Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Nature ; 629(8010): 219-227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570683

RESUMEN

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Proteína Fosfatasa 2 , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/ultraestructura , Terminación de la Transcripción Genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Unión Proteica , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química
2.
Mol Cell ; 78(5): 926-940.e13, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369734

RESUMEN

The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 "grip" duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Proteínas Nucleares/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón/métodos , ADN Helicasas/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nature ; 590(7846): 498-503, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33361816

RESUMEN

Histone methyltransferases of the nuclear receptor-binding SET domain protein (NSD) family, including NSD1, NSD2 and NSD3, have crucial roles in chromatin regulation and are implicated in oncogenesis1,2. NSD enzymes exhibit an autoinhibitory state that is relieved by binding to nucleosomes, enabling dimethylation of histone H3 at Lys36 (H3K36)3-7. However, the molecular basis that underlies this mechanism is largely unknown. Here we solve the cryo-electron microscopy structures of NSD2 and NSD3 bound to mononucleosomes. We find that binding of NSD2 and NSD3 to mononucleosomes causes DNA near the linker region to unwrap, which facilitates insertion of the catalytic core between the histone octamer and the unwrapped segment of DNA. A network of DNA- and histone-specific contacts between NSD2 or NSD3 and the nucleosome precisely defines the position of the enzyme on the nucleosome, explaining the specificity of methylation to H3K36. Intermolecular contacts between NSD proteins and nucleosomes are altered by several recurrent cancer-associated mutations in NSD2 and NSD3. NSDs that contain these mutations are catalytically hyperactive in vitro and in cells, and their ectopic expression promotes the proliferation of cancer cells and the growth of xenograft tumours. Together, our research provides molecular insights into the nucleosome-based recognition and histone-modification mechanisms of NSD2 and NSD3, which could lead to strategies for therapeutic targeting of proteins of the NSD family.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Proteínas Represoras/metabolismo , Sitios de Unión , Biocatálisis , Línea Celular Tumoral , Proliferación Celular , Microscopía por Crioelectrón , Xenoinjertos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/ultraestructura , Histonas/ultraestructura , Humanos , Metilación , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Nucleosomas/ultraestructura , Fenotipo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/ultraestructura
4.
Mol Cell ; 76(1): 138-147.e5, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31473102

RESUMEN

Proteasomes are essential in all eukaryotic cells. However, their function and regulation remain considerably elusive, particularly those of less abundant variants. We demonstrate the human 20S proteasome recombinant assembly and confirmed the recombinant complex integrity biochemically and with a 2.6 Å resolution cryo-EM map. To assess its competence to form higher-order assemblies, we prepared and analyzed recombinant human 20S-PA200, a poorly characterized nuclear complex. Its 3.0 Å resolution cryo-EM structure reveals the PA200 unique architecture; the details of its intricate interactions with the proteasome, resulting in unparalleled proteasome α ring rearrangements; and the molecular basis for PA200 allosteric modulation of the proteasome active sites. Non-protein cryo-EM densities could be assigned to PA200-bound inositol phosphates, and we speculate regarding their functional role. Here we open extensive opportunities to study the fundamental properties of the diverse and distinct eukaryotic proteasome variants and to improve proteasome targeting under different therapeutic conditions.


Asunto(s)
Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Humanos , Fosfatos de Inositol/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/ultraestructura , Unión Proteica , Conformación Proteica , Proteolisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Células Sf9 , Spodoptera , Relación Estructura-Actividad
5.
Mol Cell ; 75(2): 238-251.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348879

RESUMEN

BRCT domains support myriad protein-protein interactions involved in genome maintenance. Although di-BRCT recognition of phospho-proteins is well known to support the genotoxic response, whether multi-BRCT domains can acquire distinct structures and functions is unclear. Here we present the tetra-BRCT structures from the conserved yeast protein Rtt107 in free and ligand-bound forms. The four BRCT repeats fold into a tetrahedral structure that recognizes unmodified ligands using a bi-partite mechanism, suggesting repeat origami enabling function acquisition. Functional studies show that Rtt107 binding of partner proteins of diverse activities promotes genome replication and stability in both distinct and concerted manners. A unified theme is that tetra- and di-BRCT domains of Rtt107 collaborate to recruit partner proteins to chromatin. Our work thus illustrates how a master regulator uses two types of BRCT domains to recognize distinct genome factors and direct them to chromatin for constitutive genome protection.


Asunto(s)
Inestabilidad Genómica/genética , Proteínas Nucleares/ultraestructura , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/genética , Cromatina/genética , Daño del ADN/genética , Ligandos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Dominios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Nature ; 585(7826): 609-613, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939087

RESUMEN

Breaks in DNA strands recruit the protein PARP1 and its paralogue PARP2 to modify histones and other substrates through the addition of mono- and poly(ADP-ribose) (PAR)1-5. In the DNA damage responses, this post-translational modification occurs predominantly on serine residues6-8 and requires HPF1, an accessory factor that switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine9,10. Poly(ADP) ribosylation (PARylation) is important for subsequent chromatin decompaction and provides an anchor for the recruitment of downstream signalling and repair factors to the sites of DNA breaks2,11. Here, to understand the molecular mechanism by which PARP enzymes recognize DNA breaks within chromatin, we determined the cryo-electron-microscopic structure of human PARP2-HPF1 bound to a nucleosome. This showed that PARP2-HPF1 bridges two nucleosomes, with the broken DNA aligned in a position suitable for ligation, revealing the initial step in the repair of double-strand DNA breaks. The bridging induces structural changes in PARP2 that signal the recognition of a DNA break to the catalytic domain, which licenses HPF1 binding and PARP2 activation. Our data suggest that active PARP2 cycles through different conformational states to exchange NAD+ and substrate, which may enable PARP enzymes to act processively while bound to chromatin. The processes of PARP activation and the PARP catalytic cycle we describe can explain mechanisms of resistance to PARP inhibitors and will aid the development of better inhibitors as cancer treatments12-16.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Biocatálisis , Proteínas Portadoras/química , Proteínas Portadoras/ultraestructura , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Activación Enzimática , Humanos , Modelos Moleculares , NAD/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Nucleosomas/química , Nucleosomas/ultraestructura , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/ultraestructura , Dominios Proteicos
7.
Nature ; 587(7835): 683-687, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208940

RESUMEN

Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Activación Enzimática , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/ultraestructura , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química
8.
Nature ; 587(7835): 638-643, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208942

RESUMEN

Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.


Asunto(s)
Microscopía por Crioelectrón , Gammainfluenzavirus/enzimología , Interacciones Huésped-Patógeno , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Pollos/virología , Genoma Viral/genética , Células HEK293 , Humanos , Gammainfluenzavirus/genética , Modelos Moleculares , Proteínas Nucleares/ultraestructura , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Multimerización de Proteína , ARN Viral/biosíntesis , ARN Viral/genética , Proteínas de Unión al ARN/ultraestructura , ARN Polimerasa Dependiente del ARN/ultraestructura , Células Sf9
9.
Nature ; 579(7799): 448-451, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188943

RESUMEN

Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and -1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.


Asunto(s)
Microscopía por Crioelectrón , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Secuencia de Aminoácidos , Animales , Transporte Biológico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Drosophila melanogaster , Humanos , Ratones , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Nucleosomas/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Xenopus laevis
10.
Nature ; 555(7694): 117-120, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29466333

RESUMEN

Huntingtin (HTT) is a large (348 kDa) protein that is essential for embryonic development and is involved in diverse cellular activities such as vesicular transport, endocytosis, autophagy and the regulation of transcription. Although an integrative understanding of the biological functions of HTT is lacking, the large number of identified HTT interactors suggests that it serves as a protein-protein interaction hub. Furthermore, Huntington's disease is caused by a mutation in the HTT gene, resulting in a pathogenic expansion of a polyglutamine repeat at the amino terminus of HTT. However, only limited structural information regarding HTT is currently available. Here we use cryo-electron microscopy to determine the structure of full-length human HTT in a complex with HTT-associated protein 40 (HAP40; encoded by three F8A genes in humans) to an overall resolution of 4 Å. HTT is largely α-helical and consists of three major domains. The amino- and carboxy-terminal domains contain multiple HEAT (huntingtin, elongation factor 3, protein phosphatase 2A and lipid kinase TOR) repeats arranged in a solenoid fashion. These domains are connected by a smaller bridge domain containing different types of tandem repeats. HAP40 is also largely α-helical and has a tetratricopeptide repeat-like organization. HAP40 binds in a cleft and contacts the three HTT domains by hydrophobic and electrostatic interactions, thereby stabilizing the conformation of HTT. These data rationalize previous biochemical results and pave the way for improved understanding of the diverse cellular functions of HTT.


Asunto(s)
Proteína Huntingtina/ultraestructura , Microscopía por Crioelectrón , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Electricidad Estática
11.
Nature ; 560(7720): 607-612, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30135578

RESUMEN

Gene regulation involves activation of RNA polymerase II (Pol II) that is paused and bound by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we show that formation of an activated Pol II elongation complex in vitro requires the kinase function of the positive transcription elongation factor b (P-TEFb) and the elongation factors PAF1 complex (PAF) and SPT6. The cryo-EM structure of an activated elongation complex of Sus scrofa Pol II and Homo sapiens DSIF, PAF and SPT6 was determined at 3.1 Å resolution and compared to the structure of the paused elongation complex formed by Pol II, DSIF and NELF. PAF displaces NELF from the Pol II funnel for pause release. P-TEFb phosphorylates the Pol II linker to the C-terminal domain. SPT6 binds to the phosphorylated C-terminal-domain linker and opens the RNA clamp formed by DSIF. These results provide the molecular basis for Pol II pause release and elongation activation.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Nucleares/ultraestructura , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Factores de Transcripción/ultraestructura , Factores de Elongación Transcripcional/ultraestructura , Animales , ADN/química , ADN/ultraestructura , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/ultraestructura , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN/química , ARN/ultraestructura , Sus scrofa , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
12.
Nature ; 560(7720): 601-606, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30135580

RESUMEN

Metazoan gene regulation often involves the pausing of RNA polymerase II (Pol II) in the promoter-proximal region. Paused Pol II is stabilized by the protein complexes DRB sensitivity-inducing factor (DSIF) and negative elongation factor (NELF). Here we report the cryo-electron microscopy structure of a paused transcription elongation complex containing Sus scrofa Pol II and Homo sapiens DSIF and NELF at 3.2 Å resolution. The structure reveals a tilted DNA-RNA hybrid that impairs binding of the nucleoside triphosphate substrate. NELF binds the polymerase funnel, bridges two mobile polymerase modules, and contacts the trigger loop, thereby restraining Pol II mobility that is required for pause release. NELF prevents binding of the anti-pausing transcription elongation factor IIS (TFIIS). Additionally, NELF possesses two flexible 'tentacles' that can contact DSIF and exiting RNA. These results define the paused state of Pol II and provide the molecular basis for understanding the function of NELF during promoter-proximal gene regulation.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Nucleares/ultraestructura , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Elongación de la Transcripción Genética , Factores de Transcripción/ultraestructura , Factores de Elongación Transcripcional/ultraestructura , Animales , ADN/genética , ADN/metabolismo , VIH-1/genética , Humanos , Modelos Moleculares , Movimiento , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Provirus/genética , ARN/genética , ARN/metabolismo , Sus scrofa , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
13.
Nature ; 558(7709): 249-253, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875412

RESUMEN

The formation of eukaryotic ribosomal subunits extends from the nucleolus to the cytoplasm and entails hundreds of assembly factors. Despite differences in the pathways of ribosome formation, high-resolution structural information has been available only from fungi. Here we present cryo-electron microscopy structures of late-stage human 40S assembly intermediates, representing one state reconstituted in vitro and five native states that range from nuclear to late cytoplasmic. The earliest particles reveal the position of the biogenesis factor RRP12 and distinct immature rRNA conformations that accompany the formation of the 40S subunit head. Molecular models of the late-acting assembly factors TSR1, RIOK1, RIOK2, ENP1, LTV1, PNO1 and NOB1 provide mechanistic details that underlie their contribution to a sequential 40S subunit assembly. The NOB1 architecture displays an inactive nuclease conformation that requires rearrangement of the PNO1-bound 3' rRNA, thereby coordinating the final rRNA folding steps with site 3 cleavage.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Secuencia de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación de Ácido Nucleico , Dominios Proteicos , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/química
14.
Hum Mol Genet ; 29(9): 1426-1439, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32202298

RESUMEN

Defects in the mRNA export scaffold protein GANP, encoded by the MCM3AP gene, cause autosomal recessive early-onset peripheral neuropathy with or without intellectual disability. We extend here the phenotypic range associated with MCM3AP variants, by describing a severely hypotonic child and a sibling pair with a progressive encephalopathic syndrome. In addition, our analysis of skin fibroblasts from affected individuals from seven unrelated families indicates that disease variants result in depletion of GANP except when they alter critical residues in the Sac3 mRNA binding domain. GANP depletion was associated with more severe phenotypes compared with the Sac3 variants. Patient fibroblasts showed transcriptome alterations that suggested intron content-dependent regulation of gene expression. For example, all differentially expressed intronless genes were downregulated, including ATXN7L3B, which couples mRNA export to transcription activation by association with the TREX-2 and SAGA complexes. Our results provide insight into the molecular basis behind genotype-phenotype correlations in MCM3AP-associated disease and suggest mechanisms by which GANP defects might alter RNA metabolism.


Asunto(s)
Acetiltransferasas/genética , Flavoproteínas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades del Sistema Nervioso/genética , Proteínas Nucleares/genética , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción/genética , Acetiltransferasas/química , Acetiltransferasas/ultraestructura , Edad de Inicio , Antígenos de Superficie/genética , Núcleo Celular/genética , Niño , Preescolar , Exodesoxirribonucleasas/genética , Femenino , Regulación de la Expresión Génica/genética , Glicoproteínas/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Péptidos y Proteínas de Señalización Intracelular/química , Intrones/genética , Masculino , Enfermedades del Sistema Nervioso/patología , Proteínas Nucleares/ultraestructura , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Fenotipo , Fosfoproteínas/genética , Conformación Proteica , Transporte de ARN/genética , ARN Mensajero/genética
15.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459436

RESUMEN

Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.


Asunto(s)
Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Citoplasma , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/ultraestructura , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
16.
Nature ; 534(7605): 133-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251291

RESUMEN

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Transporte Activo de Núcleo Celular , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , ADN Espaciador Ribosómico/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
17.
Nucleic Acids Res ; 48(18): 10313-10328, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32976585

RESUMEN

Transcription of integrated DNA from viruses or transposable elements is tightly regulated to prevent pathogenesis. The Human Silencing Hub (HUSH), composed of Periphilin, TASOR and MPP8, silences transcriptionally active viral and endogenous transgenes. HUSH recruits effectors that alter the epigenetic landscape and chromatin structure, but how HUSH recognizes target loci and represses their expression remains unclear. We identify the physicochemical properties of Periphilin necessary for HUSH assembly and silencing. A disordered N-terminal domain (NTD) and structured C-terminal domain are essential for silencing. A crystal structure of the Periphilin-TASOR minimal core complex shows Periphilin forms an α-helical homodimer, bound by a single TASOR molecule. The NTD forms insoluble aggregates through an arginine/tyrosine-rich sequence reminiscent of low-complexity regions from self-associating RNA-binding proteins. Residues required for TASOR binding and aggregation were required for HUSH-dependent silencing and genome-wide deposition of repressive mark H3K9me3. The NTD was functionally complemented by low-complexity regions from certain RNA-binding proteins and proteins that form condensates or fibrils. Our work suggests the associative properties of Periphilin promote HUSH aggregation at target loci.


Asunto(s)
Antígenos de Neoplasias/ultraestructura , Proteínas Nucleares/ultraestructura , Proteínas de Unión al ARN/química , Transcripción Genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cristalografía por Rayos X , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Silenciador del Gen , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Agregado de Proteínas/genética , Unión Proteica/genética , Conformación Proteica en Hélice alfa , Dominios Proteicos/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/ultraestructura , Virus/genética
18.
Curr Genet ; 67(4): 511-518, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33745061

RESUMEN

This review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation in human health and disease.


Asunto(s)
Segregación Cromosómica/genética , Proteínas del Citoesqueleto/ultraestructura , Meiosis/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas del Citoesqueleto/genética , Humanos , Cinetocoros/ultraestructura , Microtúbulos/genética , Proteínas Nucleares/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
19.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572172

RESUMEN

Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins across species have been used to evaluate their significance and function. To investigate how to apply this evolutionary approach to the study of LCR function in protein-protein interactions, we performed a detailed analysis for Huntingtin (HTT), a large protein that is a hub for interaction with hundreds of proteins, has a variety of LCRs, and for which partial structural information (in complex with HAP40) is available. We hypothesize that proteins RASA1, SYN2, and KAT2B may compete with HAP40 for their attachment to the core of HTT using similar LCRs. Our results illustrate how evolution might favor the interplay of LCRs with domains, and the possibility of detecting multiple modes of LCR-mediated protein-protein interactions with a large hub such as HTT when enough protein interaction data is available.


Asunto(s)
Evolución Molecular , Proteína Huntingtina/metabolismo , Proteínas Nucleares/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Animales , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/ultraestructura , Microscopía Electrónica , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Unión Proteica/genética , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Alineación de Secuencia , Sinapsinas/química , Sinapsinas/metabolismo , Proteína Activadora de GTPasa p120/química , Proteína Activadora de GTPasa p120/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo
20.
Hum Genet ; 139(12): 1513-1529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32529326

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Mapas de Interacción de Proteínas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Biotinilación/genética , Diferenciación Celular/genética , Enzimas Desubicuitinizantes/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/ultraestructura , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Neuronas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Síndrome de Prader-Willi/genética , Conformación Proteica , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA