Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983843

RESUMEN

In Arabidopsis, vacuolar sorting receptor isoform 1 (VSR1) sorts 12S globulins to the protein storage vacuoles during seed development. Vacuolar sorting is mediated by specific protein-protein interactions between VSR1 and the vacuolar sorting determinant located at the C terminus (ctVSD) on the cargo proteins. Here, we determined the crystal structure of the protease-associated domain of VSR1 (VSR1-PA) in complex with the C-terminal pentapeptide (468RVAAA472) of cruciferin 1, an isoform of 12S globulins. The 468RVA470 motif forms a parallel ß-sheet with the switch III residues (127TMD129) of VSR1-PA, and the 471AA472 motif docks to a cradle formed by the cargo-binding loop (95RGDCYF100), making a hydrophobic interaction with Tyr99. The C-terminal carboxyl group of the ctVSD is recognized by forming salt bridges with Arg95. The C-terminal sequences of cruciferin 1 and vicilin-like storage protein 22 were sufficient to redirect the secretory red fluorescent protein (spRFP) to the vacuoles in Arabidopsis protoplasts. Adding a proline residue to the C terminus of the ctVSD and R95M substitution of VSR1 disrupted receptor-cargo interactions in vitro and led to increased secretion of spRFP in Arabidopsis protoplasts. How VSR1-PA recognizes ctVSDs of other storage proteins was modeled. The last three residues of ctVSD prefer hydrophobic residues because they form a hydrophobic cluster with Tyr99 of VSR1-PA. Due to charge-charge interactions, conserved acidic residues, Asp129 and Glu132, around the cargo-binding site should prefer basic residues over acidic ones in the ctVSD. The structural insights gained may be useful in targeting recombinant proteins to the protein storage vacuoles in seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sustitución de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Mutación Missense , Conformación Proteica en Lámina beta , Dominios Proteicos , Transporte de Proteínas , Protoplastos/química , Protoplastos/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Relación Estructura-Actividad , Vacuolas/química , Vacuolas/genética , Vacuolas/metabolismo
2.
Planta ; 260(1): 19, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839605

RESUMEN

MAIN CONCLUSION: A mutation was first found to cause the great generation of glutelin precursors (proglutelins) in rice (Oryza sativa L.) endosperm, and thus referred to as GPGG1. The GPGG1 was involved in synthesis and compartmentation of storage proteins. The PPR-like gene in GPGG1-mapped region was determined as its candidate gene. In the wild type rice, glutelins and prolamins are synthesized on respective subdomains of rough endoplasmic reticulum (ER) and intracellularly compartmentalized into different storage protein bodies. In this study, a storage protein mutant was obtained and characterized by the great generation of proglutelins combining with the lacking of 13 kD prolamins. A dominant genic-mutation, referred to as GPGG1, was clarified to result in the proteinous alteration. Novel saccular composite-ER was shown to act in the synthesis of proglutelins and 14 kD prolamins in the mutant. Additionally, a series of organelles including newly occurring several compartments were shown to function in the transfer, trans-plasmalemmal transport, delivery, deposition and degradation of storage proteins in the mutant. The GPGG1 gene was mapped to a 67.256 kb region of chromosome 12, the pentatricopeptide repeat (PPR)-like gene in this region was detected to contain mutational sites.


Asunto(s)
Endospermo , Glútenes , Mutación , Oryza , Oryza/genética , Oryza/metabolismo , Endospermo/genética , Endospermo/metabolismo , Glútenes/genética , Glútenes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prolaminas/genética , Prolaminas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Retículo Endoplásmico/metabolismo , Mapeo Cromosómico , Genoma de Planta/genética
3.
New Phytol ; 242(6): 2652-2668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649769

RESUMEN

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.


Asunto(s)
Cicer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Almacenamiento de Semillas , Factores de Transcripción , Secuencia de Bases , Cicer/genética , Cicer/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/metabolismo , Semillas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Activación Transcripcional/genética
4.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300326

RESUMEN

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Asunto(s)
Aminoácidos Esenciales , Proteómica , Animales , Humanos , Transporte Biológico , Proteínas de Almacenamiento de Semillas , Azufre , Sulfatos
5.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928351

RESUMEN

Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MßCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.


Asunto(s)
Antígenos de Plantas , Clorpromazina , Cromolin Sódico , Globulinas , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Globulinas/metabolismo , Globulinas/farmacología , Globulinas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/farmacología , Proteínas de Almacenamiento de Semillas/química , Antígenos de Plantas/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Animales , Cromolin Sódico/farmacología , Clorpromazina/farmacología , Endocitosis/efectos de los fármacos , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/química , Línea Celular , Transporte Biológico/efectos de los fármacos , Glycine max/metabolismo , Glycine max/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Porcinos
6.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928285

RESUMEN

Rice prolamins are categorized into three groups by molecular size (10, 13, or 16 kDa), while the 13 kDa prolamins are assigned to four subgroups (Pro13a-I, Pro13a-II, Pro13b-I, and Pro13b-II) based on cysteine residue content. Since lowering prolamin content in rice is essential to minimize indigestion and allergy risks, we generated four knockout lines using CRISPR-Cas9, which selectively reduced the expression of a specific subgroup of the 13 kDa prolamins. These four mutant rice lines also showed the compensatory expression of glutelins and non-targeted prolamins and were accompanied by low grain weight, altered starch content, and atypically-shaped starch granules and protein bodies. Transcriptome analysis identified 746 differentially expressed genes associated with 13 kDa prolamins during development. Correlation analysis revealed negative associations between genes in Pro13a-I and those in Pro13a-II and Pro13b-I/II subgroups. Furthermore, alterations in the transcription levels of 9 ER stress and 17 transcription factor genes were also observed in mutant rice lines with suppressed expression of 13 kDa prolamin. Our results provide profound insight into the functional role of 13 kDa rice prolamins in the regulatory mechanisms underlying rice seed development, suggesting their promising potential application to improve nutritional and immunological value.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Regulación de la Expresión Génica de las Plantas , Oryza , Prolaminas , Almidón , Oryza/genética , Oryza/metabolismo , Prolaminas/metabolismo , Prolaminas/genética , Almidón/metabolismo , Edición Génica/métodos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Semillas/metabolismo , Glútenes/genética , Glútenes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica
7.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891918

RESUMEN

Dipeptidyl peptidase-IV (DPPIV) inhibitory peptides are a class of antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus, a metabolic disorder resulting from reduced levels of the incretin hormone GLP-1. Given that DPPIV degrades incretin, a key regulator of blood sugar levels, various antidiabetic medications that inhibit DPPIV, such as vildagliptin, sitagliptin, and linagliptin, are employed. However, the potential side effects of these drugs remain a matter of debate. Therefore, we aimed to investigate food-derived peptides from Cannabis sativa (hemp) seeds. Our developed bioinformatics pipeline was used to identify the putative hydrolyzed peptidome of three highly abundant proteins: albumin, edestin, and vicilin. These proteins were subjected to in silico digestion by different proteases (trypsin, chymotrypsin, and pepsin) and then screened for DPPIV inhibitory peptides using IDPPIV-SCM. To assess potential adverse effects, several prediction tools, namely, TOXINpred, AllerCatPro, and HemoPred, were employed to evaluate toxicity, allergenicity, and hemolytic effects, respectively. COPID was used to determine the amino acid composition. Molecular docking was performed using GalaxyPepDock and HPEPDOCK, 3D visualizations were conducted using the UCSF Chimera program, and MD simulations were carried out with AMBER20 MD software. Based on the predictive outcomes, FNVDTE from edestin and EAQPST from vicilin emerged as promising candidates for DPPIV inhibitors. We anticipate that our findings may pave the way for the development of alternative DPPIV inhibitors.


Asunto(s)
Cannabis , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Hipoglucemiantes , Péptidos , Semillas , Humanos , Cannabis/química , Biología Computacional/métodos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hidrólisis , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas de Plantas/química , Proteínas de Almacenamiento de Semillas/química , Semillas/química
8.
J Sci Food Agric ; 104(4): 2467-2476, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37986244

RESUMEN

BACKGROUND: The application of curcumin (Cur) in the food industry is usually limited by its low water solubility and poor stability. This study aimed to fabricate self-assembled nanoparticles using pea vicilin (7S) through a pH-shifting method (pH 7-pH 12-pH 7) to develop water-soluble nanocarriers of Cur. RESULTS: Intrinsic fluorescence, far-UV circular dichroism spectra and transmission electron microscopy analysis demonstrated that the structure of 7S could be unfolded at pH 12.0 and refolded when the pH shifted to 7.0. The assembled 7S-Cur exhibited a high loading ability of 81.63 µg mg-1 for Cur and homogeneous particle distribution. Cur was encapsulated in the 7S hydrophobic nucleus in an amorphous form and combined through hydrophobic interactions and hydrogen bonding, resulting in the static fluorescence quenching of 7S. Compared with free Cur, the retention rates of Cur in 7S-Cur were approximately 1.12 and 1.70 times higher under UV exposure at 365 nm or heating at 75 °C for 120 min, respectively, as well as 7S-Cur showing approximately 1.50 times higher antioxidant activity. During simulated gastrointestinal experiments, 7S-Cur exhibited a better sustained-release property than free Cur. CONCLUSION: The self-assembled 7S nanocarriers prepared using a pH-shifting method effectively improved the antioxidant activity, environmental stability and sustained-release property of Cur. Therefore, 7S isolated from pea protein could be used as potential nanocarriers for Cur. © 2023 Society of Chemical Industry.


Asunto(s)
Curcumina , Nanopartículas , Proteínas de Almacenamiento de Semillas , Curcumina/química , Antioxidantes , Pisum sativum , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Nanopartículas/química , Agua , Tamaño de la Partícula
9.
J Sci Food Agric ; 104(11): 6531-6540, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38517196

RESUMEN

BACKGROUND: With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of ß-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS: Our results showed that oral administration of ß-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, ß-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION: Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.


Asunto(s)
Antígenos de Plantas , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos , Globulinas , Calor , Ratones Endogámicos BALB C , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Células TH1 , Células Th2 , Animales , Hipersensibilidad a los Alimentos/inmunología , Globulinas/química , Globulinas/inmunología , Globulinas/administración & dosificación , Proteínas de Soja/química , Proteínas de Soja/inmunología , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/inmunología , Proteínas de Almacenamiento de Semillas/administración & dosificación , Ratones , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Femenino , Humanos , Balance Th1 - Th2/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Glycine max/química
10.
J Integr Plant Biol ; 66(3): 468-483, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409921

RESUMEN

Achieving high yield and good quality in crops is essential for human food security and health. However, there is usually disharmony between yield and quality. Seed storage protein (SSP) and starch, the predominant components in cereal grains, determine yield and quality, and their coupled synthesis causes a yield-quality trade-off. Therefore, dissection of the underlying regulatory mechanism facilitates simultaneous improvement of yield and quality. Here, we summarize current findings about the synergistic molecular machinery underpinning SSP and starch synthesis in the leading staple cereal crops, including maize, rice and wheat. We further evaluate the functional conservation and differentiation of key regulators and specify feasible research approaches to identify additional regulators and expand insights. We also present major strategies to leverage resultant information for simultaneous improvement of yield and quality by molecular breeding. Finally, future perspectives on major challenges are proposed.


Asunto(s)
Grano Comestible , Almidón , Humanos , Grano Comestible/metabolismo , Almidón/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Plantas/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo
11.
Plant J ; 109(3): 649-663, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34784073

RESUMEN

Food allergies are a major health issue worldwide. Modern breeding techniques such as genome editing via CRISPR/Cas9 have the potential to mitigate this by targeting allergens in plants. This study addressed the major allergen Bra j I, a seed storage protein of the 2S albumin class, in the allotetraploid brown mustard (Brassica juncea). Cotyledon explants of an Indian gene bank accession (CR2664) and the German variety Terratop were transformed using Agrobacterium tumefaciens harboring binary vectors with multiple single guide RNAs to induce either large deletions or frameshift mutations in both Bra j I homoeologs. A total of 49 T0 lines were obtained with up to 3.8% transformation efficiency. Four lines had large deletions of 566 up to 790 bp in the Bra j IB allele. Among 18 Terratop T0 lines, nine carried indels in the targeted regions. From 16 analyzed CR2664 T0 lines, 14 held indels and three had all four Bra j I alleles mutated. The majority of the CRISPR/Cas9-induced mutations were heritable to T1 progenies. In some edited lines, seed formation and viability were reduced and seeds showed a precocious development of the embryo leading to a rupture of the testa already in the siliques. Immunoblotting using newly developed Bra j I-specific antibodies revealed the amount of Bra j I protein to be reduced or absent in seed extracts of selected lines. Removing an allergenic determinant from mustard is an important first step towards the development of safer food crops.


Asunto(s)
Alérgenos/genética , Hipersensibilidad a los Alimentos/prevención & control , Edición Génica/métodos , Planta de la Mostaza/genética , Fitomejoramiento/métodos , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/genética , Agrobacterium tumefaciens , Sistemas CRISPR-Cas , Productos Agrícolas/química , Productos Agrícolas/genética , Genes de Plantas , Variación Genética , Genotipo , Plantas Modificadas Genéticamente , Transformación Genética
12.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36469200

RESUMEN

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Asunto(s)
Oryza , Proteínas de Almacenamiento de Semillas , Proteínas de Almacenamiento de Semillas/metabolismo , Oryza/genética , Transporte de Proteínas/genética , Glútenes/genética , Retículo Endoplásmico/metabolismo
13.
Plant Physiol ; 188(1): 111-133, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34618082

RESUMEN

Maize (Zea mays) seeds are a good source of protein, despite being deficient in several essential amino acids. However, eliminating the highly abundant but poorly balanced seed storage proteins has revealed that the regulation of seed amino acids is complex and does not rely on only a handful of proteins. In this study, we used two complementary omics-based approaches to shed light on the genes and biological processes that underlie the regulation of seed amino acid composition. We first conducted a genome-wide association study to identify candidate genes involved in the natural variation of seed protein-bound amino acids. We then used weighted gene correlation network analysis to associate protein expression with seed amino acid composition dynamics during kernel development and maturation. We found that almost half of the proteome was significantly reduced during kernel development and maturation, including several translational machinery components such as ribosomal proteins, which strongly suggests translational reprogramming. The reduction was significantly associated with a decrease in several amino acids, including lysine and methionine, pointing to their role in shaping the seed amino acid composition. When we compared the candidate gene lists generated from both approaches, we found a nonrandom overlap of 80 genes. A functional analysis of these genes showed a tight interconnected cluster dominated by translational machinery genes, especially ribosomal proteins, further supporting the role of translation dynamics in shaping seed amino acid composition. These findings strongly suggest that seed biofortification strategies that target the translation machinery dynamics should be considered and explored further.


Asunto(s)
Aminoácidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Aminoácidos/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Metabolómica , Fenotipo , Semillas/genética
14.
Plant Cell ; 32(3): 758-777, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31949008

RESUMEN

Dense vesicles (DVs) are vesicular carriers, unique to plants, that mediate post-Golgi trafficking of storage proteins to protein storage vacuoles (PSVs) in seeds. However, the molecular mechanisms regulating the directional targeting of DVs to PSVs remain elusive. Here, we show that the rice (Oryza sativa) glutelin precursor accumulation5 (gpa5) mutant is defective in directional targeting of DVs to PSVs, resulting in discharge of its cargo proteins into the extracellular space. Molecular cloning revealed that GPA5 encodes a plant-unique phox-homology domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) ENDOSOMAL RAB EFFECTOR WITH PX-DOMAIN. We show that GPA5 is a membrane-associated protein capable of forming homodimers and that it is specifically localized to DVs in developing endosperm. Colocalization, biochemical, and genetic evidence demonstrates that GPA5 acts in concert with Rab5a and VPS9a to regulate DV-mediated post-Golgi trafficking to PSVs. Furthermore, we demonstrated that GPA5 physically interacts with a class C core vacuole/endosome tethering complex and a seed plant-specific VAMP727-containing R-soluble N-ethylmaleimide sensitive factor attachment protein receptor complex. Collectively, our results suggest that GPA5 functions as a plant-specific effector of Rab5a required for mediating tethering and membrane fusion of DVs with PSVs in rice endosperm.


Asunto(s)
Aparato de Golgi/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Endospermo/metabolismo , Glútenes/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación/genética , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/química , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Proteínas de Almacenamiento de Semillas/química , Vacuolas/metabolismo , Vacuolas/ultraestructura
15.
Plant Cell ; 32(7): 2383-2401, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358071

RESUMEN

The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.


Asunto(s)
Brassica napus/citología , Brassica napus/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/citología , Semillas/metabolismo , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Aminoácidos/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brassica napus/genética , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Nitrógeno/metabolismo , Células Vegetales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Proteínas de Almacenamiento de Semillas/genética
16.
PLoS Biol ; 18(7): e3000564, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32701952

RESUMEN

Amyloids are protein aggregates with a highly ordered spatial structure giving them unique physicochemical properties. Different amyloids not only participate in the development of numerous incurable diseases but control vital functions in archaea, bacteria and eukarya. Plants are a poorly studied systematic group in the field of amyloid biology. Amyloid properties have not yet been demonstrated for plant proteins under native conditions in vivo. Here we show that seeds of garden pea Pisum sativum L. contain amyloid-like aggregates of storage proteins, the most abundant one, 7S globulin Vicilin, forms bona fide amyloids in vivo and in vitro. Full-length Vicilin contains 2 evolutionary conserved ß-barrel domains, Cupin-1.1 and Cupin-1.2, that self-assemble in vitro into amyloid fibrils with similar physicochemical properties. However, Cupin-1.2 fibrils unlike Cupin-1.1 can seed Vicilin fibrillation. In vivo, Vicilin forms amyloids in the cotyledon cells that bind amyloid-specific dyes and possess resistance to detergents and proteases. The Vicilin amyloid accumulation increases during seed maturation and wanes at germination. Amyloids of Vicilin resist digestion by gastrointestinal enzymes, persist in canned peas, and exhibit toxicity for yeast and mammalian cells. Our finding for the first time reveals involvement of amyloid formation in the accumulation of storage proteins in plant seeds.


Asunto(s)
Amiloide/metabolismo , Pisum sativum/metabolismo , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/metabolismo , Amiloide/ultraestructura , Detergentes/farmacología , Escherichia coli/metabolismo , Iones , Pancreatina/metabolismo , Pisum sativum/efectos de los fármacos , Pepsina A/metabolismo , Agregado de Proteínas , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Saccharomyces cerevisiae/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/farmacología , Proteínas de Almacenamiento de Semillas/ultraestructura
17.
Mol Biol Rep ; 50(5): 4175-4185, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894768

RESUMEN

BACKGROUND: The narrow genetic diversity of chickpea is a serious impediment to modern cultivar creation. Seed storage proteins (SSPs) are stable and have minimal or no degradation when subjected to isolation and SDS-PAGE. METHODS AND RESULTS: We have characterized SSPs of 436 chickpea genotypes, belonging to nine annual Cicer species, originated from 47 countries by SDS-PAGE and determined the extent of genetic diversity in chickpea through clustering. Based on scoring, a total of 44 bands (10 to 170 kDa) were identified, which were all polymorphic. The least appeared protein bands were 11, 160 and 170 kDa where band of 11 and 160 kDa was present exclusively in wild type. Five bands were present in < 10% of genotypes. Bands appeared in 200-300 genotypes were suggested less polymorphic, on contrary bands present in 10-150 genotypes were suggested more polymorphic. Polymorphism of protein bands in context to their potential functions reported in literature were explored and suggested that the glubulins were most and glutelins were least abundant, whereas albumins with their known role in stress tolerance can be used as marker in chickpea breeding. Cluster analysis produced 14 clusters, interestingly three clusters contained only Pakistani genotypes and thus Pakistani genotypes appeared as a separate entity from the rest of the genotypes. CONCLUSION: Our results indicate that SDS-PAGE of SSPs is a powerful technique in determining the genetic diversity plus it is easily adaptable, due to its cost effectiveness in comparison to other genomics tools.


Asunto(s)
Cicer , Proteínas de Almacenamiento de Semillas , Proteínas de Almacenamiento de Semillas/genética , Cicer/genética , Fitomejoramiento , Polimorfismo Genético , Genotipo , Variación Genética
18.
Plant Cell Rep ; 42(1): 123-136, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271177

RESUMEN

KEY MESSAGE: We characterize GFP expression driven by a soybean glycinin promoter in transgenic soybean. We demonstrate specific amino acid-mediated induction of this promoter in developing soybean seeds in vitro. In plants, gene expression is primarily regulated by promoter regions which are located upstream of gene coding sequences. Promoters allow transcription in certain tissues and respond to environmental stimuli as well as other inductive phenomena. In soybean, seed storage proteins (SSPs) accumulate during seed development and account for most of the monetary and nutritional value of this crop. To better study the regulatory functions of a SSP promoter, we developed a cotyledon culture system where media and media addenda were evaluated for their effects on cotyledon development and promoter activity. Stably transformed soybean events containing a glycinin SSP promoter regulating the green fluorescent protein (GFP) were generated. Promoter activity, as visualized by GFP expression, was only observed in developing in planta seeds and in vitro-cultured isolated embryos and cotyledons from developing seeds when specific media addenda were included. Asparagine, proline, and especially glutamine induced glycinin promoter activity in cultured cotyledons from developing seeds. Other amino acids did not induce the glycinin promoter. Here, we report, for the first time, induction of a reintroduced glycinin SSP promoter by specific amino acids in cotyledon tissues during seed development.


Asunto(s)
Globulinas , Glycine max , Glycine max/genética , Glycine max/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Aminoácidos/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/metabolismo , Globulinas/genética , Globulinas/metabolismo
19.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629113

RESUMEN

Although incurable pathologies associated with the formation of highly ordered fibrillar protein aggregates called amyloids have been known for about two centuries, functional roles of amyloids have been studied for only two decades. Recently, we identified functional amyloids in plants. These amyloids formed using garden pea Pisum sativum L. storage globulin and vicilin, accumulated during the seed maturation and resisted treatment with gastric enzymes and canning. Thus, vicilin amyloids ingested with food could interact with mammalian proteins. In this work, we analyzed the effects of vicilin amyloids on the fibril formation of proteins that form pathological amyloids. We found that vicilin amyloids inhibit the fibrillogenesis of these proteins. In particular, vicilin amyloids decrease the number and length of lysozyme amyloid fibrils; the length and width of ß-2-microglobulin fibrils; the number, length and the degree of clustering of ß-amyloid fibrils; and, finally, they change the structure and decrease the length of insulin fibrils. Such drastic influences of vicilin amyloids on the pathological amyloids' formation cause the alteration of their toxicity for mammalian cells, which decreases for all tested amyloids with the exception of insulin. Taken together, our study, for the first time, demonstrates the anti-amyloid effect of vicilin fibrils and suggests the mechanisms underlying this phenomenon.


Asunto(s)
Amiloide , Pisum sativum , Animales , Proteínas de Almacenamiento de Semillas , Insulina , Insulina Regular Humana , Mamíferos
20.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069264

RESUMEN

The glutelins are a family of abundant plant proteins comprised of four glutelin subfamilies (GluA, GluB, GluC, and GluD) encoded by 15 genes. In this study, expression of subsets of rice glutelins were suppressed using CRISPR-Cas9 gene-editing technology to generate three transgenic rice variant lines, GluA1, GluB2, and GluC1. Suppression of the targeted glutelin genes was confirmed by SDS-PAGE, Western blot, and q-RT-PCR. Transgenic rice variants GluA1, GluB2, and GluC1 showed reduced amylose and starch content, increased prolamine content, reduced grain weight, and irregularly shaped protein aggregates/protein bodies in mature seeds. Targeted transcriptional profiling of immature seeds was performed with a focus on genes associated with grain quality, starch content, and grain weight, and the results were analyzed using the Pearson correlation test (requiring correlation coefficient absolute value ≥ 0.7 for significance). Significantly up- or down-regulated genes were associated with gene ontology (GO) and KEGG pathway functional annotations related to RNA processing (spliceosomal RNAs, group II catalytic introns, small nucleolar RNAs, microRNAs), as well as protein translation (transfer RNA, ribosomal RNA and other ribosome and translation factors). These results suggest that rice glutelin genes may interact during seed development with genes that regulate synthesis of starch and seed storage proteins and modulate their expression via post-transcriptional and translational mechanisms.


Asunto(s)
Glútenes , Oryza , Glútenes/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Oryza/metabolismo , Regulación hacia Abajo/genética , Sistemas CRISPR-Cas , Edición Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Semillas/metabolismo , Almidón/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA