Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell ; 184(18): 4819-4837.e22, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380046

RESUMEN

Animal bodies are composed of cell types with unique expression programs that implement their distinct locations, shapes, structures, and functions. Based on these properties, cell types assemble into specific tissues and organs. To systematically explore the link between cell-type-specific gene expression and morphology, we registered an expression atlas to a whole-body electron microscopy volume of the nereid Platynereis dumerilii. Automated segmentation of cells and nuclei identifies major cell classes and establishes a link between gene activation, chromatin topography, and nuclear size. Clustering of segmented cells according to gene expression reveals spatially coherent tissues. In the brain, genetically defined groups of neurons match ganglionic nuclei with coherent projections. Besides interneurons, we uncover sensory-neurosecretory cells in the nereid mushroom bodies, which thus qualify as sensory organs. They furthermore resemble the vertebrate telencephalon by molecular anatomy. We provide an integrated browser as a Fiji plugin for remote exploration of all available multimodal datasets.


Asunto(s)
Forma de la Célula , Regulación de la Expresión Génica , Poliquetos/citología , Poliquetos/genética , Análisis de la Célula Individual , Animales , Núcleo Celular/metabolismo , Ganglios de Invertebrados/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Imagen Multimodal , Cuerpos Pedunculados/metabolismo , Poliquetos/ultraestructura
2.
Cell ; 159(1): 46-57, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259919

RESUMEN

Melatonin, the "hormone of darkness," is a key regulator of vertebrate circadian physiology and behavior. Despite its ubiquitous presence in Metazoa, the function of melatonin signaling outside vertebrates is poorly understood. Here, we investigate the effect of melatonin signaling on circadian swimming behavior in a zooplankton model, the marine annelid Platynereis dumerilii. We find that melatonin is produced in brain photoreceptors with a vertebrate-type opsin-based phototransduction cascade and a light-entrained clock. Melatonin released at night induces rhythmic burst firing of cholinergic neurons that innervate locomotor-ciliated cells. This establishes a nocturnal behavioral state by modulating the length and the frequency of ciliary arrests. Based on our findings, we propose that melatonin signaling plays a role in the circadian control of ciliary swimming to adjust the vertical position of zooplankton in response to ambient light.


Asunto(s)
Melatonina/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Poliquetos/fisiología , Animales , Encéfalo/metabolismo , Cilios/fisiología , Relojes Circadianos , Ritmo Circadiano , Regulación de la Expresión Génica , Larva/metabolismo , Datos de Secuencia Molecular , Neuronas/metabolismo , Células Fotorreceptoras de Invertebrados/citología , Poliquetos/citología , Natación , Zooplancton/citología , Zooplancton/fisiología
3.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950937

RESUMEN

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular , Poliquetos , Regeneración , Animales , Regeneración/fisiología , Poliquetos/fisiología , Poliquetos/citología , Plasticidad de la Célula/fisiología , Células Madre/citología , Diferenciación Celular/fisiología , Anélidos/fisiología
4.
Mol Phylogenet Evol ; 160: 107124, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33610649

RESUMEN

Mitochondrial genomes are frequently applied in phylogenetic and evolutionary studies across metazoans, yet they are still poorly represented in many groups of invertebrates, including annelids. Here, we report ten mitochondrial genomes from the annelid genus Hydroides (Serpulidae) and compare them with all available annelid mitogenomes. We detected all 13 protein coding genes in Hydroides spp., including the atp8 which was reported as a missing gene in the Christmas Tree worm Spirobranchus giganteus, another annelid of the family Serpulidae. All available mitochondrial genomes of Hydroides show a highly positive GC skew combined with a highly negative AT skew - a feature consistent with that found only in the mitogenome of S. giganteus. In addition, amino acid sequences of the 13 protein-coding genes showed a high genetic distance between the Hydroides clade and S. giganteus, suggesting a fast rate of mitochondrial sequence evolution in Serpulidae. The gene order of protein-coding genes within Hydroides exhibited extensive rearrangements at species level, and were different from the arrangement patterns of other annelids, including S. giganteus. Phylogenetic analyses based on protein-coding genes recovered Hydroides as a monophyletic group sister to Spirobranchus with a long branch, and sister to the fan worm Sabellidae. Yet the Serpulidae + Sabellidae clade was unexpectedly grouped with Sipuncula, suggesting that mitochondrial genomes alone are insufficient to resolve the phylogenetic position of Serpulidae within Annelida due to its high base substitution rates. Overall, our study revealed a high variability in the gene order arrangement of mitochondrial genomes within Serpulidae, provided evidence to question the conserved pattern of the mitochondrial gene order in Annelida and called for caution when applying mitochondrial genes to infer their phylogenetic relationships.


Asunto(s)
Evolución Molecular , Orden Génico , Genoma Mitocondrial/genética , Filogenia , Poliquetos/citología , Poliquetos/genética , Animales , Poliquetos/clasificación
5.
Dev Biol ; 445(2): 189-210, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445055

RESUMEN

Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2'-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.


Asunto(s)
Poliquetos/fisiología , Regeneración/fisiología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Microscopía Electrónica de Rastreo , Poliquetos/citología , Poliquetos/genética , Regeneración/genética , Células Madre/citología , Células Madre/metabolismo
6.
BMC Evol Biol ; 20(1): 117, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928118

RESUMEN

BACKGROUND: Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus. RESULTS: We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD. CONCLUSIONS: We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.


Asunto(s)
Neurogénesis , Neuronas/citología , Poliquetos/citología , Animales , Poliquetos/enzimología
7.
BMC Evol Biol ; 20(1): 84, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664907

RESUMEN

BACKGROUND: Diverse architectures of nervous systems (NSs) such as a plexus in cnidarians or a more centralized nervous system (CNS) in insects and vertebrates are present across Metazoa, but it is unclear what selection pressures drove evolution and diversification of NSs. One underlying aspect of this diversity lies in the cellular and molecular mechanisms driving neurogenesis, i.e. generation of neurons from neural precursor cells (NPCs). In cnidarians, vertebrates, and arthropods, homologs of SoxB and bHLH proneural genes control different steps of neurogenesis, suggesting that some neurogenic mechanisms may be conserved. However, data are lacking for spiralian taxa. RESULTS: To that end, we characterized NPCs and their daughters at different stages of neurogenesis in the spiralian annelid Capitella teleta. We assessed cellular division patterns in the neuroectoderm using static and pulse-chase labeling with thymidine analogs (EdU and BrdU), which enabled identification of NPCs that underwent multiple rounds of division. Actively-dividing brain NPCs were found to be apically-localized, whereas actively-dividing NPCs for the ventral nerve cord (VNC) were found apically, basally, and closer to the ventral midline. We used lineage tracing to characterize the changing boundary of the trunk neuroectoderm. Finally, to start to generate a genetic hierarchy, we performed double-fluorescent in-situ hybridization (FISH) and single-FISH plus EdU labeling for neurogenic gene homologs. In the brain and VNC, Ct-soxB1 and Ct-neurogenin were expressed in a large proportion of apically-localized, EdU+ NPCs. In contrast, Ct-ash1 was expressed in a small subset of apically-localized, EdU+ NPCs and subsurface, EdU- cells, but not in Ct-neuroD+ or Ct-elav1+ cells, which also were subsurface. CONCLUSIONS: Our data suggest a putative genetic hierarchy with Ct-soxB1 and Ct-neurogenin at the top, followed by Ct-ash1, then Ct-neuroD, and finally Ct-elav1. Comparison of our data with that from Platynereis dumerilii revealed expression of neurogenin homologs in proliferating NPCs in annelids, which appears different than the expression of vertebrate neurogenin homologs in cells that are exiting the cell cycle. Furthermore, differences between neurogenesis in the head versus trunk of C. teleta suggest that these two tissues may be independent developmental modules, possibly with differing evolutionary trajectories.


Asunto(s)
Neurogénesis/genética , Filogenia , Poliquetos/citología , Poliquetos/genética , Animales , Encéfalo/citología , Ciclo Celular/genética , División Celular , Proliferación Celular/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Cinética , Modelos Biológicos , Placa Neural/citología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factores de Transcripción SOX/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(23): 5878-5885, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584082

RESUMEN

The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.


Asunto(s)
Evolución Biológica , Poliquetos/genética , Algoritmos , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Neuronas/citología , Poliquetos/citología
9.
Dokl Biol Sci ; 490(1): 16-18, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32342320

RESUMEN

We have conducted comparative analysis of the structure of the dorsal lips of the polychaete Eudistylia polymorpha from the family Sabellidae and the obturacula of Oasisia alvinae (Vestimentifera). It has been concluded that the obturacula of Vestimentifera are homologs of the dorsal lips of Polychaete from the family Sabellidae. It has been suggested that the head lobe of siboglinids of the subfamily Frenulata is homologous to the fused obturacula of Vestimentifera.


Asunto(s)
Boca/anatomía & histología , Boca/fisiología , Poliquetos/anatomía & histología , Poliquetos/fisiología , Animales , Organismos Acuáticos , Poliquetos/citología
10.
Dev Biol ; 435(1): 26-40, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29337130

RESUMEN

Embryonic organizers are signaling centers that coordinate developmental events within an embryo. Localized to either an individual cell or group of cells, embryonic organizing activity induces the specification of other cells in the embryo and can influence formation of body axes. In the spiralian Capitella teleta, previous cell deletion studies have shown that organizing activity is localized to a single cell, 2d, and this cell induces the formation of the dorsal-ventral axis and bilateral symmetry. In this study, we attempt to identify the signaling pathway responsible for the organizing activity of 2d. Embryos at stages when organizing activity is occurring were exposed to various small molecule inhibitors that selectively inhibited either the Activin/Nodal or the BMP branch of the TGF-ß signaling pathway. Embryos were then raised to larval stages, and scored for axial anomalies analogous to 2d ablated phenotypes. Our results show that interference with the Activin/Nodal pathway through a short three hour exposure to the inhibitor SB431542 results in larvae that lack bilateral symmetry and a detectable dorsal-ventral axis. However, interference with the BMP signaling pathway through exposure to the inhibitors DMH1 and dorsomorphin dihydrochloride does not appear to play a role in specification by 2d of the dorsal-ventral axis or bilateral symmetry. Our findings highlight species differences in how the molecular architecture of the conserved TGF-ß superfamily signaling pathway components was utilized to mediate the organizing activity signal during early spiralian development.


Asunto(s)
Embrión no Mamífero/embriología , Poliquetos/embriología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas/farmacología , Dioxoles/farmacología , Embrión no Mamífero/citología , Poliquetos/citología , Transducción de Señal/efectos de los fármacos
11.
BMC Evol Biol ; 19(1): 173, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462293

RESUMEN

BACKGROUND: The annelid anterior central nervous system is often described to consist of a dorsal prostomial brain, consisting of several commissures and connected to the ventral ganglionic nerve cord via circumesophageal connectives. In the light of current molecular phylogenies, our assumptions on the primary design of the nervous system in Annelida has to be reconsidered. For that purpose we provide a detailed investigation of the adult nervous system of Magelonidae - a putatively basally branching annelid family - and studied early stages of the development of the latter. RESULTS: Our comparative investigation using an integrative morphological approach shows that the nervous system of Magelonidae is located inside the epidermis. The brain is composed of an anterior compact neuropil and posteriorly encircles the prostomial coelomic cavities. From the brain two lateral medullary cords branch off which fuse caudally. Prominent brain structures such as nuchal organs, ganglia or mushroom bodies are absent and the entire nervous system is medullary. Our investigations also contradict previous investigations and present an updated view on established assumptions and descriptions. CONCLUSION: The comprehensive dataset presented herein enables a detailed investigation of the magelonid anterior central nervous system for the first time. The data reveal that early in annelid evolution complexity of brains and anterior sensory structures rises. Polymorphic neurons in clusters and distinct brain parts, as well as lateral organs - all of which are not present in outgroup taxa and in the putative magelonid sister group Oweniidae - already evolved in Magelonidae. Commissures inside the brain, ganglia and nuchal organs, however, most likely evolved in the stem lineage of Amphinomidae + Sipuncula and Pleistoannelida (Errantia+ Sedentaria). The investigation demonstrates the necessity to continuously question established descriptions and interpretations of earlier publications and the need for transparent datasets. Our results also hint towards a stronger inclusion of larval morphology and developmental investigations in order to understand adult morphological features, not only in Annelida.


Asunto(s)
Evolución Biológica , Poliquetos/genética , Animales , Encéfalo/anatomía & histología , Encéfalo/citología , Larva/crecimiento & desarrollo , Sistema Nervioso/anatomía & histología , Sistema Nervioso/citología , Filogenia , Poliquetos/anatomía & histología , Poliquetos/citología , Poliquetos/crecimiento & desarrollo
12.
Mol Biol Evol ; 35(5): 1047-1062, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373712

RESUMEN

Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo-devo research.


Asunto(s)
Larva/citología , Larva/metabolismo , Poliquetos/citología , Poliquetos/metabolismo , Transcriptoma , Animales , Evolución Biológica , Poliquetos/crecimiento & desarrollo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
13.
Zoolog Sci ; 36(1): 5-16, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116533

RESUMEN

Spiral cleavage is a mode of embryonic cell division found in species from several Phyla, including molluscs, annelids and flatworms. It reflects a tilting in the direction of spindle orientation and cell division at the 4 to 8-cell stage, which may be dextral or sinistral, and propagates into later organismal asymmetry. Genetic analysis in a small number of gastropod molluscs shows the direction of spiral cleavage is determined by maternal genotype, though whether this is also the case more generally for spiralians, and whether spiral cleavage at the 4-8 cell stage is preceded by earlier internal chirality in any spiralian species, is unknown. Here we study the early cleavage stages of two equal-cleaving spiralians, the dextral annelid Spirobranchus lamarcki and the sinistral mollusc Biomphalaria glabrata, using light sheet microscopy to image subcellular vesicles in live embryos and asking if chirality of movement is identifiable. We observe variability in the early cleavage of S. lamarcki, including a viable 3-cell stage. Image data are analysed by both particle tracking and particle image velocimetry. Neither finds evidence for chiral movement in 1-, 2-, 3-, or 4-cell embryos, nor do we detect consistent differences between the embryos of the dextral and sinistrai species. The methodological and evolutionary implications of this are discussed.


Asunto(s)
Biomphalaria/embriología , Tipificación del Cuerpo , Poliquetos/embriología , Animales , Biomphalaria/citología , División Celular , Embrión no Mamífero/citología , Desarrollo Embrionario , Imagenología Tridimensional , Poliquetos/citología
14.
J Struct Biol ; 202(1): 35-41, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29217280

RESUMEN

Polynoid worm elytra emit light when mechanically or electrically stimulated. Specialized cells, the photocytes, contain light emitting machineries, the photosomes. Successive stimulations induce light intensity variations and show a coupling within and between photosomes. Here, we describe, using electron tomography of cryo-substituted elytra and freeze-fracturing, the structural transition associated to light emission: undulating tubules come closer, organize and their number forming photosomes increases. Two repeating undulating tubules in opposite phase compose the photosome. Undulations are located on three hexagonal layers that regularly repeat and are equally displaced, in x y and z. The tubule membranes within layers merge giving rise to rings that tend to obey to quasi-rhombohedral symmetry. Merging may result either from close-association, hemifusion (one leaflet fusion) or from fusion (two leaflets fusion). Although the resolution of tomograms is not sufficient to distinguish these three cases, freeze-fracturing shows that hemifusion is a frequent process that leads to an reversible anastomosed membrane complex favoring communications, appearing as a major coupling factor of photosome light emission.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Membranas Intracelulares/metabolismo , Luz , Orgánulos/metabolismo , Poliquetos/metabolismo , Animales , Estimulación Eléctrica , Técnica de Fractura por Congelación/métodos , Membranas Intracelulares/ultraestructura , Orgánulos/ultraestructura , Poliquetos/citología , Poliquetos/ultraestructura
15.
Dev Biol ; 431(2): 134-144, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28943340

RESUMEN

In the deuterostomes and ecdysozoans that have been studied (e.g. chordates and insects), neural fate specification relies on signaling from surrounding cells. However, very little is known about mechanisms of neural specification in the third major bilaterian clade, spiralians. Using blastomere isolation in the annelid Capitella teleta, a spiralian, we studied to what extent extrinsic versus intrinsic signals are involved in early neural specification of the brain and ventral nerve cord. For the first time in any bilaterian, we found that brain neural ectoderm is autonomously specified. This occurs in the daughters of first-quartet micromeres, which also generate anterior neural ectoderm in other spiralians. In contrast, isolation of the animal cap, including the 2d micromere, which makes the trunk ectoderm and ventral nerve cord, blocked ventral nerve cord formation. When the animal cap was isolated with the 2D macromere, the resulting partial larvae had a ventral nerve cord. These data suggest that extrinsic signals from second-quartet macromeres or their daughters, which form mesoderm and endoderm, are required for nerve cord specification in C. teleta and that the 2D macromere or its daughters are sufficient to provide the inductive signal. We propose that autonomous specification of anterior neural ectoderm evolved in spiralians in order to enable them to quickly respond to environmental cues encountered by swimming larvae in the water column. In contrast, a variety of signaling pathways could have been co-opted to conditionally specify the nerve cord. This flexibility of nerve cord development may be linked to the large diversity of trunk nervous systems present in Spiralia.


Asunto(s)
Evolución Biológica , Encéfalo/embriología , Poliquetos/embriología , Animales , Tipificación del Cuerpo , Encéfalo/citología , Ectodermo/embriología , Embrión no Mamífero/citología , Larva/citología , Larva/crecimiento & desarrollo , Modelos Biológicos , Poliquetos/citología
16.
Nature ; 463(7284): 1084-8, 2010 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-20118916

RESUMEN

The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome-deuterostome ancestor.


Asunto(s)
Evolución Biológica , MicroARNs/análisis , MicroARNs/genética , Especificidad de Órganos , Poliquetos/anatomía & histología , Poliquetos/genética , Animales , Anélidos/anatomía & histología , Anélidos/citología , Anélidos/genética , Encéfalo/metabolismo , Cilios/fisiología , Secuencia Conservada/genética , Sistema Digestivo/citología , Sistema Digestivo/metabolismo , Hibridación in Situ , Datos de Secuencia Molecular , Filogenia , Poliquetos/citología , Anémonas de Mar/anatomía & histología , Anémonas de Mar/citología , Anémonas de Mar/genética , Erizos de Mar/anatomía & histología , Erizos de Mar/citología , Erizos de Mar/genética
17.
PLoS Comput Biol ; 10(9): e1003824, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254363

RESUMEN

Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Animales , Análisis por Conglomerados , Bases de Datos Factuales , Hibridación Fluorescente in Situ , Cadenas de Markov , Poliquetos/citología , Poliquetos/metabolismo
18.
J Exp Zool B Mol Dev Evol ; 320(2): 94-104, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23408594

RESUMEN

Spiral cleavage is observed in animals that belong to the lophotrochozoa, a large group of marine invertebrates. As characteristic for spiral cleavage, the bulk of mesoderm forms from one cell, the "4d blastomere." This process has not yet been followed in cellular detail in annelids except in the leech, where "mesoteloblasts," a pair of mesodermal stem cells, generate two bands of mesoderm precursor cells in an iterative fashion. It is so far unknown whether such stem cell-like lineage is a general property of 4d-derived mesoderm in spiralian larvae. To address this, we have analyzed the cell lineage of the 4d blastomere in the polychaete annelid Platynereis dumerilii, an emerging model for lophotrochozoan and spiralian embryology (Fischer et al., 2010), by 4D microscopy, a semi-automated cell tracking technique based on differential interference contrast serial imaging (Schnabel et al. '97). Our data reveal that the two daughter cells of the 4d cell undergo seven consecutive rounds of unequal cell divisions. They bud off smaller cells in ventral-vegetal orientation and thus show mesoteloblast- and stem cell-like behavior. Based on these findings, we suggest that mesoteloblast-like mesodermal stem cells that form continuous mesodermal bands are part of the Errantia + Sedentaria ground pattern. In the course of annelid evolution, the number consecutive divisions of these cells would have been low initially with <10 division cycles, giving rise to larval segments only, and then increased up to 35 as observed in clitellates.


Asunto(s)
Mesodermo/citología , Poliquetos/citología , Células Madre/citología , Animales
19.
Naturwissenschaften ; 100(3): 285-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23443811

RESUMEN

Bone-eating worms of the genus Osedax exclusively inhabit sunken vertebrate bones on the seafloor. The unique lifestyle and morphology of Osedax spp. have received much scientific attention, but the whole process of their development has not been observed. We herein report the postembryonic development and settlement of Osedax japonicus Fujikura et al. (Zool Sci 23:733-740, 2006). Fertilised eggs were spawned into the mucus of a female, and the larvae swam out from the mucus at the trochophore stage. Larvae survived for 10 days under laboratory conditions. The larvae settled on bones, elongated their bodies and crawled around on the bones. Then they secreted mucus to create a tube and the palps started to develop. The palps of O. japonicus arose from the prostomium, whereas the anterior appendages of other siboglinids arose from the peristomium. The recruitment of dwarf males was induced by rearing larvae with adult females. Females started to spawn eggs 6 weeks after settlement.


Asunto(s)
Poliquetos/anatomía & histología , Poliquetos/crecimiento & desarrollo , Animales , Femenino , Masculino , Poliquetos/citología , Maduración Sexual
20.
Dev Biol ; 357(1): 96-107, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21726546

RESUMEN

Polarized oogenic cysts are clonal syncytia of germ cells in which some of the sister cells (cystocytes) differentiate not as oocytes, but instead as nurse cells: polyploid cells that support oocyte development. The intricate machinery required to establish and maintain divergent cell fates within a syncytium, and the importance of associated oocyte patterning for subsequent embryonic development, have made polarized cysts valuable subjects of study in developmental and cell biology. Nurse cell/oocyte specification is best understood in insects, particularly Drosophila melanogaster. However, polarized cysts have evolved independently in several other animal phyla. We describe the differentiation of female cystocytes in an annelid worm, the polychaete Ophryotrocha labronica. These worms are remarkable for their elegantly simple cysts, which comprise a single oocyte and nurse cell, making them an appealing complement to insects as subjects of study. To elucidate the process of cystocyte differentiation in O. labronica, we have constructed digital 3D models from electron micrographs of serially sectioned ovarian tissue. These models show that 2-cell cysts arise by fragmentation of larger "parental" cysts, rather than as independent units. The parental cysts vary in size and organization, are produced by asynchronous, indeterminate mitotic divisions of progenitor cystoblasts, and lack fusome-like organizing organelles. All of these characteristics represent key cytological differences from "typical" cyst development in insects like D. melanogaster. In light of such differences and the plasticity of female cyst structure among other animals, we suggest that it is time to reassess common views on the conservation of oogenic cysts and the importance of cysts in animal oogenesis generally.


Asunto(s)
Evolución Biológica , Polaridad Celular , Oocitos/citología , Poliquetos/citología , Animales , Diferenciación Celular , División Celular , Células Cultivadas , Femenino , Oogénesis , Poliquetos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA