Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Cell ; 159(1): 108-121, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259924

RESUMEN

Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT-dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between nonsister telomeres during ALT.


Asunto(s)
Emparejamiento Cromosómico , Recombinación Genética , Telómero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Recombinación Homóloga , Humanos , Proteínas Nucleares/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Transactivadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588418

RESUMEN

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas de Unión a Telómeros , Animales , Proteínas de Unión a Telómeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerización , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Unión Proteica , Telómero/genética , Telómero/metabolismo , Complejo Shelterina , ADN/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas , Mamíferos/genética
3.
Nature ; 587(7833): 303-308, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33057192

RESUMEN

Telomeres-repeated, noncoding nucleotide motifs and associated proteins that are found at the ends of eukaryotic chromosomes-mediate genome stability and determine cellular lifespan1. Telomeric-repeat-containing RNA (TERRA) is a class of long noncoding RNAs (lncRNAs) that are transcribed from chromosome ends2,3; these RNAs in turn regulate telomeric chromatin structure and telomere maintenance through the telomere-extending enzyme telomerase4-6 and homology-directed DNA repair7,8. The mechanisms by which TERRA is recruited to chromosome ends remain poorly defined. Here we develop a reporter system with which to dissect the underlying mechanisms, and show that the UUAGGG repeats of TERRA are both necessary and sufficient to target TERRA to chromosome ends. TERRA preferentially associates with short telomeres through the formation of telomeric DNA-RNA hybrid (R-loop) structures that can form in trans. Telomere association and R-loop formation trigger telomere fragility and are promoted by the recombinase RAD51 and its interacting partner BRCA2, but counteracted by the RNA-surveillance factors RNaseH1 and TRF1. RAD51 physically interacts with TERRA and catalyses R-loop formation with TERRA in vitro, suggesting a direct involvement of this DNA recombinase in the recruitment of TERRA by strand invasion. Together, our findings reveal a RAD51-dependent pathway that governs TERRA-mediated R-loop formation after transcription, providing a mechanism for the recruitment of lncRNAs to new loci in trans.


Asunto(s)
Estructuras R-Loop , ARN Largo no Codificante/química , Recombinasa Rad51/metabolismo , Telómero/química , Telómero/metabolismo , Secuencia de Bases , Biocatálisis , Genes Reporteros , Células HeLa , Humanos , ARN Largo no Codificante/genética , Ribonucleasa H/metabolismo , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
4.
Plant J ; 114(1): 176-192, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36721978

RESUMEN

The supply of boron (B) alleviates the toxic effects of aluminum (Al) on root growth; however, the mechanistic basis of this process remains elusive. This study filled this knowledge gap, demonstrating that boron modifies auxin distribution and transport in Al-exposed Arabidopsis roots. In B-deprived roots, treatment with Al induced an increase in auxin content in the root apical meristem zone (MZ) and transition zone (TZ), whereas in the elongation zone (EZ) the auxin content was decreased beyond the level required for adequate growth. These distribution patterns are explained by the fact that basipetal auxin transport from the TZ to the EZ was disrupted by Al-inhibited PIN-FORMED 2 (PIN2) endocytosis. Experiments involving the modulation of protein biosynthesis by cycloheximide (CHX) and transcriptional regulation by cordycepin (COR) demonstrated that the Al-induced increase of PIN2 membrane proteins was dependent upon the inhibition of PIN2 endocytosis, rather than on the transcriptional regulation of the PIN2 gene. Experiments reporting on the profiling of Al3+ and PIN2 proteins revealed that the inhibition of endocytosis of PIN2 proteins was the result of Al-induced limitation of the fluidity of the plasma membrane. The supply of B mediated the turnover of PIN2 endosomes conjugated with indole-3-acetic acid (IAA), and thus restored the Al-induced inhibition of IAA transport through the TZ to the EZ. Overall, the reported results demonstrate that boron supply mediates PIN2 endosome-based auxin transport to alleviate Al toxicity in plant roots.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Boro/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo
5.
Cell ; 138(1): 90-103, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596237

RESUMEN

Telomeres protect chromosome ends through the interaction of telomeric repeats with shelterin, a protein complex that represses DNA damage signaling and DNA repair reactions. The telomeric repeats are maintained by telomerase, which solves the end replication problem. We report that the TTAGGG repeat arrays of mammalian telomeres pose a challenge to the DNA replication machinery, giving rise to replication-dependent defects that resemble those of aphidicolin-induced common fragile sites. Gene deletion experiments showed that efficient duplication of telomeres requires the shelterin component TRF1. Without TRF1, telomeres activate the ATR kinase in S phase and show a fragile-site phenotype in metaphase. Single-molecule analysis of replicating telomeres showed that TRF1 promotes efficient replication of TTAGGG repeats and prevents fork stalling. Two helicases implicated in the removal of G4 DNA structures, BLM and RTEL1, were required to repress the fragile-telomere phenotype. These results identify a second telomere replication problem that is solved by the shelterin component TRF1.


Asunto(s)
Sitios Frágiles del Cromosoma , Replicación del ADN , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Afidicolina , Cromosomas de los Mamíferos/metabolismo , Humanos , Metafase , Ratones , Proteína 1 de Unión a Repeticiones Teloméricas/genética
6.
Nucleic Acids Res ; 50(9): 5047-5063, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489064

RESUMEN

Telomeres, the ends of linear chromosomes, are composed of repetitive DNA sequences, histones and a protein complex called shelterin. How DNA is packaged at telomeres is an outstanding question in the field with significant implications for human health and disease. Here, we studied the architecture of telomeres and their spatial association with other chromatin domains in different cell types using correlative light and electron microscopy. To this end, the shelterin protein TRF1 or TRF2 was fused in tandem to eGFP and the peroxidase APEX2, which provided a selective and electron-dense label to interrogate telomere organization by transmission electron microscopy, electron tomography and scanning electron microscopy. Together, our work reveals, for the first time, ultrastructural insight into telomere architecture. We show that telomeres are composed of a dense and highly compacted mesh of chromatin fibres. In addition, we identify marked differences in telomere size, shape and chromatin compaction between cancer and non-cancer cells and show that telomeres are in direct contact with other heterochromatin regions. Our work resolves the internal architecture of telomeres with unprecedented resolution and advances our understanding of how telomeres are organized in situ.


Asunto(s)
Telómero/ultraestructura , Humanos , Microscopía Electrónica , Complejo Shelterina , Telómero/genética , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
7.
PLoS Genet ; 17(3): e1009410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690611

RESUMEN

The telomere-bound shelterin complex is essential for chromosome-end protection and genomic stability. Little is known on the regulation of shelterin components by extracellular signals including developmental and environmental cues. Here, we show that human TRF1 is subjected to AKT-dependent regulation. To study the importance of this modification in vivo, we generate knock-in human cell lines carrying non-phosphorylatable mutants of the AKT-dependent TRF1 phosphorylation sites by CRISPR-Cas9. We find that TRF1 mutant cells show decreased TRF1 binding to telomeres and increased global and telomeric DNA damage. Human cells carrying non-phosphorylatable mutant TRF1 alleles show accelerated telomere shortening, demonstrating that AKT-dependent TRF1 phosphorylation regulates telomere maintenance in vivo. TRF1 mutant cells show an impaired response to proliferative extracellular signals as well as a decreased tumorigenesis potential. These findings indicate that telomere protection and telomere length can be regulated by extracellular signals upstream of PI3K/AKT activation, such as growth factors, nutrients or immune regulators, and this has an impact on tumorigenesis potential.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Telómero/genética , Telómero/metabolismo , Animales , Daño del ADN , Inestabilidad Genómica , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Acortamiento del Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
8.
Biophys J ; 122(10): 1822-1832, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37081787

RESUMEN

Telomeres, complexes of DNA and proteins, protect ends of linear chromosomes. In humans, the two shelterin proteins TRF1 and TIN2, along with cohesin subunit SA1, were proposed to mediate telomere cohesion. Although the ability of the TRF1-TIN2 and TRF1-SA1 systems to compact telomeric DNA by DNA-DNA bridging has been reported, the function of the full ternary TRF1-TIN2-SA1 system has not been explored in detail. Here, we quantify the compaction of nanochannel-stretched DNA by the ternary system, as well as its constituents, and obtain estimates of the relative impact of its constituents and their interactions. We find that TRF1, TIN2, and SA1 work synergistically to cause a compaction of the DNA substrate, and that maximal compaction occurs if all three proteins are present. By altering the sequence with which DNA substrates are exposed to proteins, we establish that compaction by TRF1 and TIN2 can proceed through binding of TRF1 to DNA, followed by compaction as TIN2 recognizes the previously bound TRF1. We further establish that SA1 alone can also lead to a compaction, and that compaction in a combined system of all three proteins can be understood as an additive effect of TRF1-TIN2 and SA1-based compaction. Atomic force microscopy of intermolecular aggregation confirms that a combination of TRF1, TIN2, and SA1 together drive strong intermolecular aggregation as it would be required during chromosome cohesion.


Asunto(s)
Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Humanos , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Complejo Shelterina , ADN
9.
J Am Chem Soc ; 145(19): 10872-10879, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37141574

RESUMEN

Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.


Asunto(s)
Telómero , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Proteínas/genética , Línea Celular , Complejo de la Endopetidasa Proteasomal/metabolismo
10.
Chemistry ; 29(55): e202300970, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37332024

RESUMEN

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells. We have shown in vitro within SPR experiments that our modified peptide PEP1 molecule interacts with TRF1, presumably at the site originally occupied by the TIN2 protein. Disturbance of the shelterin complex by studied molecule may not in short term lead to cytotoxic effects, however blocking TRF1-TIN2 resulted in cellular senescence in cellular breast cancer lines used as a cancer model. Thus, our compounds appeared useful as starting model compounds for precise blockage of TRF proteins.


Asunto(s)
Complejo Shelterina , Proteína 2 de Unión a Repeticiones Teloméricas , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Telómero/metabolismo , Péptidos/farmacología
11.
Nucleic Acids Res ; 49(2): 760-775, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33347580

RESUMEN

Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.


Asunto(s)
Micromanipulación/métodos , Telómero/ultraestructura , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Biotinilación , Digoxigenina , Humanos , Secuencias Invertidas Repetidas , Células K562 , Imanes , Complejo Shelterina , Imagen Individual de Molécula , Telómero/química , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/fisiología
12.
PLoS Genet ; 16(6): e1008799, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32502208

RESUMEN

TRF2 and TRF1 are a key component in shelterin complex that associates with telomeric DNA and protects chromosome ends. BRM is a core ATPase subunit of SWI/SNF chromatin remodeling complex. Whether and how BRM-SWI/SNF complex is engaged in chromatin end protection by telomeres is unknown. Here, we report that depletion of BRM does not affect heterochromatin state of telomeres, but results in telomere dysfunctional phenomena including telomere uncapping and replication defect. Mechanistically, expression of TRF2 and TRF1 is jointly regulated by BRM-SWI/SNF complex, which is localized to promoter region of both genes and facilitates their transcription. BRM-deficient cells bear increased TRF2-free or TRF1-free telomeres due to insufficient expression. Importantly, BRM depletion-induced telomere uncapping or replication defect can be rescued by compensatory expression of exogenous TRF2 or TRF1, respectively. Together, these results identify a new function of BRM-SWI/SNF complex in enabling functional telomeres for maintaining genome stability.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Factores de Transcripción/metabolismo , Inestabilidad Genómica , Células HEK293 , Células HeLa , Células Hep G2 , Heterocromatina/metabolismo , Humanos , Regiones Promotoras Genéticas , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/genética
13.
J Biol Chem ; 297(3): 101080, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34403696

RESUMEN

TIN2 is a core component of the shelterin complex linking double-stranded telomeric DNA-binding proteins (TRF1 and TRF2) and single-strand overhang-binding proteins (TPP1-POT1). In vivo, the large majority of TRF1 and TRF2 exist in complexes containing TIN2 but lacking TPP1/POT1; however, the role of TRF1-TIN2 interactions in mediating interactions with telomeric DNA is unclear. Here, we investigated DNA molecular structures promoted by TRF1-TIN2 interaction using atomic force microscopy (AFM), total internal reflection fluorescence microscopy (TIRFM), and the DNA tightrope assay. We demonstrate that the short (TIN2S) and long (TIN2L) isoforms of TIN2 facilitate TRF1-mediated DNA compaction (cis-interactions) and DNA-DNA bridging (trans-interactions) in a telomeric sequence- and length-dependent manner. On the short telomeric DNA substrate (six TTAGGG repeats), the majority of TRF1-mediated telomeric DNA-DNA bridging events are transient with a lifetime of ~1.95 s. On longer DNA substrates (270 TTAGGG repeats), TIN2 forms multiprotein complexes with TRF1 and stabilizes TRF1-mediated DNA-DNA bridging events that last on the order of minutes. Preincubation of TRF1 with its regulator protein Tankyrase 1 and the cofactor NAD+ significantly reduced TRF1-TIN2 mediated DNA-DNA bridging, whereas TIN2 protected the disassembly of TRF1-TIN2 mediated DNA-DNA bridging upon Tankyrase 1 addition. Furthermore, we showed that TPP1 inhibits TRF1-TIN2L-mediated DNA-DNA bridging. Our study, together with previous findings, supports a molecular model in which protein assemblies at telomeres are heterogeneous with distinct subcomplexes and full shelterin complexes playing distinct roles in telomere protection and elongation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Moléculas de Adhesión Celular/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Complejo Shelterina/metabolismo , Complejo Shelterina/fisiología , Telómero/metabolismo , Proteínas de Unión a Telómeros/fisiología , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología
14.
Reprod Biomed Online ; 44(6): 1090-1100, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35397997

RESUMEN

RESEARCH QUESTION: How do age and normo- or oligoasthenozoospermia affect telomere length dynamics in spermatozoa and blood? DESIGN: Sperm and blood samples were collected from a cohort of 37 men aged 25 and under and 40 men aged 40 and over, with either normozoospermia (NZ) or oligoasthenozoospermia (OAZ). Telomere length was evaluated using quantitative fluorescence in-situ hybridization. Telomerase mRNA (TERC and TERT) and shelterin (TRF1) gene expression were analysed using quantitative real-time polymerase chain reaction. TRF1 protein immunoreactivity was also evaluated using immunofluorescence. RESULTS: Mean sperm telomere length (STL) increased with age in the NZ group; older NZ men accumulated the longest telomeres (P < 0.001). In peripheral blood mononuclear cells (PBMC), mean telomere length decreased with age in NZ groups, although not reaching statistical significance. Interestingly, the younger OAZ group had the shortest mean telomere length (versus young NZ, P = 0.0081; versus old NZ, P = 0.0116; versus old OAZ, P = 0.0009) and accumulated the highest percentage of short telomeres compared with the other groups (overall P = 0.0017). Analysis of TERC and TERT mRNA expression in spermatozoa and PBMC did not show significant differences among groups. Statistically significant positive correlations were found between STL and seminal parameters in younger NZ men (P = 0.009 for sperm count and P = 0.007 for total progressive motility). Protein immunoreactivity of TRF1 in blood was not significantly different in all groups analysed. CONCLUSIONS: The OAZ group did not show the increase of STL with age that is seen in NZ individuals, suggesting that telomere length elongation mechanisms fail in OAZ patients. In PBMC, younger OAZ individuals showed significantly shorter mean telomere length, suggesting that this parameter could be a good biomarker of OAZ in younger OAZ patients. Telomerase gene and TRF1 mRNA expression and TRF1 protein immunoreactivity did not differ significantly between groups, and so these factors cannot be used as OAZ biomarkers.


Asunto(s)
Telomerasa , Proteína 1 de Unión a Repeticiones Teloméricas , Adulto , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , Espermatozoides/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
15.
Genes Dev ; 28(22): 2477-91, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25344324

RESUMEN

The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.


Asunto(s)
Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Repeticiones de Microsatélite/genética , RecQ Helicasas/metabolismo , Serina Proteasas/metabolismo , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Activación Enzimática , Técnicas de Inactivación de Genes , Mutación , Unión Proteica , RecQ Helicasas/genética , Serina Proteasas/genética , Complejo Shelterina , Transducción de Señal , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/genética
16.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142374

RESUMEN

RNA-protein interactions drive key cellular pathways such as protein translation, nuclear organization and genome stability maintenance. The human telomeric protein TRF2 binds to the long noncoding RNA TERRA through independent domains, including its N-terminal B domain. We previously demonstrated that TRF2 B domain binding to TERRA supports invasion of TERRA into telomeric double stranded DNA, leading to the formation of telomeric RNA:DNA hybrids. The other telomeric protein TRF1, which also binds to TERRA, suppresses this TRF2-associated activity by preventing TERRA-B domain interactions. Herein, we show that the binding of both TRF1 and TRF2 to TERRA depends on the ability of the latter to form G-quadruplex structures. Moreover, a cluster of arginines within the B domain is largely responsible for its binding to TERRA. On the other side, a patch of glutamates within the N-terminal A domain of TRF1 mainly accounts for the inhibition of TERRA-B domain complex formation. Finally, mouse TRF2 B domain binds to TERRA, similarly to its human counterpart, while mouse TRF1 A domain lacks the inhibitory activity. Our data shed further light on the complex crosstalk between telomeric proteins and RNAs and suggest a lack of functional conservation in mouse.


Asunto(s)
ARN Largo no Codificante , Proteína 1 de Unión a Repeticiones Teloméricas , Proteína 2 de Unión a Repeticiones Teloméricas , Animales , ADN/química , Glutamatos , Humanos , Ratones , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética
17.
RNA Biol ; 18(12): 2261-2277, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33749516

RESUMEN

Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.


Asunto(s)
Acridinas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , ARN Largo no Codificante/genética , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Células A549 , Acridinas/química , Acridinas/farmacología , Animales , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/genética , Ratones , Estructura Molecular , Trasplante de Neoplasias , Unión Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 2 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Transcripción Genética/efectos de los fármacos
18.
Nucleic Acids Res ; 47(15): 8224-8238, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31180491

RESUMEN

The CCR4-NOT complex plays an important role in the translational repression and deadenylation of mRNAs. However, little is known about the specific roles of interacting factors. We demonstrate that the DEAD-box helicases eIF4A2 and DDX6 interact directly with the MA3 and MIF domains of CNOT1 and compete for binding. Furthermore, we now show that incorporation of eIF4A2 into the CCR4-NOT complex inhibits CNOT7 deadenylation activity in contrast to DDX6 which enhances CNOT7 activity. Polyadenylation tests (PAT) on endogenous mRNAs determined that eIF4A2 bound mRNAs have longer poly(A) tails than DDX6 bound mRNAs. Immunoprecipitation experiments show that eIF4A2 does not inhibit CNOT7 association with the CCR4-NOT complex but instead inhibits CNOT7 activity. We identified a CCR4-NOT interacting factor, TAB182, that modulates helicase recruitment into the CCR4-NOT complex, potentially affecting the outcome for the targeted mRNA. Together, these data show that the fate of an mRNA is dependent on the specific recruitment of either eIF4A2 or DDX6 to the CCR4-NOT complex which results in different pathways for translational repression and mRNA deadenylation.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Exorribonucleasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión/genética , Unión Competitiva , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Exorribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Modelos Genéticos , Unión Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , Proteínas Represoras/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/genética
19.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769286

RESUMEN

The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.


Asunto(s)
Antidepresivos/toxicidad , Antipsicóticos/toxicidad , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Espermatogénesis/efectos de los fármacos , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Amitriptilina/toxicidad , Animales , Línea Celular , Escitalopram/toxicidad , Fluoxetina/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Imipramina/toxicidad , Masculino , Ratones , Mirtazapina/toxicidad , Modelos Biológicos , Olanzapina/toxicidad , Especificidad de Órganos , Reboxetina/toxicidad , Reproducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Clorhidrato de Venlafaxina/toxicidad
20.
Bioorg Chem ; 104: 104301, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011533

RESUMEN

Increasing evidence shows that long non-coding RNAs (lncRNAs) are closely associated with the development of cancers, including triple-negative breast cancer (TNBC). LncRNA FAM201A has been identified as a key regulator in some cancers. However, its role has not been explored in TNBC. In this work, we investigated the biological role and regulatory mechanism of FAM201A in TNBC. The expression pattern of FAM201A was determined by RT-qPCR analysis. The biological effect of FAM201A on cellular process of TNBC was tested using colony formation, EdU, caspase-3 activity detection, flow cytometry, wound healing, and Transwell assays. ChIP and luciferase reporter assays were performed to verify the interaction between transcription factor 3 (TCF3) and FAM201A. The interaction among FAM201A, microRNA-186-5p (miR-186-5p), and tankyrase 1 binding protein 1 (TNKS1BP1) was evaluated by luciferase reporter and RIP assays. The results showed that FAM201A expression was significantly upregulated in TNBC tissues and cells. Functionally, FAM201A knockdown inhibited TNBC cell proliferation, migration and invasion, and accelerated cell apoptosis. In mechanism, it was confirmed that FAM201A was transcriptionally activated by TCF3 and served as a sponge for miR-186-5p to upregulate TNKS1BP1 expression in TNBC cells. Collectively, our study revealed that TCF3-activated FAM201A promoted aggressive phenotypes of TNBC cells by upregulating TNKS1BP1 expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proliferación Celular , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA