Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell ; 168(5): 904-915.e10, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235200

RESUMEN

Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.


Asunto(s)
Chlamydomonas/metabolismo , Proteínas de la Fusión de la Membrana/química , Proteínas de Plantas/química , Plasmodium/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Evolución Biológica , Chlamydomonas/citología , Cristalografía por Rayos X , Células Germinativas/química , Células Germinativas/metabolismo , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodium/citología , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443166

RESUMEN

Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.


Asunto(s)
Actinas/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Fusión de Membrana/fisiología , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos/genética , Animales , Evolución Biológica , Fusión Celular/métodos , Línea Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Evolución Molecular , Humanos , Orthoreovirus/genética , Unión Proteica/genética , Reoviridae/genética , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232924

RESUMEN

Helicobacter pylori uses a cluster of polar, sheathed flagella for swimming motility. A search for homologs of H. pylori proteins that were conserved in Helicobacter species that possess flagellar sheaths but were underrepresented in Helicobacter species with unsheathed flagella identified several candidate proteins. Four of the identified proteins are predicted to form part of a tripartite efflux system that includes two transmembrane domains of an ABC transporter (HP1487 and HP1486), a periplasmic membrane fusion protein (HP1488), and a TolC-like outer membrane efflux protein (HP1489). Deleting hp1486/hp1487 and hp1489 homologs in H. pylori B128 resulted in reductions in motility and the number of flagella per cell. Cryo-electron tomography studies of intact motors of the Δhp1489 and Δhp1486/hp1487 mutants revealed many of the cells contained a potential flagellum disassembly product consisting of decorated L and P rings, which has been reported in other bacteria. Aberrant motors lacking specific components, including a cage-like structure that surrounds the motor, were also observed in the Δhp1489 mutant. These findings suggest a role for the H. pylori HP1486-HP1489 tripartite efflux system in flagellum stability. Three independent variants of the Δhp1486/hp1487 mutant with enhanced motility were isolated. All three motile variants had the same frameshift mutation in fliL, suggesting a role for FliL in flagellum disassembly.


Asunto(s)
Helicobacter pylori , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Helicobacter pylori/metabolismo , Proteínas de la Fusión de la Membrana/análisis , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo
4.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891564

RESUMEN

All animals must coordinate growth rate and timing of maturation to reach the appropriate final size. Here, we describe hobbit, a novel and conserved gene identified in a forward genetic screen for Drosophila animals with small body size. hobbit is highly conserved throughout eukaryotes, but its function remains unknown. We demonstrate that hobbit mutant animals have systemic growth defects because they fail to secrete insulin. Other regulated secretion events also fail in hobbit mutant animals, including mucin-like 'glue' protein secretion from the larval salivary glands. hobbit mutant salivary glands produce glue-containing secretory granules that are reduced in size. Importantly, secretory granules in hobbit mutant cells lack essential membrane fusion machinery required for exocytosis, including Synaptotagmin 1 and the SNARE SNAP-24. These membrane fusion proteins instead accumulate inside enlarged late endosomes. Surprisingly, however, the Hobbit protein localizes to the endoplasmic reticulum. Our results suggest that Hobbit regulates a novel step in intracellular trafficking of membrane fusion proteins. Our studies also suggest that genetic control of body size, as a measure of insulin secretion, is a sensitive functional readout of the secretory machinery.


Asunto(s)
Tamaño Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Insulina/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Glándulas Salivales/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas del Pegamento Salivar de Drosophila/genética , Proteínas del Pegamento Salivar de Drosophila/metabolismo , Secreción de Insulina , Tamaño de los Órganos/genética , Transporte de Proteínas/genética , Vesículas Secretoras/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo , Sinaptotagmina I/metabolismo , Proteínas de Transporte Vesicular/genética
5.
Stem Cells ; 38(11): 1423-1437, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32930470

RESUMEN

Allogeneic immune rejection is a major barrier for the application of human pluripotent stem cells (hPSCs) in regenerative medicine. A broad spectrum of immune cells, including T cells, natural killer (NK) cells, and antigen-presenting cells, which either cause direct cell killing or constitute an immunogenic environment, are involved in allograft immune rejection. A strategy to protect donor cells from cytotoxicity while decreasing the secretion of inflammatory cytokines of lymphocytes is still lacking. Here, we engineered hPSCs with no surface expression of classical human leukocyte antigen (HLA) class I proteins via beta-2 microglobulin (B2M) knockout or biallelic knockin of HLA-G1 within the frame of endogenous B2M loci. Elimination of the surface expression of HLA class I proteins protected the engineered hPSCs from cytotoxicity mediated by T cells. However, this lack of surface expression also resulted in missing-self response and NK cell activation, which were largely compromised by expression of ß2m-HLA-G1 fusion proteins. We also proved that the engineered ß2m-HLA-G5 fusion proteins were soluble, secretable, and capable of safeguarding low immunogenic environments by lowering inflammatory cytokines secretion in allografts. Our current study reveals a novel strategy that may offer unique advantages to construct hypoimmunogenic hPSCs via the expression of membrane-bound and secreted ß2m-HLA-G fusion proteins. These engineered hPSCs are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts in the future.


Asunto(s)
Proteínas de la Fusión de la Membrana/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Técnicas de Cultivo de Célula , Humanos , Masculino , Ratones
6.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30002118

RESUMEN

Kinesins are versatile nano-machines that utilize variable non-motor domains to tune specific motor microtubule encounters. During plant cytokinesis, the kinesin-12 orthologs, PHRAGMOPLAST ORIENTING KINESIN (POK)1 and POK2, are essential for rapid centrifugal expansion of the cytokinetic apparatus, the phragmoplast, toward a pre-selected cell plate fusion site at the cell cortex. Here, we report on the spatio-temporal localization pattern of POK2, mediated by distinct protein domains. Functional dissection of POK2 domains revealed the association of POK2 with the site of the future cell division plane and with the phragmoplast during cytokinesis. Accumulation of POK2 at the phragmoplast midzone depends on its functional POK2 motor domain and is fine-tuned by its carboxy-terminal region that also directs POK2 to the division site. Furthermore, POK2 likely stabilizes the phragmoplast midzone via interaction with the conserved microtubule-associated protein MAP65-3/PLEIADE, a well-established microtubule cross-linker. Collectively, our results suggest that dual localized POK2 plays multiple roles during plant cell division.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , División Celular , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión/fisiología , Ciclo Celular/fisiología , Citocinesis , Hidrólisis , Cinesinas/química , Cinesinas/genética , Proteínas de la Fusión de la Membrana/metabolismo , Microtúbulos/ultraestructura , Mitosis/fisiología , Nicotiana/química
7.
Proc Natl Acad Sci U S A ; 114(34): 9110-9115, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28739947

RESUMEN

Neurotransmitter release is orchestrated by synaptic proteins, such as SNAREs, synaptotagmin, and complexin, but the molecular mechanisms remain unclear. We visualized functionally active synaptic proteins reconstituted into proteoliposomes and their interactions in a native membrane environment by electron cryotomography with a Volta phase plate for improved resolvability. The images revealed individual synaptic proteins and synaptic protein complex densities at prefusion contact sites between membranes. We observed distinct morphologies of individual synaptic proteins and their complexes. The minimal system, consisting of neuronal SNAREs and synaptotagmin-1, produced point and long-contact prefusion states. Morphologies and populations of these states changed as the regulatory factors complexin and Munc13 were added. Complexin increased the membrane separation, along with a higher propensity of point contacts. Further inclusion of the priming factor Munc13 exclusively restricted prefusion states to point contacts, all of which efficiently fused upon Ca2+ triggering. We conclude that synaptic proteins have evolved to limit possible contact site assemblies and morphologies to those that promote fast Ca2+-triggered release.


Asunto(s)
Proteínas de la Fusión de la Membrana/metabolismo , Fusión de Membrana , Neuronas/metabolismo , Membranas Sinápticas/metabolismo , Animales , Calcio/metabolismo , Microscopía por Crioelectrón/métodos , Proteínas de la Fusión de la Membrana/química , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Dominios Proteicos , Proteolípidos/metabolismo , Proteolípidos/ultraestructura , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Membranas Sinápticas/ultraestructura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
8.
Plant J ; 94(3): 426-438, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29451720

RESUMEN

Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the ß-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Inteínas , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Mapeo de Interacción de Proteínas , Fluorescencia , Proteínas de la Fusión de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Mapeo de Interacción de Proteínas/métodos , Nicotiana/metabolismo
9.
Traffic ; 17(10): 1078-90, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27307091

RESUMEN

Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane.


Asunto(s)
Membranas Intracelulares/metabolismo , Fusión de Membrana/fisiología , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Sitios de Unión , Proteínas Fluorescentes Verdes/genética , Liposomas/química , Liposomas/metabolismo , Proteínas Luminiscentes/genética , Proteínas de la Fusión de la Membrana/química , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Complejos Multiproteicos/química , Cuerpos Multivesiculares/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteína Fluorescente Roja
10.
PLoS Biol ; 13(11): e1002292, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544693

RESUMEN

How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.


Asunto(s)
Drosophila/embriología , Embrión no Mamífero/anatomía & histología , Endodermo/embriología , Gastrulación , Modelos Anatómicos , Morfogénesis , Animales , Biomarcadores/metabolismo , Forma de la Célula , Tamaño de la Célula , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Endodermo/metabolismo , Endodermo/ultraestructura , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Fenómenos Mecánicos , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Microscopía Electrónica de Rastreo/veterinaria , Microscopía por Video/veterinaria , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reología , Imagen de Lapso de Tiempo/veterinaria , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
11.
Biochemistry ; 56(47): 6281-6291, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29094929

RESUMEN

Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.


Asunto(s)
Proteínas Bacterianas/química , Lipasa/química , Lipasa/metabolismo , Proteínas de la Fusión de la Membrana/química , Fusión de Membrana/fisiología , Nucleótidos/metabolismo , Serratia marcescens/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de la Fusión de la Membrana/metabolismo , Nucleótidos/química , Conformación Proteica
12.
J Cell Sci ; 128(16): 2957-64, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240175

RESUMEN

The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/genética , Proteínas de la Fusión de la Membrana/genética , Fusión de Membrana/genética , Animales , Ciclo Celular/genética , Membrana Celular/genética , Humanos , Proteínas de la Fusión de la Membrana/metabolismo , Morfogénesis/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Factor de Intercambio de Guanina Nucleótido ral/genética , Factor de Intercambio de Guanina Nucleótido ral/metabolismo
13.
J Virol ; 90(3): 1622-37, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608324

RESUMEN

UNLABELLED: Measles virus (MeV) and canine distemper virus (CDV) possess tetrameric attachment proteins (H) and trimeric fusion proteins, which cooperate with either SLAM or nectin 4 receptors to trigger membrane fusion for cell entry. While the MeV H-SLAM cocrystal structure revealed the binding interface, two distinct oligomeric H assemblies were also determined. In one of the conformations, two SLAM units were sandwiched between two discrete H head domains, thus spotlighting two binding interfaces ("front" and "back"). Here, we investigated the functional relevance of both interfaces in activating the CDV membrane fusion machinery. While alanine-scanning mutagenesis identified five critical regulatory residues in the front H-binding site of SLAM, the replacement of a conserved glutamate residue (E at position 123, replaced with A [E123A]) led to the most pronounced impact on fusion promotion. Intriguingly, while determination of the interaction of H with the receptor using soluble constructs revealed reduced binding for the identified SLAM mutants, no effect was recorded when physical interaction was investigated with the full-length counterparts of both molecules. Conversely, although mutagenesis of three strategically selected residues within the back H-binding site of SLAM did not substantially affect fusion triggering, nevertheless, the mutants weakened the H-SLAM interaction recorded with the membrane-anchored protein constructs. Collectively, our findings support a mode of binding between the attachment protein and the V domain of SLAM that is common to all morbilliviruses and suggest a major role of the SLAM residue E123, located at the front H-binding site, in triggering the fusion machinery. However, our data additionally support the hypothesis that other microdomain(s) of both glycoproteins (including the back H-binding site) might be required to achieve fully productive H-SLAM interactions. IMPORTANCE: A complete understanding of the measles virus and canine distemper virus (CDV) cell entry molecular framework is still lacking, thus impeding the rational design of antivirals. Both viruses share many biological features that partially rely on the use of analogous Ig-like host cell receptors, namely, SLAM and nectin 4, for entering immune and epithelial cells, respectively. Here, we provide evidence that the mode of binding between the membrane-distal V domain of SLAM and the attachment protein (H) of morbilliviruses is very likely conserved. Moreover, although structural information revealed two discrete conformational states of H, one of the structures displayed two H-SLAM binding interfaces ("front" and "back"). Our data not only spotlight the front H-binding site of SLAM as the main determinant of membrane fusion promotion but suggest that the triggering efficiency of the viral entry machinery may rely on a local conformational change within the front H-SLAM interactive site rather than the binding affinity.


Asunto(s)
Antígenos CD/metabolismo , Virus del Moquillo Canino/fisiología , Interacciones Huésped-Patógeno , Receptores de Superficie Celular/metabolismo , Internalización del Virus , Animales , Antígenos CD/genética , Sitios de Unión , Línea Celular , Análisis Mutacional de ADN , Humanos , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Receptores de Superficie Celular/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
14.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R739-R752, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356294

RESUMEN

Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic ß-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional ß-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis/efectos de los fármacos , Proteínas de la Fusión de la Membrana/metabolismo , Terapia Molecular Dirigida/métodos , Proteínas de Transporte Vesicular/metabolismo , Animales , Diabetes Mellitus Tipo 2/prevención & control , Sistemas de Liberación de Medicamentos/métodos , Medicina Basada en la Evidencia , Humanos , Proteínas de la Fusión de la Membrana/antagonistas & inhibidores , Modelos Biológicos , Proteínas de Transporte Vesicular/antagonistas & inhibidores
15.
Arch Toxicol ; 91(1): 247-258, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26879310

RESUMEN

Perfluorooctanoic acid (PFOA) has been shown to cause hepatotoxicity and other toxicological effects. Though PPARα activation by PFOA in the liver has been well accepted as an important mechanism of PFOA-induced hepatotoxicity, several pieces of evidence have shown that the hepatotoxic effects of PFOA may not be fully explained by PPARα activation. In this study, we observed autophagosome accumulation in mouse livers as well as HepG2 cells after PFOA exposure. Further in vitro study revealed that the accumulation of autophagosomes was not caused by autophagic flux stimulation. In addition, we observed that PFOA exposure affected the proteolytic activity of HepG2 cells while significant dysfunction of lysosomes was not detected. Quantitative proteomic analysis of crude lysosomal fractions from HepG2 cells treated with PFOA revealed that 54 differentially expressed proteins were related to autophagy or vesicular trafficking and fusion. The proteomic results were further validated in the cells in vitro and livers in vivo after PFOA exposure, which implied potential dysfunction at the late stage of autophagy. However, in HepG2 cells, it seemed that further inhibition of autophagy did not significantly alter the effects of PFOA on cell viability. Although these findings demonstrate that PFOA blocked autophagy and disturbed intracellular vesicle fusion in the liver, the changes in autophagy were observed only at high cytotoxic concentrations of PFOA, suggesting that autophagy may not be a primary target or mode of toxicity. Furthermore, since altered liver autophagy was not observed at concentrations of PFOA associated with human exposures, the relevance of these findings must be questioned.


Asunto(s)
Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Caprilatos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Contaminantes Ambientales/toxicidad , Fluorocarburos/toxicidad , Hígado/efectos de los fármacos , Animales , Autofagosomas/metabolismo , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Caprilatos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/administración & dosificación , Fluorocarburos/administración & dosificación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Proteínas de la Fusión de la Membrana/antagonistas & inhibidores , Proteínas de la Fusión de la Membrana/genética , Proteínas de la Fusión de la Membrana/metabolismo , Ratones Endogámicos BALB C , Proteolisis/efectos de los fármacos , Interferencia de ARN , Distribución Aleatoria
16.
Traffic ; 15(5): 531-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24479619

RESUMEN

Export of transmembrane proteins from the endoplasmic reticulum (ER) is driven by directed incorporation into coat protein complex II (COPII)-coated vesicles. The sorting of some cargo proteins into COPII vesicles was shown to be mediated by specific interactions between transmembrane and COPII-coat-forming proteins. But even though some signals for ER exit have been identified on the cytosolic domains of membrane proteins, the general signaling and sorting mechanisms of ER export are still poorly understood. To investigate the role of cargo protein oligomer formation in the export process, we have created a transmembrane fusion protein that - owing to its FK506-binding protein domains - can be oligomerized in isolated membranes by addition of a small-molecule dimerizer. Packaging of the fusion protein into COPII vesicles is strongly enhanced in the presence of the dimerizer, demonstrating that the oligomeric state is an ER export signal for this membrane protein. Surprisingly, the cytosolic tail is not required for this oligomerization-dependent effect on protein sorting. Thus, an alternative mechanism, such as membrane bending, must account for ER export of the fusion protein.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Citosol/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Multimerización de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Unión Proteica/fisiología , Proteínas de Unión a Tacrolimus/metabolismo , Levaduras/metabolismo , Levaduras/fisiología
17.
Mol Microbiol ; 98(2): 343-56, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26193906

RESUMEN

In Gram-negative bacteria, multidrug efflux transporters function in complexes with periplasmic membrane fusion proteins (MFPs) that enable antibiotic efflux across the outer membrane. In this study, we analyzed the function, composition and assembly of the triclosan efflux transporter TriABC-OpmH from Pseudomonas aeruginosa. We report that this transporter possesses a surprising substrate specificity that encompasses not only triclosan but the detergent SDS, which are often used together in antibacterial soaps. These two compounds interact antagonistically in a TriABC-dependent manner and negate antibacterial properties of each other. Unlike other efflux pumps that rely on a single MFP for their activities, two different MFPs, TriA and TriB, are required for triclosan/SDS resistance mediated by TriABC-OpmH. We found that analogous mutations in the α-helical hairpin and membrane proximal domains of TriA and TriB differentially affect triclosan efflux and assembly of the complex. Furthermore, our results show that TriA and TriB function as a dimer, in which TriA is primarily responsible for stabilizing interactions with the outer membrane channel, whereas TriB is important for the stimulation of the transporter. We conclude that MFPs are engaged into complexes as asymmetric dimers, in which each protomer plays a specific role.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Genes MDR , Proteínas de la Fusión de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Pseudomonas aeruginosa/genética , Triclosán/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Periplasma/genética , Periplasma/fisiología , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/metabolismo , Dodecil Sulfato de Sodio/metabolismo
18.
PLoS Pathog ; 10(12): e1004530, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474548

RESUMEN

Rubella virus (RuV) infection of pregnant women can cause fetal death, miscarriage, or severe fetal malformations, and remains a significant health problem in much of the underdeveloped world. RuV is a small enveloped RNA virus that infects target cells by receptor-mediated endocytosis and low pH-dependent membrane fusion. The structure of the RuV E1 fusion protein was recently solved in its postfusion conformation. RuV E1 is a member of the class II fusion proteins and is structurally related to the alphavirus and flavivirus fusion proteins. Unlike the other known class II fusion proteins, however, RuV E1 contains two fusion loops, with a metal ion complexed between them by the polar residues N88 and D136. Here we demonstrated that RuV infection specifically requires Ca(2+) during virus entry. Other tested cations did not substitute. Ca(2+) was not required for virus binding to cell surface receptors, endocytic uptake, or formation of the low pH-dependent E1 homotrimer. However, Ca(2+) was required for low pH-triggered E1 liposome insertion, virus fusion and infection. Alanine substitution of N88 or D136 was lethal. While the mutant viruses were efficiently assembled and endocytosed by host cells, E1-membrane insertion and fusion were specifically blocked. Together our data indicate that RuV E1 is the first example of a Ca(2+)-dependent viral fusion protein and has a unique membrane interaction mechanism.


Asunto(s)
Calcio/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Virus de la Rubéola/metabolismo , Rubéola (Sarampión Alemán)/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Animales , Chlorocebus aethiops , Femenino , Células HeLa , Humanos , Proteínas de la Fusión de la Membrana/genética , Embarazo , Estructura Secundaria de Proteína , Rubéola (Sarampión Alemán)/genética , Virus de la Rubéola/genética , Células Vero , Proteínas Virales/genética
19.
Biochim Biophys Acta ; 1843(8): 1629-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24129268

RESUMEN

Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Asunto(s)
Sistemas de Secreción Bacterianos , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Interacciones Huésped-Patógeno/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Proteínas de la Fusión de la Membrana/química , Proteínas de la Fusión de la Membrana/metabolismo , Mapas de Interacción de Proteínas/genética , Transporte de Proteínas/genética , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad
20.
PLoS Pathog ; 9(11): e1003770, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278018

RESUMEN

Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de la Fusión de la Membrana/metabolismo , Virus Nipah/fisiología , Receptores Virales/metabolismo , Proteínas Virales/metabolismo , Internalización del Virus , Animales , Células CHO , Cricetinae , Cricetulus , Glicoproteínas/genética , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/metabolismo , Proteínas de la Fusión de la Membrana/genética , Receptores Virales/genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA