismo , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/genética , Flores/química , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Glucuronidasa , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Petunia/química , Petunia/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusión , Alineación de Secuencia , Nicotiana/genética , Factores de Transcripción/genética , Activación Transcripcional
9.
Plant J ; 68(1): 11-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21623977

RESUMEN

Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida.


Asunto(s)
Petunia/genética , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Transcriptoma , Secuencia de Bases , Secuencia de Consenso , Regulación hacia Abajo/genética , Flores/citología , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Petunia/química , Petunia/citología , Petunia/fisiología , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Proantocianidinas/análisis , ARN de Planta/genética , Plantones/citología , Plantones/genética , Plantones/fisiología , Semillas/química , Semillas/citología , Semillas/genética , Semillas/fisiología , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
10.
J Exp Bot ; 63(13): 4821-33, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22771854

RESUMEN

Floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is a complex and coordinate cellular process executed by petal limb cells of a Petunia×hybrida cv. 'Mitchell Diploid' (MD) plant. In MD flowers, the majority of benzenoid volatile compounds are derived from a core phenylpropanoid pathway intermediate by a coenzyme A (CoA) dependent, ß-oxidative scheme. Metabolic flux analysis, reverse genetics, and biochemical characterizations of key enzymes in this pathway have supported this putative concept. However, the theoretical first enzymatic reaction, which leads to the production of cinnamoyl-CoA, has only been physically demonstrated in a select number of bacteria like Streptomyces maritimus through mutagenesis and recombinant protein production. A transcript has been cloned and characterized from MD flowers that shares high homology with an Arabidopsis thaliana transcript ACYL-ACTIVATING ENZYME11 (AtAAE11) and the S. maritimus ACYL-COA:LIGASE (SmEncH). In MD, the PhAAE transcript accumulates in a very similar manner as bona fide FVBP network genes, i.e. high levels in an open flower petal and ethylene regulated. In planta, PhAAE is localized to the peroxisome. Upon reduction of PhAAE transcript through a stable RNAi approach, transgenic flowers emitted a reduced level of all benzenoid volatile compounds. Together, the data suggest that PhAAE may be responsible for the activation of t-cinnamic acid, which would be required for floral volatile benzenoid production in MD.


Asunto(s)
Derivados del Benceno/metabolismo , Flores/enzimología , Peroxisomas/enzimología , Petunia/enzimología , Proteínas de Plantas/metabolismo , Propanoles/metabolismo , Secuencia de Aminoácidos , ADN de Plantas/química , ADN de Plantas/genética , Flores/química , Flores/genética , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Microscopía Confocal , Datos de Secuencia Molecular , Petunia/química , Petunia/genética , Petunia/ultraestructura , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/ultraestructura , Tallos de la Planta/química , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Tallos de la Planta/ultraestructura , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , Proteínas Recombinantes , Alineación de Secuencia
11.
J Exp Bot ; 62(3): 1133-43, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21068208

RESUMEN

In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation of FVBP compounds. It was hypothesized that multiple transcription factors are involved in the precise regulation of all necessary genes, resulting in the specific volatile signature of MD flowers. After acquiring all available petunia transcript sequences with homology to Arabidopsis thaliana R2R3-MYB transcription factors, PhMYB4 (named for its close identity to AtMYB4) was identified, cloned, and characterized. PhMYB4 transcripts accumulate to relatively high levels in floral tissues at anthesis and throughout open flower stages, which coincides with the spatial and developmental distribution of FVBP production and emission. Upon RNAi suppression of PhMYB4 (ir-PhMYB4) both petunia cinnamate-4-hydroxylase (PhC4H1 and PhC4H2) gene transcript levels were significantly increased. In addition, ir-PhMYB4 plants emit higher levels of FVBP compounds derived from p-coumaric acid (isoeugenol and eugenol) compared with MD. Together, these results indicate that PhMYB4 functions in the repression of C4H transcription, indirectly controlling the balance of FVBP production in petunia floral tissue (i.e. fine-tunes).


Asunto(s)
Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Secuencia de Aminoácidos , Eugenol/análogos & derivados , Eugenol/metabolismo , Flores/química , Flores/genética , Flores/crecimiento & desarrollo , Datos de Secuencia Molecular , Petunia/química , Petunia/genética , Petunia/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
12.
Protoplasma ; 258(3): 573-586, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33230626

RESUMEN

S-RNAse-based self-incompatibility (SI) in petunia (Petunia hybrida L.) is a self-/non-self-recognition system underlying the pistil rejection of self-pollen. Using different methods, including a TUNEL assay, we have recently shown that programmed cell death (PCD) is a factor of the SI in petunia. Here, we show that the growth of self-incompatible pollen tubes in the style tissues during 4 h after pollination is accompanied by five-sixfold increase in a caspase-like protease (CLP) activity. Exogenous cytokinin (CK) inhibits the pollen tube growth and stimulates the CLP activity in compatible pollen tubes. The actin depolymerization with latrunculin B induces a sharp drop in the CLP activity in self-incompatible pollen tubes and its increase in compatible pollen tubes. Altogether, our results suggest that a CLP is involved in the SI-induced PCD and that CK is a putative activator of the CLP. We assume that CK provokes acidification of the cytosol and thus promotes the activation of a CLP. Thus, our results suggest that CK and CLP are involved in the S-RNAse-based SI-induced PCD in petunia. Potential relations between these components in PCD signaling are discussed.


Asunto(s)
Caspasas/metabolismo , Citocininas/metabolismo , Péptido Hidrolasas/metabolismo , Petunia/química , Ribonucleasas/metabolismo
13.
J Exp Bot ; 61(4): 1089-109, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110265

RESUMEN

Senescence represents the last phase of petal development during which macromolecules and organelles are degraded and nutrients are recycled to developing tissues. To understand better the post-transcriptional changes regulating petal senescence, a proteomic approach was used to profile protein changes during the senescence of Petuniaxhybrida 'Mitchell Diploid' corollas. Total soluble proteins were extracted from unpollinated petunia corollas at 0, 24, 48, and 72 h after flower opening and at 24, 48, and 72 h after pollination. Two-dimensional gel electrophoresis (2-DE) was used to identify proteins that were differentially expressed in non-senescing (unpollinated) and senescing (pollinated) corollas, and image analysis was used to determine which proteins were up- or down-regulated by the experimentally determined cut-off of 2.1-fold for P <0.05. One hundred and thirty-three differentially expressed protein spots were selected for sequencing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the identity of these proteins. Searching translated EST databases and the NCBI non-redundant protein database, it was possible to assign a putative identification to greater than 90% of these proteins. Many of the senescence up-regulated proteins were putatively involved in defence and stress responses or macromolecule catabolism. Some proteins, not previously characterized during flower senescence, were identified, including an orthologue of the tomato abscisic acid stress ripening protein 4 (ASR4). Gene expression patterns did not always correlate with protein expression, confirming that both proteomic and genomic approaches will be required to obtain a detailed understanding of the regulation of petal senescence.


Asunto(s)
Senescencia Celular , Petunia/química , Petunia/fisiología , Polinización , Proteómica , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Flores/química , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Petunia/genética , Espectrometría de Masas en Tándem
14.
J Exp Bot ; 61(11): 2951-65, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20460362

RESUMEN

Plants requiring an insect pollinator often produce nectar as a reward for the pollinator's visitations. This rich secretion needs mechanisms to inhibit microbial growth. In Nicotiana spp. nectar, anti-microbial activity is due to the production of hydrogen peroxide. In a close relative, Petunia hybrida, limited production of hydrogen peroxide was found; yet petunia nectar still has anti-bacterial properties, suggesting that a different mechanism may exist for this inhibition. The nectar proteins of petunia plants were compared with those of ornamental tobacco and significant differences were found in protein profiles and function between these two closely related species. Among those proteins, RNase activities unique to petunia nectar were identified. The genes corresponding to four RNase T2 proteins from Petunia hybrida that show unique expression patterns in different plant tissues were cloned. Two of these enzymes, RNase Phy3 and RNase Phy4 are unique among the T2 family and contain characteristics similar to both S- and S-like RNases. Analysis of amino acid patterns suggest that these proteins are an intermediate between S- and S-like RNases, and support the hypothesis that S-RNases evolved from defence RNases expressed in floral parts. This is the first report of RNase activities in nectar.


Asunto(s)
Petunia/enzimología , Néctar de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Petunia/química , Petunia/clasificación , Petunia/genética , Filogenia , Néctar de las Plantas/química , Néctar de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ribonucleasas/química , Ribonucleasas/genética , Alineación de Secuencia
15.
Plant Sci ; 290: 110289, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31779900

RESUMEN

Botrytis cinerea is a major plant pathogen, causing losses in crops during growth and storage. Here we show that increased accumulation of phenylalanine (Phe) and Phe-derived metabolites in plant leaves significantly reduces their susceptibility to B. cinerea. Arabidopsis, petunia and tomato plants were enriched with Phe by either overexpressing a feedback-insensitive E.coli DAHP synthase (AroG*), or by spraying or drenching detached leaves or whole plants with external Phe, prior to infection with B. cinerea. Metabolic analysis of Arabidopsis and petunia plants overexpressing AroG* as well as wt petunia plants treated externally with Phe, revealed an increase in Phe-derived phenylpropanoids accumulated in their leaves, and specifically in those inhibiting B. cinerea germination and growth, suggesting that different compounds reduce susceptibility to B. cinerea in different plants. Phe itself had no inhibitory effect on germination or growth of B. cinerea, and inhibition of Phe metabolism in petunia plants treated with external Phe prevented decreased susceptibility to the fungus. Thus, Phe metabolism into an array of metabolites, unique to each plant and plant organ, is the most probable cause for increased resistance to Botrytis. This mechanism may provide a basis for ecologically friendly control of a wide range of plant pathogens.


Asunto(s)
Arabidopsis/química , Botrytis/fisiología , Petunia/química , Fenilalanina/metabolismo , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/química , Arabidopsis/microbiología , Susceptibilidad a Enfermedades , Solanum lycopersicum/microbiología , Petunia/microbiología , Hojas de la Planta/química , Hojas de la Planta/microbiología
16.
J Exp Bot ; 60(7): 2191-202, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19380423

RESUMEN

The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris x (Petunia axillaris x Petunia hybrida cv. 'Rose of Heaven')]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (A(max)). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors.


Asunto(s)
Antocianinas/biosíntesis , Petunia/metabolismo , Petunia/efectos de la radiación , Pigmentación/efectos de la radiación , Antocianinas/química , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Cinética , Luz , Petunia/química , Petunia/genética , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
J Agric Food Chem ; 67(36): 10145-10154, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31418564

RESUMEN

2-Phenylethanol (2PE) is a representative aromatic aroma compound in tea (Camellia sinensis) leaves. However, its formation in tea remains unexplored. In our study, feeding experiments of [2H8]L-phenylalanine (Phe), [2H5]phenylpyruvic acid (PPA), or (E/Z)-phenylacetaldoxime (PAOx) showed that three biosynthesis pathways for 2PE derived from L-Phe occurred in tea leaves, namely, pathway I (via phenylacetaldehyde (PAld)), pathway II (via PPA and PAld), and pathway III (via (E/Z)-PAOx and PAld). Furthermore, increasing temperature resulted in increased flux into the pathway for 2PE from L-Phe via PPA and PAld. In addition, tomato fruits and petunia flowers also contained the 2PE biosynthetic pathway from L-Phe via PPA and PAld and increasing temperatures led to increased flux into this pathway, suggesting that such a phenomenon might be common among most plants containing 2PE. This represents a characteristic example of changes in flux into the biosynthesis pathways of volatile compounds in plants in response to stresses.


Asunto(s)
Camellia sinensis/metabolismo , Petunia/química , Alcohol Feniletílico/metabolismo , Solanum lycopersicum/química , Vías Biosintéticas , Flores/química , Frutas/química , Hojas de la Planta/metabolismo , Temperatura
18.
Phytochemistry ; 69(10): 2016-21, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18534638

RESUMEN

The potential for chemically-regulating the acylation of natural products in whole plants has been determined by treating petunia leaves with phenylpropanoid acyl donors supplied as the respective methyl esters. Treatment with derivatives of the naturally-occurring acylating species caffeic acid resulted in a general increase in flavonol derivatives, notably caffeoylated quercetin-3-O-diglucoside (QDG) and kaempferol-3-O-diglucoside (KDG). Similarly, methyl ferulate increased the content of feruloylated KDG 40-fold. Treatment with methyl coumarate resulted in the appearance of a coumaroylated derivative of quercetin-3-O-glucuronyl-glucoside (QGGA). When the feeding studies were repeated with the equivalent phenylpropanoid isosubstituted with fluorine groups a semi-synthetic 4-fluorocinnamoyl ester of QGGA was observed. Our results demonstrate the potential to regulate the acylation of flavonols and potentially other natural products by treating whole plants with methyl esters of natural and unnatural acyl donors.


Asunto(s)
Flavonoles/química , Petunia/química , Acilación , Espectrometría de Masas , Estructura Molecular , Hojas de la Planta/química , Propanoles/química
19.
Biosci Biotechnol Biochem ; 72(1): 110-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18175901

RESUMEN

The floral scent emission and endogenous level of its components in Petunia axillaris under different conditions (20, 25, 30, and 35 degrees C) were investigated under the hypothesis that floral scent emission would be regulated by both metabolic and vaporization processes. The total endogenous amount of scent components decreased as the temperature increased, the total emission showing a peak at 30 degrees C. This decrease in endogenous amount was compensated for by increased vaporization, resulting in an increase of floral scent emission from 20 degrees C to 30 degrees C. The ambient temperature differently and independently influenced the metabolism and vaporization of the scent compounds, and differences in vapor pressure among the scent compounds were reduced as the temperature increased. These characteristics suggest the operation of an unknown regulator to change the vaporization of floral scent.


Asunto(s)
Flores/fisiología , Odorantes , Petunia/fisiología , Flores/química , Petunia/química , Fenilalanina/análisis , Presión , Temperatura , Termodinámica , Volatilización
20.
Food Chem ; 258: 352-358, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-29655745

RESUMEN

After tea leaves, tea (Camellia sinensis) flowers are becoming a second tea plant resource because they contain not only functional metabolites similar to those found in tea leaves, but also predominant amounts of functional metabolites that only occur in tea leaves in small amounts. 1-Phenylethanol (1PE) is a predominant aroma compound found in tea flowers. A 1PE synthase in tea flowers was isolated, functionally characterized, and shown to have the highest catalytic efficiency for the conversion of acetophenone (AP). To determine why 1PE accumulates more in tea flowers than other plants, we compared their 1PE contents and used a stable isotope labeling method to elucidate the 1PE biosynthetic route. Supplementation with [2H8]l-phenylalanine and [2H5]AP suggested that most plants containing the enzyme/gene catalyzed the conversion of AP to 1PE. Furthermore, the availability of AP derived from l-phenylalanine was responsible for the difference in 1PE accumulation between tea flowers and other plants.


Asunto(s)
Alcoholes Bencílicos/metabolismo , Camellia sinensis/metabolismo , Enzimas/metabolismo , Flores/metabolismo , Acetofenonas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Vías Biosintéticas , Camellia sinensis/química , Enzimas/genética , Flores/química , Marcaje Isotópico , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Odorantes , Petunia/química , Petunia/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA