RESUMEN
Fluorescent protein tags are convenient tools for tracking the aggregation states of amyloidogenic or phase separating proteins, but the effect of the tags is often not well understood. Here, we investigated the impact of a C-terminal red fluorescent protein (RFP) tag on the phase separation of huntingtin exon-1 (Httex1), an N-terminal portion of the huntingtin protein that aggregates in Huntington's disease. We found that the RFP-tagged Httex1 rapidly formed micron-sized, phase separated states in the presence of a crowding agent. The formed structures had a rounded appearance and were highly dynamic according to electron paramagnetic resonance and fluorescence recovery after photobleaching, suggesting that the phase separated state was largely liquid in nature. Remarkably, the untagged protein did not undergo any detectable liquid condensate formation under the same conditions. In addition to strongly promoting liquid-liquid phase separation, the RFP tag also facilitated fibril formation, as the tag-dependent liquid condensates rapidly underwent a liquid-to-solid transition. The rate of fibril formation under these conditions was significantly faster than that of the untagged protein. When expressed in cells, the RFP-tagged Httex1 formed larger aggregates with different antibody staining patterns compared to untagged Httex1. Collectively, these data reveal that the addition of a fluorescent protein tag significantly impacts liquid and solid phase separations of Httex1 in vitro and leads to altered aggregation in cells. Considering that the tagged Httex1 is commonly used to study the mechanisms of Httex1 misfolding and toxicity, our findings highlight the importance to validate the conclusions with untagged protein.
Asunto(s)
Artefactos , Exones , Proteína Huntingtina , Enfermedad de Huntington , Mediciones Luminiscentes , Separación de Fases , Agregado de Proteínas , Proteína Fluorescente Roja , Humanos , Espectroscopía de Resonancia por Spin del Electrón , Exones/genética , Fluorescencia , Recuperación de Fluorescencia tras Fotoblanqueo , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Mediciones Luminiscentes/métodos , Proteína Fluorescente Roja/genética , Proteína Fluorescente Roja/metabolismo , Reproducibilidad de los ResultadosRESUMEN
IL-36 cytokines are emerging as beneficial in immunity against pathogens and cancers but can also be detrimental when dysregulated in autoimmune and autoinflammatory conditions. Interest in targeting IL-36 activity for therapeutic purposes is rapidly growing, yet many unknowns about the functions of these cytokines remain. Thus, the availability of robust research tools is essential for both fundamental basic science and pre-clinical studies to fully access outcomes of any manipulation of the system. For this purpose, a floxed Il1rl2, the gene encoding the IL-36 receptor, mouse strain was developed to facilitate the generation of conditional knockout mice. The targeted locus was engineered to contain an inverted mCherry reporter sequence that upon Cre-mediated recombination will be flipped and expressed under the control of the endogenous Il1rl2 promoter. This feature can be used to confirm knockout in individual cells but also as a reporter to determine which cells express the IL-36 receptor IL-1RL2. The locus was confirmed to function as intended and further used to demonstrate the expression of IL-1RL2 in barrier tissues. Il1rl2 expression was detected in leukocytes in all barrier tissues. Interestingly, strong expression was observed in epithelial cells at locations in direct contact with the environment such as the skin, oral mucosa, the esophagus, and the upper airways, but almost absent from epithelial cells at more inward facing sites, including lung alveoli, the small intestine, and the colon. These findings suggest specialized functions of IL-1RL2 in outward facing epithelial tissues and cells. The generated mouse model should prove valuable in defining such functions and may also facilitate basic and translational research.