Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Bacteriol ; 203(17): e0015321, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34152832

RESUMEN

Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Disulfuros/metabolismo , Exotoxinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Streptococcus pyogenes/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Disulfuros/química , Exotoxinas/genética , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Streptococcus pyogenes/química , Streptococcus pyogenes/genética
2.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466919

RESUMEN

Redox (reduction-oxidation) reactions control many important biological processes in all organisms, both prokaryotes and eukaryotes. This reaction is usually accomplished by canonical disulphide-based pathways involving a donor enzyme that reduces the oxidised cysteine residues of a target protein, resulting in the cleavage of its disulphide bonds. Focusing on human vitamin K epoxide reductase (hVKORC1) as a target and on four redoxins (protein disulphide isomerase (PDI), endoplasmic reticulum oxidoreductase (ERp18), thioredoxin-related transmembrane protein 1 (Tmx1) and thioredoxin-related transmembrane protein 4 (Tmx4)) as the most probable reducers of VKORC1, a comparative in-silico analysis that concentrates on the similarity and divergence of redoxins in their sequence, secondary and tertiary structure, dynamics, intraprotein interactions and composition of the surface exposed to the target is provided. Similarly, hVKORC1 is analysed in its native state, where two pairs of cysteine residues are covalently linked, forming two disulphide bridges, as a target for Trx-fold proteins. Such analysis is used to derive the putative recognition/binding sites on each isolated protein, and PDI is suggested as the most probable hVKORC1 partner. By probing the alternative orientation of PDI with respect to hVKORC1, the functionally related noncovalent complex formed by hVKORC1 and PDI was found, which is proposed to be a first precursor to probe thiol-disulphide exchange reactions between PDI and hVKORC1.


Asunto(s)
Dominios Proteicos , Pliegue de Proteína , Tiorredoxinas/química , Vitamina K Epóxido Reductasas/química , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo
3.
J Biomol NMR ; 74(10-11): 595-611, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32761504

RESUMEN

The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Sitios de Unión , Burkholderia pseudomallei/enzimología , Burkholderia pseudomallei/patogenicidad , Dominio Catalítico , Ligandos , Ratones , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/genética , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes , Bibliotecas de Moléculas Pequeñas/química , Solubilidad , Tiazoles/química
4.
Mol Cell ; 41(4): 432-44, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21329881

RESUMEN

ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteínas del Choque Térmico HSP40/química , Chaperonas Moleculares/química , Proteína Disulfuro Reductasa (Glutatión)/química , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ratones , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Pliegue de Proteína , Transducción de Señal , Transfección
5.
J Bacteriol ; 200(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29440253

RESUMEN

The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbACd). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbACm) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro, we demonstrated that MdbACm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbACm in the C. diphtheriae ΔmdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbACm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in ActinobacteriaIMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide bond formation in vitro Furthermore, a new gene deletion method revealed that deletion of mdbA is lethal in C. matruchotii Remarkably, C. matruchotii MdbA can replace C. diphtheriae MdbA to maintain normal cell growth and morphology, toxin production, and pilus assembly. Overall, our studies support the hypothesis that C. matruchotii utilizes MdbA as a major oxidoreductase to catalyze oxidative protein folding.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium/enzimología , Corynebacterium/genética , Proteína Disulfuro Reductasa (Glutatión)/química , Proteínas Bacterianas/genética , Biopelículas , Catálisis , Corynebacterium diphtheriae/enzimología , Corynebacterium diphtheriae/genética , Disulfuros/química , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Eliminación de Gen , Genoma Bacteriano , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Proteína Disulfuro Reductasa (Glutatión)/genética
6.
J Biol Chem ; 292(32): 13154-13167, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28634234

RESUMEN

In many Gram-negative bacteria, including Rhodobacter capsulatus, cytochrome c maturation (Ccm) is carried out by a membrane-integral machinery composed of nine proteins (CcmA to I). During this process, the periplasmic thiol-disulfide oxidoreductase DsbA is thought to catalyze the formation of a disulfide bond between the Cys residues at the apocytochrome c heme-binding site (CXXCH). Subsequently, a Ccm-specific thioreductive pathway involving CcmG and CcmH reduces this disulfide bond to allow covalent heme ligation. Currently, the sequence of thioredox reactions occurring between these components and apocytochrome c and the identity of their active Cys residues are unknown. In this work, we first investigated protein-protein interactions among the apocytochrome c, CcmG, and the heme-ligation components CcmF, CcmH, and CcmI. We found that they all interact with each other, forming a CcmFGHI-apocytochrome c complex. Using purified wild-type CcmG, CcmH, and apocytochrome c, as well as their respective Cys mutant variants, we determined the rates of thiol-disulfide exchange reactions between selected pairs of Cys residues from these proteins. We established that CcmG can efficiently reduce the disulfide bond of apocytochrome c and also resolve a mixed disulfide bond formed between apocytochrome c and CcmH. We further show that Cys-45 of CcmH and Cys-34 of apocytochrome c are most likely to form this mixed disulfide bond, which is consistent with the stereo-specificity of the heme-apocytochrome c ligation reaction. We conclude that CcmG confers efficiency, and CcmH ensures stereo-specificity during Ccm and present a comprehensive model for thioreduction reactions that lead to heme-apocytochrome c ligation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Citocromos c/metabolismo , Modelos Biológicos , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Rhodobacter capsulatus/enzimología , Sustitución de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cisteína/química , Cisteína/metabolismo , Cistina/química , Cistina/metabolismo , Citocromos c/química , Hemo/metabolismo , Mutación , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo
7.
Immunity ; 30(1): 21-32, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19119025

RESUMEN

Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 A resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Péptidos/inmunología , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/química , Animales , Línea Celular , Cristalografía por Rayos X , Dimerización , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Estructura Cuaternaria de Proteína
8.
Plant Physiol ; 170(2): 774-89, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26645455

RESUMEN

Most proteins produced in the endoplasmic reticulum (ER) of eukaryotic cells fold via disulfide formation (oxidative folding). Oxidative folding is catalyzed by protein disulfide isomerase (PDI) and PDI-related ER protein thiol disulfide oxidoreductases (ER oxidoreductases). In yeast and mammals, ER oxidoreductin-1s (Ero1s) supply oxidizing equivalent to the active centers of PDI. In this study, we expressed recombinant soybean Ero1 (GmERO1a) and found that GmERO1a oxidized multiple soybean ER oxidoreductases, in contrast to mammalian Ero1s having a high specificity for PDI. One of these ER oxidoreductases, GmPDIM, associated in vivo and in vitro with GmPDIL-2, was unable to be oxidized by GmERO1a. We therefore pursued the possible cooperative oxidative folding by GmPDIM, GmERO1a, and GmPDIL-2 in vitro and found that GmPDIL-2 synergistically accelerated oxidative refolding. In this process, GmERO1a preferentially oxidized the active center in the A': domain among the A: , A': , and B: domains of GmPDIM. A disulfide bond introduced into the active center of the A': domain of GmPDIM was shown to be transferred to the active center of the A: domain of GmPDIM and the A: domain of GmPDIM directly oxidized the active centers of both the A: or A': domain of GmPDIL-2. Therefore, we propose that the relay of an oxidizing equivalent from one ER oxidoreductase to another may play an essential role in cooperative oxidative folding by multiple ER oxidoreductases in plants.


Asunto(s)
Glycine max/enzimología , Oxidorreductasas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/metabolismo , Catálisis , Disulfuros/metabolismo , Retículo Endoplásmico/enzimología , Oxidación-Reducción , Oxidorreductasas/genética , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/genética , Pliegue de Proteína , Proteínas Recombinantes , Glycine max/genética
9.
Biochemistry ; 55(2): 313-21, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26684934

RESUMEN

Glutaredoxins (GRXs) are thiol-disulfide oxidoreductases abundant in prokaryotes, although little is understood of these enzymes from the domain Archaea. The numerous characterized GRXs from the domain Bacteria utilize a diversity of low-molecular-weight thiols in addition to glutathione as reductants. We report here the biochemical and structural properties of a GRX-like protein named methanoredoxin (MRX) from Methanosarcina acetivorans of the domain Archaea. MRX utilizes coenzyme M (CoMSH) as reductant for insulin disulfide reductase activity, which adds to the diversity of thiol protectants in prokaryotes. Cell-free extracts of M. acetivorans displayed CoMS-SCoM reductase activity that complements the CoMSH-dependent activity of MRX. The crystal structure exhibits a classic thioredoxin-glutaredoxin fold comprising three α-helices surrounding four antiparallel ß-sheets. A pocket on the surface contains a CVWC motif, identifying the active site with architecture similar to GRXs. Although it is a monomer in solution, the crystal lattice has four monomers in a dimer of dimers arrangement. A cadmium ion is found within the active site of each monomer. Two such ions stabilize the N-terminal tails and dimer interfaces. Our modeling studies indicate that CoMSH and glutathione (GSH) bind to the active site of MRX similar to the binding of GSH in GRXs, although there are differences in the amino acid composition of the binding motifs. The results, combined with our bioinformatic analyses, show that MRX represents a class of GRX-like enzymes present in a diversity of methane-producing Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Glutarredoxinas/metabolismo , Mesna/metabolismo , Methanosarcina/metabolismo , Proteínas Arqueales/química , Glutarredoxinas/química , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Estructura Secundaria de Proteína
10.
J Biol Chem ; 290(35): 21393-405, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26170452

RESUMEN

Export of cell surface pilins in Gram-positive bacteria likely occurs by the translocation of unfolded precursor polypeptides; however, how the unfolded pilins gain their native conformation is presently unknown. Here, we present physiological studies to demonstrate that the FimA pilin of Actinomyces oris contains two disulfide bonds. Alanine substitution of cysteine residues forming the C-terminal disulfide bridge abrogates pilus assembly, in turn eliminating biofilm formation and polymicrobial interaction. Transposon mutagenesis of A. oris yielded a mutant defective in adherence to Streptococcus oralis, and revealed the essential role of a vitamin K epoxide reductase (VKOR) gene in pilus assembly. Targeted deletion of vkor results in the same defects, which are rescued by ectopic expression of VKOR, but not a mutant containing an alanine substitution in its conserved CXXC motif. Depletion of mdbA, which encodes a membrane-bound thiol-disulfide oxidoreductase, abrogates pilus assembly and alters cell morphology. Remarkably, overexpression of MdbA or a counterpart from Corynebacterium diphtheriae, rescues the Δvkor mutant. By alkylation assays, we demonstrate that VKOR is required for MdbA reoxidation. Furthermore, crystallographic studies reveal that A. oris MdbA harbors a thioredoxin-like fold with the conserved CXXC active site. Consistently, each MdbA enzyme catalyzes proper disulfide bond formation within FimA in vitro that requires the catalytic CXXC motif. Because the majority of signal peptide-containing proteins encoded by A. oris possess multiple Cys residues, we propose that MdbA and VKOR constitute a major folding machine for the secretome of this organism. This oxidative protein folding pathway may be a common feature in Actinobacteria.


Asunto(s)
Actinomyces/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Vitamina K Epóxido Reductasas/metabolismo , Actinomyces/química , Actinomyces/citología , Actinomyces/genética , Actinomicosis/microbiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Cristalografía por Rayos X , Disulfuros/química , Disulfuros/metabolismo , Proteínas Fimbrias/química , Fimbrias Bacterianas/química , Eliminación de Gen , Humanos , Interacciones Microbianas , Modelos Moleculares , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Vitamina K Epóxido Reductasas/química , Vitamina K Epóxido Reductasas/genética
11.
Mol Microbiol ; 98(6): 1037-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26294390

RESUMEN

The Gram-positive pathogen Corynebacterium diphtheriae exports through the Sec apparatus many extracellular proteins that include the key virulence factors diphtheria toxin and the adhesive pili. How these proteins attain their native conformations after translocation as unfolded precursors remains elusive. The fact that the majority of these exported proteins contain multiple cysteine residues and that several membrane-bound oxidoreductases are encoded in the corynebacterial genome suggests the existence of an oxidative protein-folding pathway in this organism. Here we show that the shaft pilin SpaA harbors a disulfide bond in vivo and alanine substitution of these cysteines abrogates SpaA polymerization and leads to the secretion of degraded SpaA peptides. We then identified a thiol-disulfide oxidoreductase (MdbA), whose structure exhibits a conserved thioredoxin-like domain with a CPHC active site. Remarkably, deletion of mdbA results in a severe temperature-sensitive cell division phenotype. This mutant also fails to assemble pilus structures and is greatly defective in toxin production. Consistent with these defects, the ΔmdbA mutant is attenuated in a guinea pig model of diphtheritic toxemia. Given its diverse cellular functions in cell division, pilus assembly and toxin production, we propose that MdbA is a component of the general oxidative folding machine in C. diphtheriae.


Asunto(s)
Corynebacterium diphtheriae/enzimología , Corynebacterium diphtheriae/patogenicidad , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/aislamiento & purificación , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Corynebacterium diphtheriae/fisiología , Difteria/microbiología , Toxina Diftérica/biosíntesis , Toxina Diftérica/sangre , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Cobayas , Viabilidad Microbiana , Mutación , Fenotipo , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Toxemia/microbiología , Virulencia/genética
12.
BMC Microbiol ; 15: 135, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26141380

RESUMEN

BACKGROUND: In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE. RESULTS: The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori. CONCLUSIONS: The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Genes Esenciales , Helicobacter pylori/química , Familia de Multigenes , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Isomerasas/química , Replegamiento Proteico , Ribonucleasas/química
13.
Extremophiles ; 18(2): 219-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24306780

RESUMEN

Protein disulfide oxidoreductases (PDOs) are proteins involved in disulfide bond formation playing a crucial role in adaptation to extreme environment. This paper reports the functional and structural characterization of Sso1120, a PDO from the hyperthermophilic archaeon Sulfolobus solfataricus. The protein was expressed in Escherichia coli and purified to homogeneity. The functional characterization showed that the enzyme has reductase activity, as tested by insulin assay, but differently from the other PDOs, it does not present isomerase activity. In addition it is able to form a redox couple with the thioredoxin reductase that could be used in undiscovered pathways. The protein revealed a melting point of around 90 °C in CD spectroscopy-monitored thermal denaturation and high denaturant resistance. The X-ray crystallographic structure was solved at 1.80 Å resolution, showing differences with respect to other PDOs and an unexpected similarity with the N-terminal domain of the alkyl hydroperoxide reductase F component from Salmonella typhimurium. On the basis of the reported data and of bioinformatics and phylogenetic analyses, a possible involvement of this atypical PDO in a new antioxidant system of S. solfataricus has been proposed.


Asunto(s)
Proteínas Arqueales/química , Proteína Disulfuro Reductasa (Glutatión)/química , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Estructura Terciaria de Proteína , Compuestos de Sulfhidrilo/metabolismo
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 735-46, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633582

RESUMEN

Maturation of cytochrome c is carried out in the bacterial periplasm, where specialized thiol-disulfide oxidoreductases provide the correct reduction of oxidized apocytochrome c before covalent haem attachment. HP0377 from Helicobacter pylori is a thioredoxin-fold protein that has been implicated as a component of system II for cytochrome c assembly and shows limited sequence similarity to Escherichia coli DsbC, a disulfide-bond isomerase. To better understand the role of HP0377, its crystal structures have been determined in both reduced and partially oxidized states, which are highly similar to each other. Sedimentation-equilibrium experiments indicate that HP0377 is monomeric in solution. HP0377 adopts a thioredoxin fold but shows distinctive variations as in other thioredoxin-like bacterial periplasmic proteins. The active site of HP0377 closely resembles that of E. coli DsbC. A reductase assay suggests that HP0377 may play a role as a reductase in the biogenesis of holocytochrome c553 (HP1227). Binding experiments indicate that it can form a covalent complex with HP0518, a putative L,D-transpeptidase with a catalytic cysteine residue, via a disulfide bond. Furthermore, physicochemical properties of HP0377 and its R86A variant have been determined. These results suggest that HP0377 may perform multiple functions as a reductase in H. pylori.


Asunto(s)
Proteínas Bacterianas/química , Helicobacter pylori/química , Proteína Disulfuro Reductasa (Glutatión)/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Citocromos c/metabolismo , Helicobacter pylori/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/metabolismo , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/metabolismo
15.
Fish Shellfish Immunol ; 33(3): 667-73, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22789714

RESUMEN

Thioredoxin domain-containing protein 12 (Txndc12) belongs to the thioredoxin superfamily, and has roles in redox regulation, defense against oxidative stress, refolding of disulfide-containing proteins, and regulation of transcription factors. In this study, a thioredoxin domain-containing protein 12 was cloned from the marine fish grouper, Epinephelus coioides by RACE PCR, named as Ec-Txndc12. The Ec-Txndc12 encodes 173 amino acid residues with signal peptide in its N-terminal and a thioredoxin (Trx) domain that is homologous with some genes in Mus musculus, Xenopus laveis, etc. Ec-Txndc12 mRNA is predominately expressed in liver, brain and muscle. The expression of Ec-Txndc12 was up-regulated in the liver of grouper challenged with SGIV. In order to elucidate its biological functions, Ec-Txndc12 was recombined and expressed in Escherichia coli BL21 (DE3). The rEc-Txndc12 fusion protein was demonstrated to possess the antioxidant activity. The grouper spleen (GS) cells were treated with a high concentration of rEc-Txndc12 (30 µg/ml), which significantly enhanced cells viability under oxidative damage caused by viral infection. These results together indicated that Ec-Txndc12 could function as an important antioxidant in a physiological context, and might be involved in the responses to viral challenge.


Asunto(s)
Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN Complementario/genética , Proteínas de Peces/química , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Especificidad de Órganos , Perciformes/inmunología , Perciformes/virología , Filogenia , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/inmunología , ARN Mensajero/análisis , Ranavirus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Proteins ; 79(2): 428-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21117079

RESUMEN

NMR coupling constants, both direct one-bond ((1)J) and geminal two-bond ((2)J), are employed to analyze the protein secondary structure of human oxidized ERp18. Coupling constants collected and evaluated for the 18 kDa protein comprise 1268 values of (1)J(CαHα), (1)J(CαCß), (1)J(CαC'), (1)J(C'N'), (1)J(N'Cα), (1)J(N') (HN), (2)J(CαN'), (2)J(HNCα), (2)J(C'HN), and (2)J(HαC'). Comparison with (1)J and (2)J data from reference proteins and pattern analysis on a per-residue basis permitted main-chain ϕ,ψ torsion-angle combinations of many of the 149 amino-acid residues in ERp18 to be narrowed to particular secondary-structure motifs. J-coupling indexing is here being developed on statistical criteria and used to devise a ternary grid for interpreting patterns of relative values of J. To account for the influence of the varying substituent pattern in different amino-acid sidechains, a table of residue-type specific threshold values was compiled for discriminating small, medium, and large categories of J. For the 15-residue insertion that distinguishes the ERp18 fold from that of thioredoxin, the J-coupling data hint at a succession of five isolated Type-I ß turns at progressively shorter sequence intervals, in agreement with the crystal structure.


Asunto(s)
Proteína Disulfuro Reductasa (Glutatión)/química , Secuencia de Aminoácidos , Simulación por Computador , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión
17.
Trends Microbiol ; 17(1): 6-12, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19059781

RESUMEN

Thiol-disulfide oxidoreductases (TDORs) catalyze thiol-disulfide exchange reactions that are crucial for protein activity and stability. Specifically, they can function as thiol oxidases, disulfide reductases or disulfide isomerases. The generally established view is that particular TDORs act unidirectionally within a fixed cascade of specific, sequentially arranged reactions. However, recent studies on both Gram-negative and Gram-positive bacteria imply that this view needs to be expanded, at least for thiol-disulfide exchanges in proteins that are exported from the cytoplasm. Here, we present our opinion that various TDORs can function as interchangeable modules in different thiol-disulfide exchange pathways. Such TDOR modules, thus, fulfil important functions in generating the diversity in activity and specificity that is needed in productive extracytoplasmic thiol-disulfide exchange.


Asunto(s)
Bacillus subtilis/metabolismo , Disulfuros/metabolismo , Escherichia coli/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Disulfuros/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Compuestos de Sulfhidrilo/química
18.
Proteins ; 78(10): 2213-21, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20544959

RESUMEN

The cytochrome c maturation process is carried out in the bacterial periplasm, where some specialized thiol-disulfide oxidoreductases work in close synergy for the correct reduction of oxidized apocytochrome before covalent heme attachment. We present a structural and functional characterization of the soluble periplasmic domain of CcmG from the opportunistic pathogen P. aeruginosa (Pa-CcmG), a component of the protein machinery involved in cyt c maturation in gram-negative bacteria. X-ray crystallography reveals that Pa-CcmG is a TRX-like protein; high-resolution crystal structures show that the oxidized and the reduced forms of the enzyme are identical except for the active-site disulfide. The standard redox potential was calculated to be E(0') = -0.213 V at pH 7.0; the pK(a) of the active site thiols were pK(a) = 6.13 +/- 0.05 for the N-terminal Cys74 and pK(a) = 10.5 +/- 0.17 for the C-terminal Cys77. Experiments were carried out to characterize and isolate the mixed disulfide complex between Pa-CcmG and Pa-CcmH (the other redox active component of System I in P. aeruginosa). Our data indicate that the target disulfide of this TRX-like protein is not the intramolecular disulfide of oxidized Pa-CcmH, but the intermolecular disulfide formed between Cys28 of Pa-CcmH and DTNB used for the in vitro experiments. This observation suggests that, in vivo, the physiological substrate of Pa-CcmG may be the mixed-disulfide complex between Pa-CcmH and apo-cyt.


Asunto(s)
Proteínas Bacterianas/química , Citocromos c/biosíntesis , Proteínas de la Membrana/química , Proteína Disulfuro Reductasa (Glutatión)/química , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/genética , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Tiorredoxinas/química
19.
Biochemistry ; 48(21): 4596-606, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19361226

RESUMEN

Here we report the solution structure of oxidized ERp18 as determined using NMR spectroscopy. ERp18 is the smallest member of the protein disulfide isomerase (PDI) family of proteins to contain a Cys-Xxx-Xxx-Cys active site motif. It is an 18 kDa endoplasmic reticulum resident protein with unknown function although sequence similarity to individual domains of the thiol-disulfide oxidoreductase PDI suggests ERp18 may have a similar structure and function. Like the catalytic domains of PDI, ERp18 adopts a thioredoxin fold with a thioredoxin-like active site located at the N-terminus of a long kinked helix that spans the length of the protein. Comparison of backbone chemical shifts for oxidized and reduced ERp18 shows the majority of residues possess the same backbone conformation in both states, with differences limited to the active site and regions in close proximity. S(2) order parameters from NMR backbone dynamics were found to be 0.81 for oxidized and 0.91 for reduced ERp18, and these observations, in combination with amide hydrogen exchange rates, imply a more rigid and compact backbone for the reduced structure. These observations support a putative role for ERp18 within the cell as an oxidase, introducing disulfide bonds to substrate proteins, providing structural confirmation of ERp18's role as a thiol-disulfide oxidoreductase.


Asunto(s)
Retículo Endoplásmico/enzimología , Proteína Disulfuro Reductasa (Glutatión)/química , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Animales , Secuencia Conservada , Humanos , Hidrógeno/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/biosíntesis , Proteína Disulfuro Reductasa (Glutatión)/aislamiento & purificación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones , Tiorredoxinas/química , Tiorredoxinas/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 3): 229-40, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19237745

RESUMEN

The periplasmic thiol-disulfide oxidoreductase SoxS is beneficial for the sulfur-oxidizing (Sox) phenotype of the facultative chemotrophic bacterium Paracoccus pantotrophus and is not part of the Sox enzyme system. SoxS combines features of thioredoxins, glutaredoxins and the thiol-disulfide oxidoreductases of the Dsb family in structure, target specificity and reaction. The structure of SoxS was solved in oxidized and reduced forms at 2.1 and 1.9 A resolution, respectively. SoxS revealed high structural homology to typical cytoplasmic bacterial thioredoxins. In contrast, SoxS contained the active-site motif Pro-Gly-Cys-Leu-Tyr-Cys that is not present in other thioredoxins. Interestingly, the sequence of this motif is closely related to the Pro-Gly-Cys-Pro-Tyr-Cys sequence of some glutaredoxins and to the Pro-Xaa-Cys-Xaa-Tyr-Cys sequences of some members of the DsbC and DsbG subfamilies of thiol-disulfide oxidoreductases. Furthermore, the proposed substrate of SoxS, the interprotein disulfide of SoxY, Cys110(Y)-Cys110(Y), is structurally similar to oxidized glutathione. However, SoxS is proposed to specifically reduce the interprotein disulfide between two SoxY subunits, releasing a heterodimeric SoxYZ as an active part of the sulfur-oxidation cycle.


Asunto(s)
Proteínas Bacterianas/química , Paracoccus pantotrophus/enzimología , Proteína Disulfuro Reductasa (Glutatión)/química , Azufre/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Disulfuros/metabolismo , Glutarredoxinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Conformación Proteica , Proteína Disulfuro Reductasa (Glutatión)/fisiología , Proteínas Recombinantes de Fusión/química , Selenometionina/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Tiorredoxinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA