Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Cell Microbiol ; 23(5): e13321, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33600048

RESUMEN

The circumsporozoite protein, CSP, is the major surface protein of Plasmodium sporozoites, the form of malaria parasites transmitted by mosquitoes. CSP is involved in sporozoite formation within and egress from oocysts, entry into mosquito salivary glands and mammalian liver as well as migration in the skin. Yet, how CSP facilitates sporozoite formation, oocyst egress and hepatocyte specific invasion is still not fully understood. Here, we aimed at generating a series of parasites expressing full-length versions of CSP with internally inserted green fluorescent protein between known domains at the endogenous csp locus. This enabled the investigation of sporozoite formation in living oocysts. GFP insertion after the signal peptide leads to cleavage of GFP before the fusion protein reached the plasma membrane while insertion of GFP before or after the TSR domain prevented sporozoite egress and liver invasion. These data suggest different strategies for obtaining mature salivary gland sporozoites that express GFP-CSP fusions.


Asunto(s)
Anopheles/parasitología , Malaria/parasitología , Oocistos/fisiología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Esporozoítos/crecimiento & desarrollo , Animales , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes , Ratones Endogámicos C57BL , Microtúbulos/ultraestructura , Movimiento , Plasmodium berghei/metabolismo , Plasmodium berghei/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/metabolismo , Esporozoítos/ultraestructura
2.
Mol Microbiol ; 114(3): 454-467, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32432369

RESUMEN

Reticulon and REEP family of proteins stabilize the high curvature of endoplasmic reticulum (ER) tubules. Plasmodium berghei Yop1 (PbYop1) is a REEP5 homolog in Plasmodium. Here, we characterize its function using a gene-knockout (Pbyop1∆). Pbyop1∆ asexual stage parasites display abnormal ER architecture and an enlarged digestive vacuole. The erythrocytic cycle of Pbyop1∆ parasites is severely attenuated and the incidence of experimental cerebral malaria is significantly decreased in Pbyop1∆-infected mice. Pbyop1∆ sporozoites have reduced speed, are slower to invade host cells but give rise to equal numbers of infected HepG2 cells, as WT sporozoites. We propose that PbYOP1's disruption may lead to defects in trafficking and secretion of a subset of proteins required for parasite development and invasion of erythrocytes. Furthermore, the maintenance of ER morphology in different parasite stages is likely to depend on different proteins.


Asunto(s)
Malaria/patología , Proteínas de Transporte de Membrana/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Femenino , Técnicas de Inactivación de Genes , Genes Protozoarios , Células Hep G2 , Humanos , Malaria/transmisión , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Movimiento , Plasmodium berghei/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/genética , Ratas , Ratas Wistar , Esporozoítos/metabolismo , Virulencia
3.
Zoolog Sci ; 38(2): 187-192, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812358

RESUMEN

The ultrastructural features of axoneme organization within the cytoplasm and exflagellation were investigated in detail in microgametes of a malaria parasite, Plasmodium berghei, by electron and fluorescence microscopy. The kinetosomes (basal bodies) of the microgamete were characterized by an electron dense mass in which singlet microtubules (MTs) were embedded. Around the kinetosomes, several singlet and doublet MTs were recognized in transverse sections. Incomplete doublets with growing B-tubule were also observed. As precursors of the axoneme, arrays of over three doublets showed a tendency to encircle the central pair MTs. Some of the doublet MTs were already equipped with inner and outer dynein arms. In the microgamete, which lacks an intraflagellar transport (IFT) system, self-assembly of microtubular and associated components appeared to proceed stepwise from singlet MTs through arrays of one to nine doublet MTs, surrounding the central pair, to form the complete axoneme in a quite short time. At exflagellation, some extra doublets were occasionally included between the axoneme and the flagellar membrane. At high magnification, the outer dynein arm of the Plasmodium microgamete had a pistol-like shape representing a three-headed dynein molecule like that of other Alveolata.


Asunto(s)
Axonema/ultraestructura , Gametogénesis , Células Germinativas , Plasmodium berghei , Animales , Axonema/química , Dineínas/ultraestructura , Femenino , Células Germinativas/química , Células Germinativas/ultraestructura , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Microscopía Fluorescente , Plasmodium berghei/fisiología , Plasmodium berghei/ultraestructura
4.
Mol Microbiol ; 102(5): 775-791, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27566438

RESUMEN

To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block-face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.


Asunto(s)
Retículo Endoplásmico/ultraestructura , Plasmodium berghei/ultraestructura , Animales , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Hígado/parasitología , Malaria/parasitología , Microscopía/métodos , Microscopía Electrónica de Rastreo , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Respuesta de Proteína Desplegada
5.
Cell Microbiol ; 17(3): 355-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25262869

RESUMEN

Gametogenesis is the earliest event after uptake of malaria parasites by the mosquito vector, with a decisive impact on colonization of the mosquito midgut. This process is triggered by a drop in temperature and contact with mosquito molecules. In a few minutes, male and female gametocytes escape from the host erythrocyte by rupturing the parasitophorous vacuole and the erythrocyte membranes. Electron-dense, oval-shaped organelles, the osmiophilic bodies (OB), have been implicated in the egress of female gametocytes. By comparative electron microscopy and electron tomography analyses combined with immunolocalization experiments, we here define the morphological features distinctive of male secretory organelles, hereafter named MOB (male osmiophilic bodies). These organelles appear as club-shaped, electron-dense vesicles, smaller than female OB. We found that a drop in temperature triggers MOB clustering, independently of exposure to other stimuli. MDV1/PEG3, a protein associated with OB in Plasmodium berghei females, localizes to both non-clustered and clustered MOB, suggesting that clustering precedes vesicle discharge. A P. berghei mutant lacking the OB-resident female-specific protein Pbg377 displays a dramatic reduction in size of the OB, accompanied by a delay in female gamete egress efficiency, while female gamete fertility is not affected. Immunolocalization experiments indicated that MDV1/PEG3 is still recruited to OB-remnant structures.


Asunto(s)
Orgánulos/ultraestructura , Plasmodium berghei/ultraestructura , Animales , Tomografía con Microscopio Electrónico , Femenino , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Orgánulos/química , Plasmodium berghei/química , Proteínas Protozoarias/análisis
6.
Malar J ; 12: 25, 2013 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-23331966

RESUMEN

BACKGROUND: The apicoplast is a plastid organelle derived from a secondary endosymbiosis, containing biosynthetic pathways essential for the survival of apicomplexan parasites. The Toxoplasma apicoplast clearly possesses four membranes but in related Plasmodium spp. the apicoplast has variably been reported to have either three or four membranes. METHODS: Cryo-electron tomography was employed to image merozoites of Plasmodium falciparum and Plasmodium berghei frozen in their near-native state. Three-dimensional reconstructions revealed the number of apicoplast membranes and the association of the apicoplast with other organelles. Routine transmission electron microscopy of parasites preserved by high-pressure freezing followed by freeze substitution techniques was also used to analyse apicoplast morphology. RESULTS: Cryo-preserved parasites showed clearly four membranes surrounding the apicoplast. A wider gap between the second and third apicoplast membranes was frequently observed. The apicoplast was found in close proximity to the nucleus and to the rhoptries. The apicoplast matrix showed ribosome-sized particles and membranous whorls. CONCLUSIONS: The Plasmodium apicoplast possesses four membranes, as do the apicoplasts of other apicomplexan parasites. This is consistent with a four-membraned secondary endosymbiotic plastid ancestor.


Asunto(s)
Membranas Intracelulares/ultraestructura , Plasmodium berghei/ultraestructura , Plasmodium falciparum/ultraestructura , Plastidios/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Merozoítos/ultraestructura , Microscopía Electrónica de Transmisión
7.
J Struct Biol ; 180(1): 132-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22683346

RESUMEN

Electron tomography produces highly magnified 3D image volumes useful for investigating the structure and function of cellular components. Image quality is degraded by multiple scattering events and quantum noise, which depend on the angle at which individual tilt projections are collected. We have adapted a biomedical imaging approach to improve image quality by enhancing individual tilt projections prior to volumetric reconstruction. Specifically, we have developed a family of non-linear anisotropic diffusion (NAD) filters parameterized by the tilt angle. We give a quantitative and qualitative evaluation of our pre-processing approach and the NAD filter. We show an improvement in the reconstructed volumes for tomograms generated from both plastic-embedded and cryo-stabilized samples of malaria parasite-infected erythrocytes.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Imagenología Tridimensional/métodos , Algoritmos , Anisotropía , Tomografía con Microscopio Electrónico/normas , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Humanos , Imagenología Tridimensional/normas , Plasmodium berghei/ultraestructura , Plasmodium falciparum/ultraestructura , Mejoramiento de la Calidad , Relación Señal-Ruido , Esporozoítos/ultraestructura
8.
Nanomedicine ; 8(1): 17-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22033078

RESUMEN

Infection of liver cells by Plasmodium, the malaria parasite, is a clinically silent, obligatory step of the parasite's life cycle. The authors studied the progression of Plasmodium infection in hepatic cells by atomic force microscopy, measuring both topographical and nanomechanical changes upon infection. In recent years, several studies have suggested that cellular nanomechanical properties can be correlated with disease progression. The authors' results show that infected cells exhibit considerable topographical changes, which can be correlated with the presence of the parasite, leading to a significant roughening of the cell membrane. The nanomechanical measurements showed that infected cells were significantly stiffer than noninfected cells. Furthermore, the stiffening of the cells appeared to be a cellular reaction to the Plasmodium infection, rather than a result of the stiffness of the invading parasites themselves. This article provides the first evidence of mechanical changes occurring in hepatic cells in response to Plasmodium infection. FROM THE CLINICAL EDITOR: The authors have studied the progression of Plasmodium infection in hepatic cells by atomic force microscopy, measuring topographical and nanomechanical changes upon infection. The nanomechanical measurements demonstrated that infected cells were significantly stiffer than noninfected cells.


Asunto(s)
Membrana Celular/ultraestructura , Forma de la Célula , Hepatocitos/ultraestructura , Hígado/ultraestructura , Animales , Línea Celular Tumoral , Hepatocitos/parasitología , Humanos , Hígado/parasitología , Malaria/parasitología , Microscopía de Fuerza Atómica , Plasmodium berghei/ultraestructura
9.
Parasit Vectors ; 14(1): 373, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34289894

RESUMEN

BACKGROUND: Plasmodium sp., which causes malaria, must first develop in mosquitoes before being transmitted. Upon ingesting infected blood, gametes form in the mosquito lumen, followed by fertilization and differentiation of the resulting zygotes into motile ookinetes. Within 24 h of blood ingestion, these ookinetes traverse mosquito epithelial cells and lodge below the midgut basal lamina, where they differentiate into sessile oocysts that are protected by a capsule. METHODS: We identified an ookinete surface and oocyst capsule protein (OSCP) that is involved in ookinete motility as well as oocyst capsule formation. RESULTS: We found that knockout of OSCP in parasite decreases ookinete gliding motility and gradually reduces the number of oocysts. On day 15 after blood ingestion, the oocyst wall was significantly thinner. Moreover, adding anti-OSCP antibodies decreased the gliding speed of wild-type ookinetes in vitro. Adding anti-OSCP antibodies to an infected blood meal also resulted in decreased oocyst formation. CONCLUSION: These findings may be useful for the development of a transmission-blocking tool for malaria.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Culicidae/parasitología , Malaria/parasitología , Mosquitos Vectores/parasitología , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Femenino , Malaria/prevención & control , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/inmunología , Plasmodium berghei/ultraestructura , Proteínas Protozoarias/genética
10.
Cell Microbiol ; 11(8): 1272-88, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19438517

RESUMEN

Malaria parasites invade erythrocytes of their host both for asexual multiplication and for differentiation to male and female gametocytes - the precursor cells of Plasmodium gametes. For further development the parasite is dependent on efficient release of the asexual daughter cells and of the gametes from the host erythrocyte. How malarial parasites exit their host cells remains largely unknown. We here report the characterization of a Plasmodium berghei protein that is involved in egress of both male and female gametes from the host erythrocyte. Protein MDV-1/PEG3, like its Plasmodium falciparum orthologue, is present in gametocytes of both sexes, but more abundant in the female, where it is associated with dense granular organelles, the osmiophilic bodies. Deltamdv-1/peg3 parasites in which MDV-1/PEG3 production was abolished by gene disruption had a strongly reduced capacity to form zygotes resulting from a reduced capability of both the male and female gametes to disrupt the surrounding parasitophorous vacuole and to egress from the host erythrocyte. These data demonstrate that emergence from the host cell of male and female gametes relies on a common, MDV-1/PEG3-dependent mechanism that is distinct from mechanisms used by asexual parasites.


Asunto(s)
Eritrocitos/metabolismo , Células Germinativas/fisiología , Plasmodium berghei/fisiología , Proteínas Protozoarias/metabolismo , Animales , Anopheles , Femenino , Fertilización , Genes Protozoarios , Interacciones Huésped-Patógeno , Malaria/metabolismo , Malaria/parasitología , Masculino , Ratones , Microscopía Electrónica de Transmisión , Plasmodium berghei/ultraestructura , Proteínas Protozoarias/química , Análisis de Secuencia de Proteína , Factores Sexuales
11.
J Microsc ; 238(1): 21-6, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20384834

RESUMEN

Recent technical developments allowed the accurate correlation of fluorescently labelled organelles in living cells to cryo-electron micrographs. We aimed at expanding this approach to Plasmodium berghei sporozoites, the motile forms of a rodent malaria parasite, which can be imaged by cryo-electron tomography in toto without the need for sectioning. Sporozoites are crescent shaped eukaryotic cells that move on flat supports including EM grids in a circular, unidirectional manner. While sporozoites can be visualized with fluorescent light and cryo-light microscopy prior to tomography, few motile sporozoites remained on the grid after blotting excess liquid impairing a complete correlation from light microscopy to cryo-electron tomography. Comparison with cells showing different adhesion strengths demonstrated that the ratio of cells remaining on the grid can be rapidly determined, but that the integrity of the cells has to be carefully monitored as the blotting applies high physical stress to the cells. We demonstrate a quick technique to assess not only feasibility of direct correlation without fixation but also the damage caused by blotting.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Plasmodium berghei/ultraestructura
12.
Sci Rep ; 9(1): 7967, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138850

RESUMEN

Liver stage Plasmodium parasites reside in a parasitophorous vacuole (PV) that associates with lysosomes. It has previously been shown that these organelles can have beneficial as well as harmful effects on the parasite. Yet it is not clear how the association of lysosomes with the parasite is controlled and how interactions with these organelles lead to the antagonistic outcomes. In this study we used advanced imaging techniques to characterize lysosomal interactions with the PV. In host cells harboring successfully developing parasites we observed that these interaction events reach an equilibrium at the PV membrane (PVM). In a population of arrested parasites, this equilibrium appeared to shift towards a strongly increased lysosomal fusion with the PVM witnessed by strong PVM labeling with the lysosomal marker protein LAMP1. This was followed by acidification of the PV and elimination of the parasite. To systematically investigate elimination of arrested parasites, we generated transgenic parasites that express the photosensitizer KillerRed, which leads to parasite killing after activation. Our work provides insights in cellular details of intracellular killing and lysosomal elimination of Plasmodium parasites independent of cells of the immune system.


Asunto(s)
Hepatocitos/metabolismo , Interacciones Huésped-Parásitos/genética , Lisosomas/metabolismo , Malaria/metabolismo , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo , Animales , Biomarcadores/metabolismo , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Hepatocitos/inmunología , Hepatocitos/parasitología , Hepatocitos/ultraestructura , Interacciones Huésped-Parásitos/inmunología , Humanos , Concentración de Iones de Hidrógeno , Luz , Hígado/inmunología , Hígado/metabolismo , Hígado/parasitología , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/inmunología , Lisosomas/ultraestructura , Malaria/genética , Malaria/inmunología , Malaria/parasitología , Fusión de Membrana , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/ultraestructura , Cultivo Primario de Células , Esporozoítos/crecimiento & desarrollo , Esporozoítos/ultraestructura , Transgenes , Vacuolas/metabolismo , Vacuolas/ultraestructura
13.
PLoS Pathog ; 2(12): e133, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17196037

RESUMEN

The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate-binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae-P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue.


Asunto(s)
Actinas/metabolismo , Anopheles/parasitología , Receptores Frizzled/metabolismo , Tracto Gastrointestinal/parasitología , Melaninas/metabolismo , Plasmodium berghei/patogenicidad , Proteína de Unión al GTP cdc42/metabolismo , Animales , Anopheles/inmunología , Anopheles/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Receptores Frizzled/genética , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/ultraestructura , Interacciones Huésped-Parásitos , Inmunidad Innata , Insectos Vectores/inmunología , Insectos Vectores/parasitología , Mucosa Intestinal/inmunología , Mucosa Intestinal/parasitología , Mucosa Intestinal/ultraestructura , Análisis por Micromatrices , Microscopía Electrónica de Rastreo , Plasmodium berghei/ultraestructura , Polímeros , ARN Bicatenario/farmacología , ARN Protozoario/farmacología , Telomerasa , Proteína de Unión al GTP cdc42/genética
14.
Int J Parasitol ; 37(11): 1221-32, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17482621

RESUMEN

During their passage through a mosquito vector, malaria parasites undergo several developmental transformations including that from a motile zygote, the ookinete, to a sessile oocyst that develops beneath the basal lamina of the midgut epithelium. This transformation process is poorly understood and the oocyst is the least studied of all the stages in the malaria life cycle. We have used an in vitro culture system to monitor morphological features associated with transformation of Plasmodium berghei ookinetes and the role of basal lamina components in this process. We also describe the minimal requirements for transformation and early oocyst development. A defined sequence of events begins with the break-up of the inner surface membrane, specifically along the convex side of the ookinete, where a protrusion occurs. A distinct form, the transforming ookinete or took, has been identified in vitro and also observed in vivo. Contrary to previous suggestions, we have shown that no basal lamina components are required to trigger ookinete to oocyst transformation in vitro. We have demonstrated that transformation does not occur spontaneously; it is initiated in the presence of bicarbonate added to PBS, but it is not mediated by changes in pH alone. Transformation is a two-step process that is not completed unless a range of nutrients are also present. A minimal medium is defined which supports transformation and oocyst growth from 7.8 to 11.4microm by day 5 with 84% viability. We conclude that ookinete transformation is mediated by bicarbonate and occurs in a similar manner to the differentiation of sporozoite to the hepatic stage.


Asunto(s)
Oocistos/fisiología , Plasmodium berghei/fisiología , Animales , Anopheles/parasitología , Membrana Basal/ultraestructura , Vectores de Enfermedades , Drosophila melanogaster/parasitología , Marcadores Genéticos , Concentración de Iones de Hidrógeno , Estadios del Ciclo de Vida , Microscopía Electrónica de Transmisión , Oocistos/ultraestructura , Parasitología/métodos , Plasmodium berghei/ultraestructura , Proteínas Protozoarias/genética
15.
Bull Acad Natl Med ; 191(7): 1261-70; discussion 1271, 2007 Oct.
Artículo en Francés | MEDLINE | ID: mdl-18447048

RESUMEN

Infection by Plasmodium, the causative agent of malaria, starts when the parasite, injected by a mosquito vector, reaches and invades the liver, where it transforms into a stage that is capable of infecting erythrocytes and that causes the symptoms and complications of the disease. This phase of the infection, called pre-erythrocytic stage, is the most elusive of the parasite's life cycle, yet it was identified more than fifty years ago as a primary target of vaccine strategies aimed at avoiding erythrocyte infection. Recently in vivo imaging in a rodent model revealed that the pre-erythrocytic phase is unexpectedly complex. In particular, it includes a component of lymphatic infection, thus altering our representation of how an immune response can be mounted against these parasite stages.


Asunto(s)
Malaria/parasitología , Plasmodium/ultraestructura , Animales , Anopheles/parasitología , Modelos Animales de Enfermedad , Eritrocitos/parasitología , Hepatocitos/parasitología , Humanos , Mordeduras y Picaduras de Insectos/parasitología , Mordeduras y Picaduras de Insectos/patología , Insectos Vectores/parasitología , Ganglios Linfáticos/parasitología , Malaria/sangre , Malaria/inmunología , Malaria/prevención & control , Malaria/transmisión , Ratones , Plasmodium/crecimiento & desarrollo , Plasmodium/fisiología , Plasmodium berghei/ultraestructura , Vacunación/métodos
16.
Nat Rev Microbiol ; 15(1): 37-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890922

RESUMEN

Over the past decade, major advances in imaging techniques have enhanced our understanding of Plasmodium spp. parasites and their interplay with mammalian hosts and mosquito vectors. Cryoelectron tomography, cryo-X-ray tomography and super-resolution microscopy have shifted paradigms of sporozoite and gametocyte structure, the process of erythrocyte invasion by merozoites, and the architecture of Maurer's clefts. Intravital time-lapse imaging has been revolutionary for our understanding of pre-erythrocytic stages of rodent Plasmodium parasites. Furthermore, high-speed imaging has revealed the link between sporozoite structure and motility, and improvements in time-lapse microscopy have enabled imaging of the entire Plasmodium falciparum erythrocytic cycle and the complete Plasmodium berghei pre-erythrocytic stages for the first time. In this Review, we discuss the contribution of key imaging tools to these and other discoveries in the malaria field over the past 10 years.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Merozoítos/fisiología , Plasmodium berghei/fisiología , Plasmodium falciparum/fisiología , Esporozoítos/fisiología , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Humanos , Malaria/parasitología , Malaria/patología , Merozoítos/ultraestructura , Plasmodium berghei/ultraestructura , Plasmodium falciparum/ultraestructura , Esporozoítos/ultraestructura , Imagen de Lapso de Tiempo
17.
Cell Host Microbe ; 18(5): 593-603, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26607162

RESUMEN

Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication.


Asunto(s)
Malaria/patología , Malaria/parasitología , Plasmodium berghei/metabolismo , Plasmodium yoelii/metabolismo , Esporozoítos/patología , Esporozoítos/parasitología , Vacuolas/parasitología , Animales , Anopheles/parasitología , Células Hep G2 , Hepatocitos/patología , Hepatocitos/ultraestructura , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/ultraestructura , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/ultraestructura , Proteínas Protozoarias/metabolismo , Esporozoítos/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura
18.
Autophagy ; 11(9): 1561-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26208778

RESUMEN

Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.


Asunto(s)
Citosol/inmunología , Hepatocitos/inmunología , Imagenología Tridimensional , Evasión Inmune , Inmunidad , Malaria/inmunología , Parásitos/inmunología , Plasmodium berghei/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia , Biomarcadores/metabolismo , Galectinas/metabolismo , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Hepatocitos/parasitología , Hepatocitos/ultraestructura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Estadios del Ciclo de Vida , Hígado/parasitología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Malaria/parasitología , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Parásitos/crecimiento & desarrollo , Parásitos/patogenicidad , Parásitos/ultraestructura , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/ultraestructura , Proteína Sequestosoma-1 , Esporozoítos/fisiología , Esporozoítos/ultraestructura , Análisis de Supervivencia , Factores de Tiempo , Ubiquitina/metabolismo , Ubiquitinación , Vacuolas/metabolismo , Vacuolas/ultraestructura , Virulencia
19.
Eur J Cell Biol ; 46(1): 25-30, 1988 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-3294008

RESUMEN

There has been considerable interest in the circumsporozoite proteins due to their potential use in anti-malarial vaccines. Previous authors have shown that these proteins persist from the invading sporozoite throughout the growing exoerythrocytic or liver stage. We show that the different distributions of these proteins seen during the development of the exoerythrocytic parasite of Plasmodium berghei closely follow morphological changes, which can be recognized under the light microscope. At the end of the exoerythrocytic cycle, the majority of the remaining circumsporozoite proteins were associated with the spongy stroma in which the emerging exoerythrocytic merozoites lay. Cell-mediated immunity originally directed against sporozoites might recognize the stroma as a second target resulting in the indirect destruction of the exoerythrocytic merozoites.


Asunto(s)
Antígenos de Protozoos/análisis , Antígenos de Superficie/análisis , Eritrocitos/parasitología , Plasmodium berghei/crecimiento & desarrollo , Proteínas Protozoarias , Animales , Línea Celular , Humanos , Inmunohistoquímica , Microscopía Electrónica , Plasmodium berghei/ultraestructura
20.
Eur J Cell Biol ; 60(1): 101-7, 1993 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8385016

RESUMEN

The induction mechanism of gamete formation (gametogenesis) in a rodent malaria parasite, Plasmodium berghei, was investigated using Ca2+ antagonists, protein kinase inhibitors and amiloride, an inhibitor of monovalent cation/H+ exchange. Treatment with 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8, a Ca2+ release inhibitor) and W-7/W-66 (calmodulin inhibitors) blocked formation of male gametes by inhibiting DNA synthesis from 1.5C to 8C level. In contrast, inhibitors of cAMP/cGMP-dependent protein kinases such as H-8, H-87, H-89 and staurosporine also ceased the development of gametocytes, but DNA synthesis in male gametocytes occurred as in the controls. Electron microscopy revealed that male gametocytes treated with TMB-8 and W-7 failed to enlarge nuclei and to form axonemes in the cytoplasm. In female gametocytes, treatment with both Ca2+ antagonists resulted in a dramatic morphological change in the endoplasmic reticulum (ER), which is thought to be a Ca2+ store. The ER network condensed near nuclei and was laminated by the abnormal attachment of ribosomes between two ER membranes. On the other hand, male gametocytes treated with protein kinase inhibitors or amiloride had enlarged nuclei and axonemes, but failed to develop further. The ER network in female gametocytes treated with these inhibitors was similar to that in the controls.


Asunto(s)
Gametogénesis/efectos de los fármacos , Plasmodium berghei/fisiología , Animales , Calcio/fisiología , Calmodulina/fisiología , GMP Cíclico/fisiología , Retículo Endoplásmico/efectos de los fármacos , Femenino , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Células Germinativas/efectos de los fármacos , Isoquinolinas/farmacología , Masculino , Plasmodium berghei/ultraestructura , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA