Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nucleic Acids Res ; 46(13): 6642-6669, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29860357

RESUMEN

Mitochondrial DNA (mtDNA) mutations become more prevalent with age and are postulated to contribute to the ageing process. Point mutations of mtDNA have been suggested to originate from two main sources, i.e. replicative errors and oxidative damage, but the contribution of each of these processes is much discussed. To elucidate the origin of mtDNA mutations, we measured point mutation load in mice with deficient mitochondrial base-excision repair (BER) caused by knockout alleles preventing mitochondrial import of the DNA repair glycosylases OGG1 and MUTYH (Ogg1 dMTS, Mutyh dMTS). Surprisingly, we detected no increase in the mtDNA mutation load in old Ogg1 dMTS mice. As DNA repair is especially important in the germ line, we bred the BER deficient mice for five consecutive generations but found no increase in the mtDNA mutation load in these maternal lineages. To increase reactive oxygen species (ROS) levels and oxidative damage, we bred the Ogg1 dMTS mice with tissue specific Sod2 knockout mice. Although increased superoxide levels caused a plethora of changes in mitochondrial function, we did not detect any changes in the mutation load of mtDNA or mtRNA. Our results show that the importance of oxidative damage as a contributor of mtDNA mutations should be re-evaluated.


Asunto(s)
Reparación del ADN , ADN Mitocondrial/química , Estrés Oxidativo , Mutación Puntual , Animales , Núcleo Celular/enzimología , ADN Glicosilasas/metabolismo , Replicación del ADN , Proteínas Hierro-Azufre/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Proteómica , Superóxido Dismutasa/genética , Transcripción Genética
2.
Biochim Biophys Acta Bioenerg ; 1858(9): 771-778, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28647463

RESUMEN

Hydrogenases from green algae are linked to the photosynthetic electron transfer chain via the plant-type ferredoxin PetF. In this work the [FeFe]-hydrogenase from the Trebouxiophycean alga Chlorella variabilis NC64A (CvHydA1), which in contrast to other green algal hydrogenases contains additional FeS-cluster binding domains, was purified and specific enzyme activities for both hydrogen (H2) production and H2 oxidation were determined. Interestingly, although C. variabilis NC64A, like many Chlorophycean algal strains, exhibited light-dependent H2 production activity upon sulfur deprivation, CvHydA1 did not interact in vitro with several plant-type [2Fe-2S]-ferredoxins, but only with a bacterial2[4Fe4S]-ferredoxin. In an electrochemical characterization, the enzyme exhibited features typical of bacterial [FeFe]-hydrogenases (e.g. minor anaerobic oxidative inactivation), as well as of algal enzymes (very high oxygen sensitivity).


Asunto(s)
Proteínas Algáceas/metabolismo , Chlorella/enzimología , Ferredoxinas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/aislamiento & purificación , Secuencia de Aminoácidos , Monóxido de Carbono/farmacología , Chlamydomonas reinhardtii/química , Chlorella/efectos de la radiación , Técnicas Electroquímicas , Transporte de Electrón , Hidrógeno/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/química , Hidrogenasas/aislamiento & purificación , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/aislamiento & purificación , Luz , Modelos Moleculares , Oxidación-Reducción , Oxígeno/farmacología , Fotosíntesis , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Azufre/metabolismo
3.
Biochim Biophys Acta ; 1847(6-7): 656-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25868872

RESUMEN

A computational mechanistic model of superoxide (O2•-) formation in the mitochondrial electron transport chain (ETC) was developed to facilitate the quantitative analysis of factors controlling mitochondrial O2•- production and assist in the interpretation of experimental studies. The model takes into account all individual electron transfer reactions in Complexes I and III. The model accounts for multiple, often seemingly contradictory observations on the effects of ΔΨ and ΔpH, and for the effects of multiple substrate and inhibitor conditions, including differential effects of Complex III inhibitors antimycin A, myxothiazol and stigmatellin. Simulation results confirm that, in addition to O2•- formation in Complex III and at the flavin site of Complex I, the quinone binding site of Complex I is an additional superoxide generating site that accounts for experimental observations on O2•- production during reverse electron transfer. However, our simulation results predict that, when cytochrome c oxidase is inhibited during oxidation of succinate, ROS production at this site is eliminated and almost all superoxide in Complex I is generated by reduced FMN, even when the redox pressure for reverse electron transfer from succinate is strong. In addition, the model indicates that conflicting literature data on the kinetics of electron transfer in Complex III involving the iron-sulfur protein-cytochrome bL complex can be resolved in favor of a dissociation of the protein only after electron transfer to cytochrome bH. The model predictions can be helpful in understanding factors driving mitochondrial superoxide formation in intact cells and tissues.


Asunto(s)
Simulación por Computador , Mitocondrias/metabolismo , Modelos Teóricos , Complejos Multienzimáticos/antagonistas & inhibidores , Quinonas/metabolismo , Superóxidos/metabolismo , Grupo Citocromo b/metabolismo , Citocromos c/metabolismo , Transporte de Electrón , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Cinética , Potencial de la Membrana Mitocondrial , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Consumo de Oxígeno
4.
J Am Chem Soc ; 137(39): 12580-7, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26352172

RESUMEN

The mechanism of reaction of FeFe hydrogenases with oxygen has been debated. It is complex, apparently very dependent on the details of the protein structure, and difficult to study using conventional kinetic techniques. Here we build on our recent work on the anaerobic inactivation of the enzyme [Fourmond et al. Nat. Chem. 2014, 4, 336-342] to propose and apply a new method for studying this reaction. Using electrochemical measurements of the turnover rate of hydrogenase, we could resolve the first steps of the inhibition reaction and accurately determine their rates. We show that the two most studied FeFe hydrogenases, from Chlamydomonas reinhardtii and Clostridium acetobutylicum, react with O2 according to the same mechanism, despite the fact that the former is much more O2 sensitive than the latter. Unlike often assumed, both enzymes are reversibly inhibited by a short exposure to O2. This will have to be considered to elucidate the mechanism of inhibition, before any prediction can be made regarding which mutations will improve oxygen resistance. We hope that the approach described herein will prove useful in this respect.


Asunto(s)
Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Oxígeno/química , Dominio Catalítico , Electroquímica , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Cinética
5.
J Am Chem Soc ; 137(28): 8998-9005, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26091969

RESUMEN

The preparation and spectroscopic characterization of a CO-inhibited [FeFe] hydrogenase with a selectively (57)Fe-labeled binuclear subsite is described. The precursor [(57)Fe2(adt)(CN)2(CO)4](2-) was synthesized from the (57)Fe metal, S8, CO, (NEt4)CN, NH4Cl, and CH2O. (Et4N)2[(57)Fe2(adt)(CN)2(CO)4] was then used for the maturation of the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii, to yield the enzyme selectively labeled at the [2Fe]H subcluster. Complementary (57)Fe enrichment of the [4Fe-4S]H cluster was realized by reconstitution with (57)FeCl3 and Na2S. The Hox-CO state of [2(57)Fe]H and [4(57)Fe-4S]H HydA1 was characterized by Mössbauer, HYSCORE, ENDOR, and nuclear resonance vibrational spectroscopy.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Compuestos de Hierro/química , Proteínas Hierro-Azufre/química , Espectroscopía de Mossbauer , Monóxido de Carbono/metabolismo , Dominio Catalítico , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/metabolismo , Isótopos de Hierro/química , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares
6.
Antimicrob Agents Chemother ; 58(6): 3389-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24709262

RESUMEN

The plastid of the malaria parasite, the apicoplast, is essential for parasite survival. It houses several pathways of bacterial origin that are considered attractive sites for drug intervention. Among these is the sulfur mobilization (SUF) pathway of Fe-S cluster biogenesis. Although the SUF pathway is essential for apicoplast maintenance and parasite survival, there has been limited biochemical investigation of its components and inhibitors of Plasmodium SUFs have not been identified. We report the characterization of two proteins, Plasmodium falciparum SufS (PfSufS) and PfSufE, that mobilize sulfur in the first step of Fe-S cluster assembly and confirm their exclusive localization to the apicoplast. The cysteine desulfurase activity of PfSufS is greatly enhanced by PfSufE, and the PfSufS-PfSufE complex is detected in vivo. Structural modeling of the complex reveals proximal positioning of conserved cysteine residues of the two proteins that would allow sulfide transfer from the PLP (pyridoxal phosphate) cofactor-bound active site of PfSufS. Sulfide release from the l-cysteine substrate catalyzed by PfSufS is inhibited by the PLP inhibitor d-cycloserine, which forms an adduct with PfSufS-bound PLP. d-Cycloserine is also inimical to parasite growth, with a 50% inhibitory concentration close to that reported for Mycobacterium tuberculosis, against which the drug is in clinical use. Our results establish the function of two proteins that mediate sulfur mobilization, the first step in the apicoplast SUF pathway, and provide a rationale for drug design based on inactivation of the PLP cofactor of PfSufS.


Asunto(s)
Apicoplastos/metabolismo , Liasas de Carbono-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Plasmodium falciparum/metabolismo , Azufre/metabolismo , Antimetabolitos/farmacología , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cicloserina/farmacología , Cisteína/metabolismo , Concentración 50 Inhibidora , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/química , Modelos Moleculares , Modelos Estructurales , Mutagénesis , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Mapeo de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Fosfato de Piridoxal/metabolismo , Sulfuros/metabolismo
7.
Inorg Chem ; 53(22): 11890-902, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25345467

RESUMEN

Oxygen activation at the active sites of [FeFe] hydrogenases has been proposed to be the initial step of irreversible oxygen-induced inhibition of these enzymes. On the basis of a first theoretical study into the thermodynamics of O2 activation [Inorg. Chem. 2009, 48, 7127] we here investigate the kinetics of possible reaction paths at the distal iron atom of the active site by means of density functional theory. A sequence of steps is proposed to either form a reactive oxygen species (ROS) or fully reduce O2 to water. In this reaction cascade, two branching points are identified where water formation directly competes with harmful oxygen activation reactions. The latter are water formation by O-O bond cleavage of a hydrogen peroxide-bound intermediate competing with H2O2 dissociation and CO2 formation by a putative iron-oxo species competing with protonation of the iron-oxo species to form a hydroxyo ligand. Furthermore, we show that proton transfer to activated oxygen is fast and that proton supply to the active site is vital to prevent ROS dissociation. If sufficiently many reduction equivalents are available, oxygen activation reactions are accelerated, and oxygen reduction to water becomes possible.


Asunto(s)
Biología Computacional , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Oxígeno/química , Sitios de Unión , Clostridium/enzimología , Transferencia de Energía , Peróxido de Hidrógeno/química , Hidrogenasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Protones , Especies Reactivas de Oxígeno/química , Agua/química
8.
Proc Natl Acad Sci U S A ; 108(15): 6097-102, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21444783

RESUMEN

Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron "wires" form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O(2) to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of (57)Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S](3+) state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.


Asunto(s)
Bacterias/enzimología , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Oxígeno/química , Secuencia de Aminoácidos , Transporte de Electrón , Hidrogenasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Anotación de Secuencia Molecular , Oxidación-Reducción , Oxígeno/farmacología
9.
Angew Chem Int Ed Engl ; 53(17): 4294-310, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24481599

RESUMEN

Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Compuestos Organometálicos/farmacología , Oxidorreductasas/metabolismo , Terpenos/metabolismo , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Humanos
10.
Antimicrob Agents Chemother ; 57(6): 2476-84, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23478970

RESUMEN

Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 µM, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 µM exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 µM). At doses of 50 to 100 µM, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs.


Asunto(s)
Antitricomonas/farmacología , Hidrogenasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Orgánulos/efectos de los fármacos , Piruvato-Sintasa/efectos de los fármacos , Estilbenos/farmacología , Trichomonas vaginalis/efectos de los fármacos , Animales , Femenino , Humanos , Hidrógeno/metabolismo , Orgánulos/enzimología , Pruebas de Sensibilidad Parasitaria , Piruvato-Sintasa/metabolismo , Resveratrol , Vaginitis por Trichomonas/parasitología , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/aislamiento & purificación , Trichomonas vaginalis/ultraestructura , Regulación hacia Arriba
11.
Biochemistry ; 51(25): 5061-71, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22656860

RESUMEN

The anaerobic global regulator FNR from Escherichia coli is a [4Fe-4S](2+) cluster-containing dimer that is inactivated by O(2) through disruption of the Fe-S cluster and conversion to the monomeric apoprotein. It was shown that apo-FNR is subject to ClpXP proteolysis, and two recognition sites, amino acids 5-11 and amino acids 249 and 250, are responsible for targeting FNR to the protease. However, how the exposure of these sites is mediated such that only apo-FNR is recognized by the ClpXP protease and is degraded in a regulated manner so that a sufficient and similar FNR level is maintained in both anaerobic and aerobic conditions is unknown. To investigate this, we performed three-alanine scanning on amino acids 2-19 and 236-250 that are in the proximity of the two ClpXP recognition sites, and their functions remain unknown. We found that three-alanine substitution of residues 239-241 (LAQ239-241A(3)) and 242-244 (LAG242-244A(3)) caused reduced FNR protein levels, transcription activities, and growth rates under anaerobic conditions. In vivo degradation assays demonstrated that these mutants were degraded significantly faster than the wild type (WT), and either deletion of clpXP or blocking the ClpXP recognition site of amino acids 249 and 250 stabilizes these proteins. Circular dichroism analysis revealed that introduction of LAQ239-241A(3) caused conformational changes with a significant loss of secondary structures in both WT and an O(2) stable FNR dimer, FNR D154A. We propose that the region of amino acids 239-244 plays a negative role in the proteolysis of FNR by promoting a structural fold that limits the exposure of the proximal ClpXP site to the protease.


Asunto(s)
Regulación hacia Abajo/fisiología , Endopeptidasa Clp/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/química , Fragmentos de Péptidos/química , Secuencia Conservada , Endopeptidasa Clp/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Proteínas Hierro-Azufre/genética , Fragmentos de Péptidos/fisiología , Proteolisis , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Factores de Transcripción/fisiología
12.
Proc Natl Acad Sci U S A ; 106(20): 8344-9, 2009 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-19416816

RESUMEN

Excess copper is poisonous to all forms of life, and copper overloading is responsible for several human pathologic processes. The primary mechanisms of toxicity are unknown. In this study, mutants of Escherichia coli that lack copper homeostatic systems (copA cueO cus) were used to identify intracellular targets and to test the hypothesis that toxicity involves the action of reactive oxygen species. Low micromolar levels of copper were sufficient to inhibit the growth of both WT and mutant strains. The addition of branched-chain amino acids restored growth, indicating that copper blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster enzyme in this pathway. Other enzymes in this iron-sulfur dehydratase family were similarly affected. Inactivation did not require oxygen, in vivo or with purified enzyme. Damage occurred concomitant with the displacement of iron atoms from the solvent-exposed cluster, suggesting that Cu(I) damages these proteins by liganding to the coordinating sulfur atoms. Copper efflux by dedicated export systems, chelation by glutathione, and cluster repair by assembly systems all enhance the resistance of cells to this metal.


Asunto(s)
Cobre/toxicidad , Hidroliasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Aminoácidos/antagonistas & inhibidores , Aminoácidos/biosíntesis , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/antagonistas & inhibidores , Hierro/metabolismo , Mutación , Especies Reactivas de Oxígeno , Azufre/metabolismo
13.
Angew Chem Int Ed Engl ; 51(31): 7711-4, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22715136

RESUMEN

Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Dihidroxiacetona Fosfato/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Sitios de Unión/efectos de los fármacos , Dihidroxiacetona Fosfato/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
14.
Biochemistry ; 50(37): 7953-63, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21859080

RESUMEN

Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the µ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.


Asunto(s)
Biotina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Sulfurtransferasas/metabolismo , Biotina/química , Biotina/metabolismo , Proteínas de Escherichia coli/química , Radicales Libres/química , Radicales Libres/metabolismo , Proteínas Hierro-Azufre/química , Mutación/fisiología , Oxidación-Reducción , Estructura Secundaria de Proteína , Sulfurtransferasas/química
15.
J Biol Chem ; 285(35): 26889-26899, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20592025

RESUMEN

We discovered novel catalytic activities of two atypical NADPH-dependent oxidoreductases (EhNO1/2) from the enteric protozoan parasite Entamoeba histolytica. EhNO1/2 were previously annotated as the small subunit of glutamate synthase (glutamine:2-oxoglutarate amidotransferase) based on similarity to authentic bacterial homologs. As E. histolytica lacks the large subunit of glutamate synthase, EhNO1/2 were presumed to play an unknown role other than glutamine/glutamate conversion. Transcriptomic and quantitative reverse PCR analyses revealed that supplementation or deprivation of extracellular L-cysteine caused dramatic up- or down-regulation, respectively, of EhNO2, but not EhNO1 expression. Biochemical analysis showed that these FAD- and 2[4Fe-4S]-containing enzymes do not act as glutamate synthases, a conclusion which was supported by phylogenetic analyses. Rather, they catalyze the NADPH-dependent reduction of oxygen to hydrogen peroxide and L-cystine to L-cysteine and also function as ferric and ferredoxin-NADP(+) reductases. EhNO1/2 showed notable differences in substrate specificity and catalytic efficiency; EhNO1 had lower K(m) and higher k(cat)/K(m) values for ferric ion and ferredoxin than EhNO2, whereas EhNO2 preferred L-cystine as a substrate. In accordance with these properties, only EhNO1 was observed to physically interact with intrinsic ferredoxin. Interestingly, EhNO1/2 also reduced metronidazole, and E. histolytica transformants overexpressing either of these proteins were more sensitive to metronidazole, suggesting that EhNO1/2 are targets of this anti-amebic drug. To date, this is the first report to demonstrate that small subunit-like proteins of glutamate synthase could play an important role in redox maintenance, L-cysteine/L-cystine homeostasis, iron reduction, and the activation of metronidazole.


Asunto(s)
Antiprotozoarios/farmacología , Cisteína/metabolismo , Entamoeba histolytica/enzimología , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Metronidazol/farmacología , NADH NADPH Oxidorreductasas/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Entamoeba histolytica/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Flavina-Adenina Dinucleótido/genética , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/genética , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/genética , Oxidación-Reducción , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Especificidad por Sustrato/fisiología
16.
J Am Chem Soc ; 133(5): 1282-5, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21204519

RESUMEN

Dihydrogen (H(2)) production by [FeFe]-hydrogenases is strongly inhibited by formaldehyde (methanal) in a reaction that is rapid, reversible, and specific to this type of hydrogenase. This discovery, using three [FeFe]-hydrogenases that are homologous about the active site but otherwise structurally distinct, was made by protein film electrochemistry, which measures the activity (as electrical current) of enzymes immobilized on an electrode; importantly, the inhibitor can be removed after addition. Formaldehyde causes rapid loss of proton reduction activity which is restored when the solution is exchanged. Inhibition is confirmed by conventional solution assays. The effect depends strongly on the direction of catalysis: inhibition of H(2) oxidation is much weaker than for H(2) production, and formaldehyde also protects against CO and O(2) inactivation. By contrast, inhibition of [NiFe]-hydrogenases is weak. The results strongly suggest that formaldehyde binds at, or close to, the active site of [FeFe]-hydrogenases at a site unique to this class of enzyme--highly conserved lysine and cysteine residues, the bridgehead atom of the dithiolate ligand, or the reduced Fe(d) that is the focal center of catalysis.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Formaldehído/farmacología , Hidrógeno/metabolismo , Hidrogenasas/antagonistas & inhibidores , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Chlamydomonas reinhardtii/enzimología , Clostridium acetobutylicum/enzimología , Desulfovibrio desulfuricans/enzimología , Cinética , Oxidación-Reducción/efectos de los fármacos , Protones , Especificidad por Sustrato
17.
Antimicrob Agents Chemother ; 55(12): 5753-60, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21947398

RESUMEN

Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal.


Asunto(s)
Antifúngicos/farmacología , Cobre/metabolismo , Proteínas Hierro-Azufre/antagonistas & inhibidores , Malassezia/efectos de los fármacos , Compuestos Organometálicos/farmacología , Piridinas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Malassezia/genética , Malassezia/crecimiento & desarrollo , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Eliminación de Secuencia
18.
J Biol Chem ; 284(51): 35297-307, 2009 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19864422

RESUMEN

Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.


Asunto(s)
Aconitato Hidratasa/biosíntesis , Citosol/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Succinato Deshidrogenasa/biosíntesis , Aconitato Hidratasa/genética , Animales , Células COS , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Hidrogenasas/genética , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica/fisiología , ARN Interferente Pequeño , Succinato Deshidrogenasa/genética
19.
J Am Chem Soc ; 132(19): 6719-27, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20426416

RESUMEN

We report the inhibition of the Aquifex aeolicus IspH enzyme (LytB, (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, EC 1.17.1.2) by a series of diphosphates and bisphosphonates. The most active species was an alkynyl diphosphate having IC(50) = 0.45 microM (K(i) approximately 60 nM), which generated a very large change in the 9 GHz EPR spectrum of the reduced protein. On the basis of previous work on organometallic complexes, together with computational docking and quantum chemical calculations, we propose a model for alkyne inhibition involving pi (or pi/sigma) "metallacycle" complex formation with the unique fourth Fe in the Fe(4)S(4) cluster. Aromatic species had less activity, and for these we propose an inhibition model based on an electrostatic interaction with the active site E126. Overall, the results are of broad general interest since they not only represent the first potent IspH inhibitors but also suggest a conceptually new approach to inhibiting other Fe(4)S(4)-cluster-containing proteins that are of interest as drug and herbicide targets.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Inhibidores Enzimáticos/farmacología , Proteínas Hierro-Azufre/antagonistas & inhibidores , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo , Biocatálisis , Difosfatos/química , Difosfatos/farmacología , Inhibidores Enzimáticos/química , Bacterias Gramnegativas/enzimología , Proteínas Hierro-Azufre/química , Modelos Moleculares , Oxidorreductasas/química , Conformación Proteica
20.
J Phys Chem Lett ; 11(12): 4597-4602, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32420744

RESUMEN

The active site of [FeFe] hydrogenase features a binuclear iron cofactor Fe2ADT(CO)3(CN)2, where ADT represents the bridging ligand aza-propane-dithiolate. The terminal diatomic ligands all coordinate in a basal configuration, and one CO bridges the two irons leaving an open coordination site at which the hydrogen species and the competitive inhibitor CO bind. Externally supplied CO is expected to coordinate in an apical configuration. However, an alternative configuration has been proposed in which, due to ligand rotation, the CN- bound to the distal Fe becomes apical. Using selective 13C isotope labeling of the CN- and COext ligands in combination with pulsed 13C electron-nuclear-nuclear triple resonance spectroscopy, spin polarization effects are revealed that, according to density functional theory calculations, are consistent with only the "unrotated" apical COext configuration.


Asunto(s)
Monóxido de Carbono/química , Complejos de Coordinación/química , Inhibidores Enzimáticos/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Hierro/química , Proteínas Algáceas/antagonistas & inhibidores , Proteínas Algáceas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Isótopos de Carbono/química , Dominio Catalítico , Chlamydomonas reinhardtii/enzimología , Clostridium/enzimología , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Ligandos , Modelos Químicos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA