Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Anal Chem ; 90(7): 4596-4602, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29509396

RESUMEN

Dimerization of core protein is a crucial step in the formation of the hepatitis C virus (HCV) nucleocapsid, and inhibition of dimer formation is regarded as an attractive approach to design anti-HCV drugs. In this work, we developed the atomic force microscopy based single molecular force spectroscopy (AFM-SMFS) method for the characterization of core protein dimerization with the advantages of small amount of sample consumption and no need of labeling. Interaction force of the core protein with its antibody or aptamer was analyzed to investigate its stoichiometry and binding property. The two specific binding forces were detected due to the probing of dimeric and monomeric core protein, respectively. Moreover, the binding property of protein dimer was different from the monomer. Our work offers a new approach to study the dimerization of core protein, as well as other proteins, and to screen the HCV candidate inhibitors.


Asunto(s)
Hepacivirus/química , Hepacivirus/ultraestructura , Microscopía de Fuerza Atómica , Multimerización de Proteína , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura
2.
Biochem Biophys Res Commun ; 493(1): 176-181, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28917841

RESUMEN

Ebola virus infections cause hemorrhagic fever that often results in very high fatality rates. In addition to exploring vaccines, development of drugs is also essential for treating the disease and preventing the spread of the infection. The Ebola virus matrix protein VP40 exists in various conformational and oligomeric forms and is a potential pharmacological target for disrupting the virus life-cycle. Here we explored graphene-VP40 interactions using molecular dynamics simulations and graphene pelleting assays. We found that graphene sheets associate strongly with VP40 at various interfaces. We also found that the graphene is able to disrupt the C-terminal domain (CTD-CTD) interface of VP40 hexamers. This VP40 hexamer-hexamer interface is crucial in forming the Ebola viral matrix and disruption of this interface may provide a method to use graphene or similar nanoparticle based solutions as a disinfectant that can significantly reduce the spread of the disease and prevent an Ebola epidemic.


Asunto(s)
Grafito/química , Nucleoproteínas/química , Nucleoproteínas/ultraestructura , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Sitios de Unión , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína
3.
Nucleic Acids Res ; 43(8): 4274-83, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25820430

RESUMEN

Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone.


Asunto(s)
Adenoviridae/ultraestructura , ADN Viral/ultraestructura , Proteínas del Núcleo Viral/ultraestructura , Virión/ultraestructura , Tomografía con Microscopio Electrónico , Simulación de Dinámica Molecular
4.
Microsc Microanal ; 23(1): 56-68, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28112080

RESUMEN

The bulk of the major core protein VP7 in African horse sickness virus (AHSV) self-assembles into flat, hexagonal crystalline particles in a process appearing unrelated to viral replication. Why this unique characteristic of AHSV VP7 is genetically conserved, and whether VP7 aggregation and particle formation have an effect on cellular biology or the viral life cycle, is unknown. Here we investigated how different small peptide and enhanced green fluorescent protein (eGFP) insertions into the VP7 top domain affected VP7 localization, aggregation, and particle formation. This was done using a dual laser scanning confocal and transmission electron microscopy approach in conjunction with analyses of the solubility, aggregation, and fluorescence profiles of the proteins. VP7 top domain modifications did not prevent trimerization, or intracellular trafficking, to one or two discrete sites in the cell. However, modifications that resulted in a misfolded and insoluble VP7-eGFP component blocked trafficking, and precluded protein accumulation at a single cellular site, perhaps by interfering with normal trimer-trimer interactions. Furthermore, the modifications disrupted the stable layering of the trimers into characteristic AHSV VP7 crystalline particles. It was concluded that VP7 trafficking is driven by a balance between VP7 solubility, trimer forming ability, and trimer-trimer interactions.


Asunto(s)
Virus de la Enfermedad Equina Africana/metabolismo , Microscopía Confocal/métodos , Microscopía Electrónica de Transmisión/métodos , Proteínas del Núcleo Viral/fisiología , Proteínas del Núcleo Viral/ultraestructura , Virus de la Enfermedad Equina Africana/genética , Animales , Baculoviridae/genética , Regulación Viral de la Expresión Génica , Vectores Genéticos , Proteínas Fluorescentes Verdes , Estadios del Ciclo de Vida , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/ultraestructura , Células Sf9 , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/genética , Proteínas Virales de Fusión/fisiología , Proteínas Virales de Fusión/ultraestructura , Replicación Viral
5.
J Struct Biol ; 189(2): 73-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25557498

RESUMEN

Virus-like particles composed of the core antigen of hepatitis B virus (HBcAg) have been shown to be an effective platform for the display of foreign epitopes in vaccine development. Heterologous sequences have been successfully inserted at both amino and carboxy termini as well as internally at the major immunodominant epitope. We used cryogenic electron microscopy (CryoEM) and three-dimensional image reconstruction to investigate the structure of VLPs assembled from an N-terminal extended HBcAg that contained a polyhistidine tag. The insert was seen to form a trimeric spike on the capsid surface that was poorly resolved, most likely owing to it being flexible. We hypothesise that the capacity of N-terminal inserts to form trimers may have application in the development of multivalent vaccines to trimeric antigens. Our analysis also highlights the value of tools for local resolution assessment in studies of partially disordered macromolecular assemblies by cryoEM.


Asunto(s)
Virus de la Hepatitis B/ultraestructura , Proteínas del Núcleo Viral/ultraestructura , Virión/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
6.
Nat Struct Mol Biol ; 31(7): 1114-1123, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38316877

RESUMEN

Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Multimerización de Proteína , Virus Vaccinia/ultraestructura , Virus Vaccinia/química , Virus Vaccinia/metabolismo , Poxviridae/ultraestructura , Poxviridae/metabolismo , Poxviridae/química , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura , Proteínas del Núcleo Viral/metabolismo , Humanos
7.
J Virol ; 86(13): 7292-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532672

RESUMEN

Many proposed mechanisms for influenza A viral RNA synthesis include an interaction of the nucleoprotein (NP) with the viral polymerase. To identify an NP sequence required for this interaction, we used the cryoelectron microscopic structure of an influenza virus miniribonucleoprotein as a guide for choosing promising surface-exposed sequences. We show that three amino acids (R204, W207, and R208) located in a loop at the top of the head domain of NP are required for functional interaction with the viral polymerase. Quantitative reverse transcription-PCR (RT-PCR) measurements of RNAs synthesized in minigenome assays established that each of these NP amino acids is required for viral RNA synthesis. The mutation of these three amino acids does not affect nuclear localization or RNA-binding and oligomerization activities of NP. In vitro binding experiments with purified virus polymerase and NPs established that these three amino acids are required for NP binding to the viral polymerase.


Asunto(s)
Virus de la Influenza A/fisiología , Dominios y Motivos de Interacción de Proteínas , ARN Viral/biosíntesis , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Línea Celular , Microscopía por Crioelectrón , Humanos , Virus de la Influenza A/enzimología , Virus de la Influenza A/ultraestructura , Sustancias Macromoleculares/ultraestructura , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteínas de la Nucleocápside , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/ultraestructura , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/ultraestructura
8.
Nature ; 444(7122): 1078-82, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17151603

RESUMEN

Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 A crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.


Asunto(s)
Virus de la Influenza A/química , Virus de la Influenza A/metabolismo , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Virus de la Influenza A/genética , Virus de la Influenza A/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de la Nucleocápside , Nucleoproteínas/ultraestructura , Docilidad , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN/genética , Proteínas de Unión al ARN/ultraestructura , Electricidad Estática , Proteínas del Núcleo Viral/ultraestructura
9.
Proc Natl Acad Sci U S A ; 106(26): 10644-8, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19487668

RESUMEN

Rotaviruses, major causes of childhood gastroenteritis, are nonenveloped, icosahedral particles with double-strand RNA genomes. By the use of electron cryomicroscopy and single-particle reconstruction, we have visualized a rotavirus particle comprising the inner capsid coated with the trimeric outer-layer protein, VP7, at a resolution (4 A) comparable with that of X-ray crystallography. We have traced the VP7 polypeptide chain, including parts not seen in its X-ray crystal structure. The 3 well-ordered, 30-residue, N-terminal "arms" of each VP7 trimer grip the underlying trimer of VP6, an inner-capsid protein. Structural differences between free and particle-bound VP7 and between free and VP7-coated inner capsids may regulate mRNA transcription and release. The Ca(2+)-stabilized VP7 intratrimer contact region, which presents important neutralizing epitopes, is unaltered upon capsid binding.


Asunto(s)
Microscopía por Crioelectrón/métodos , Rotavirus/ultraestructura , Virión/ultraestructura , Antígenos Virales/química , Antígenos Virales/metabolismo , Antígenos Virales/ultraestructura , Calcio/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Rotavirus/metabolismo , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Proteínas del Núcleo Viral/ultraestructura , Virión/metabolismo
10.
J Viral Hepat ; 18(6): 443-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20546498

RESUMEN

We have determined the structure of the core capsid of an unusual variant of hepatitis B virus, genotype G (HBV/G) at 14Å resolution, using cryo-electron microscopy. The structure reveals surface features not present in the prototype HBV/A genotype. HBV/G is novel in that it has a unique 36-bp insertion downstream of the core gene start codon. This results in a twelve amino acid insertion at the N-terminal end of the core protein, and two stop codons in the precore region that prevent the expression of HBeAg. HBV/G replication in patients is associated with co-infection with another genotype of HBV, suggesting that HBV/G may have reduced replication efficiency in vivo. We localized the N-terminal insertion in HBV/G and show that it forms two additional masses on the core surface adjacent to each of the dimer-spikes and have modelled the structure of the additional residues within this density. We show that the position of the insertion would not interfere with translocation of nucleic acids through the pores to the core interior compartment. However, the insertion may partially obscure several residues on the core surface that are known to play a role in envelopment and secretion of virions, or that could affect structural rearrangements that may trigger envelopment after DNA second-strand synthesis.


Asunto(s)
Cápside/ultraestructura , Virus de la Hepatitis B/ultraestructura , Proteínas del Núcleo Viral/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , Genotipo , Virus de la Hepatitis B/genética , Modelos Moleculares , Mutagénesis Insercional , Proteínas del Núcleo Viral/genética
11.
Biochem Biophys Res Commun ; 378(1): 27-31, 2009 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18992225

RESUMEN

Hepatitis C virus core protein plays an important role in the assembly and packaging of the viral genome. We have studied the structure of the N-terminal half of the core protein (C82) which was shown to be sufficient for the formation of nucleocapsid-like particle (NLP) in vitro and in yeast. Structural bioinformatics analysis of C82 suggests that it is mostly unstructured. Circular dichroism and structural NMR data indicate that C82 lacks secondary structure. Moreover, NMR relaxation data shows that C82 is highly disordered. These results indicate that the N-terminal half of the HCV core protein belongs to the growing family of intrinsically unstructured proteins (IUP). This explains the tendency of the hepatitis C virus core protein to interact with several host proteins, a well-documented characteristic of IUPs.


Asunto(s)
Hepacivirus/metabolismo , Proteínas del Núcleo Viral/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Análisis de Secuencia de Proteína , Proteínas del Núcleo Viral/ultraestructura
12.
J Virol ; 82(22): 11208-16, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18799570

RESUMEN

Avian reovirus, an important avian pathogen, expresses eight structural and four nonstructural proteins. The structural sigmaA protein is a major component of the inner capsid, clamping together lambdaA building blocks. sigmaA has also been implicated in the resistance of avian reovirus to the antiviral action of interferon by strongly binding double-stranded RNA in the host cell cytoplasm and thus inhibiting activation of the double-stranded RNA-dependent protein kinase. We have solved the structure of bacterially expressed sigmaA by molecular replacement and refined it using data to 2.3-A resolution. Twelve sigmaA molecules are present in the P1 unit cell, arranged as two short double helical hexamers. A positively charged patch is apparent on the surface of sigmaA on the inside of this helix and mutation of either of two key arginine residues (Arg155 and Arg273) within this patch abolishes double-stranded RNA binding. The structural data, together with gel shift assay, electron microscopy, and sedimentation velocity centrifugation results, provide evidence for cooperative binding of sigmaA to double-stranded RNA. The minimal length of double-stranded RNA required for sigmaA binding was observed to be 14 to 18 bp.


Asunto(s)
Orthoreovirus Aviar/química , Proteínas de Unión al ARN/química , Proteínas del Núcleo Viral/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Orthoreovirus Aviar/ultraestructura , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Ultracentrifugación , Proteínas del Núcleo Viral/ultraestructura
13.
J Cell Biol ; 122(5): 1023-41, 1993 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8394844

RESUMEN

Three structural forms of type 1 Lang reovirus (virions, intermediate subviral particles [ISVPs], and cores) have been examined by cryoelectron microscopy (cryoEM) and image reconstruction at 27 to 32-A resolution. Analysis of the three-dimensional maps and known biochemical composition allows determination of capsid protein location, globular shape, stoichiometry, quaternary organization, and interactions with adjacent capsid proteins. Comparisons of the virion, ISVP and core structures and examination of difference maps reveal dramatic changes in supra-molecular structure and protein conformation that are related to the early steps of reovirus infection. The intact virion (approximately 850-A diam) is designed for environmental stability in which the dsRNA genome is protected not only by tight sigma 3-mu 1, lambda 2-sigma 3, and lambda 2-mu 1 interactions in the outer capsid but also by a densely packed core shell formed primarily by lambda 1 and sigma 2. The segmented genome appears to be packed in a liquid crystalline fashion at radii < 240 A. Depending on viral growth conditions, virions undergo cleavage by enteric or endosomal/lysosomal proteases, to generate the activated ISVP (approximately 800-A diam). This transition involves the release of an outer capsid layer spanning radii from 360 to 427 A that is formed by 60 tetrameric and 60 hexameric clusters of ellipsoidal subunits of sigma 3. The vertex-associated cell attachment protein, sigma 1, also undergoes a striking change from a poorly visualized, more compact form, to an extended, flexible fiber. This conformational change may maximize interactions of sigma 1 with cell surface receptors. Transcription of viral mRNAs is mediated by the core particle (approximately 600-A diam), generated from the ISVP after penetration and uncoating. The transition from ISVP to core involves release of the 12 sigma 1 fibers and the remaining outer capsid layer formed by 200 trimers of rod-shaped mu 1 subunits that span radii from 306 to 395 A. In the virion and ISVP, flower-shaped pentamers of the lambda 2 protein are centered at the vertices. In the ISVP-to-core transition, domains of the lambda 2 subunits rotate and swing upward and outward to form a turret-like structure extending from radii 305 to 400 A, with a diameter of 184 A, and a central channel 84 A wide. This novel conformational change allows the potential diffusion of substrates for transcription and exit of newly synthesized mRNA segments.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Cápside/química , Cápside/ultraestructura , Infecciones por Reoviridae/fisiopatología , Reoviridae/ultraestructura , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura , Virión/química , Virión/ultraestructura , Animales , Cápside/genética , Células Cultivadas , Frío , ADN Viral/análisis , ADN Viral/genética , Fibroblastos/citología , Fibroblastos/microbiología , Procesamiento de Imagen Asistido por Computador , Sustancias Macromoleculares , Ratones , Microscopía Electrónica/métodos , Conformación Proteica , ARN Bicatenario/análisis , ARN Bicatenario/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Viral/análisis , ARN Viral/genética , Reoviridae/química , Reoviridae/genética , Infecciones por Reoviridae/metabolismo , Transcripción Genética , Proteínas del Núcleo Viral/genética , Virión/genética
14.
Structure ; 14(1): 15-20, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16407061

RESUMEN

Infectious HIV particles contain a characteristic cone-shaped core encasing the viral RNA and replication proteins. The core exhibits significant heterogeneity in size and shape, yet consistently forms a well-defined structure. The mechanism by which the core is assembled in the maturing virion remains poorly understood. Using cryo-electron tomography, we have produced three-dimensional reconstructions of authentic, unstained HIV-1. These reveal the viral morphology with unprecedented clarity and suggest the following mechanism for core formation inside the extracellular virion: core growth initiates at the narrow end of the cone and proceeds toward the distal side of the virion until limited by the viral membrane. Curvature and closure of the broad end of the core are then directed by the inner surface of the viral membrane. This mechanism accommodates significant flexibility in lattice growth while ensuring the closure of cores of variable size and shape.


Asunto(s)
VIH-1/fisiología , VIH-1/ultraestructura , Modelos Biológicos , Virión/fisiología , Virión/ultraestructura , Ensamble de Virus/fisiología , Microscopía por Crioelectrón , Productos del Gen env/fisiología , Productos del Gen env/ultraestructura , VIH-1/química , VIH-1/crecimiento & desarrollo , Humanos , Modelos Químicos , Proteínas del Núcleo Viral/fisiología , Proteínas del Núcleo Viral/ultraestructura , Virión/química , Virión/crecimiento & desarrollo
16.
Sci Rep ; 7(1): 1404, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28469174

RESUMEN

Hepatitis B Virus core protein (HBc) has multiple roles in the viral lifecycle: viral assembly, compartment for reverse transcription, intracellular trafficking, and nuclear functions. HBc displays assembly polymorphism - it can assemble into icosahedral capsid and aberrant non-capsid structures. It has been hypothesized that the assembly polymorphism is due to allosteric conformational changes of HBc dimer, the smallest assembly unit, however, the mechanism governing the polymorphic assembly of the HBc dimer is still elusive. By using the experimental antiviral drug BAY 41-4109, we successfully transformed the HBc assembly from icosahedral capsid to helical tube. Structural analyses of HBc dimers from helical tubes, T = 4 icosahedral capsid, and sheet-like HBc ensemble revealed differences within the inter-dimer interface. Disruption of the HBc inter-dimer interface may likely promote the various assembly forms of HBc. Our work provides new structural insights into the HBV assembly mechanism and strategic guide for anti-HBV drug design.


Asunto(s)
Virus de la Hepatitis B/química , Virus de la Hepatitis B/fisiología , Proteínas del Núcleo Viral/química , Ensamble de Virus , Escherichia coli , Humanos , Modelos Moleculares , Multimerización de Proteína , Estructura Terciaria de Proteína , Piridinas/farmacología , Pirimidinas/farmacología , Proteínas del Núcleo Viral/ultraestructura
17.
J Virol Methods ; 135(1): 17-25, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16513185

RESUMEN

Woodchuck hepatitis virus (WHV) is a member of family Hepadnaviridae and closely related to hepatitis B virus (HBV). The WHV core protein (WHcAg) is a strongly immunogenic protein and forms virus-like particles. WHcAg may represent a suitable carrier system for B- and T-cell epitopes. However, the lack of a high expression system for WHcAg and defined antibodies to detect WHcAg prevents the use of this carrier system. In the present study, vectors expressing WHcAg with carboxyl-terminal truncations were constructed to determine the region of WHcAg required for assembly. The first 144 or 149 amino acid residues of WHcAg were able to efficiently assemble into particulate structures. Both truncated forms of WHcAg were accumulated in E. coli as uniform particles with a diameter of 34nm in large quantities and could be purified in milligram scale. As expected, the particles of truncated WHcAg retained the antigenicity of the full length WHcAg. However, denatured WHcAg remained to be reactive with specific antisera, suggesting that WHcAg may possess additional linear B-cell epitopes. Monoclonal antibodies against denatured WHcAg were generated and tested for their specificity. Five antibodies were found to direct the N-terminal region of WHcAg. Due to the conservation of the amino acid sequence in this region of WHcAg and HBcAg, these antibodies recognized recombinant HBcAg as well. Thus, this linear B-cell epitope is conserved on the core proteins of hepadnaviruses.


Asunto(s)
Epítopos de Linfocito B/inmunología , Virus de la Hepatitis B de la Marmota/inmunología , Proteínas del Núcleo Viral/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Western Blotting , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Mapeo Epitopo , Escherichia coli/genética , Virus de la Hepatitis B de la Marmota/genética , Virus de la Hepatitis B de la Marmota/fisiología , Virus de la Hepatitis B de la Marmota/ultraestructura , Inmunohistoquímica , Hígado/patología , Ratones , Eliminación de Secuencia , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/fisiología , Proteínas del Núcleo Viral/ultraestructura , Virosomas/metabolismo , Virosomas/ultraestructura , Ensamble de Virus
18.
Structure ; 5(7): 885-93, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9261080

RESUMEN

BACKGROUND: Bluetongue virus (BTV), which belongs to the Reoviridae family and orbivirus genus, is a non-enveloped, icosahedral, double-stranded RNA virus. Several protein layers enclose its genome; upon cell entry the outer layer is stripped away leaving a core, the surface of which is composed of VP7. The structure of the trimeric VP7 molecule has previously been determined using X-ray crystallography. The articulated VP7 subunit consists of two domains, one which is largely alpha-helical and the other, smaller domain, is a beta barrel with jelly-roll topology. The relative orientations of these two domains vary in different crystal forms. The structure of VP7 and the organizations of 780 subunits of this molecule in the core of virus is central to the assembly and function of BTV. RESULTS: A 23 A resolution map of the core, determined using electron cryomicroscopy (cryoEM) data, reveals that the 260 trimers of VP7 are organized on a rather precise T = 13 laevo icosahedral lattice, in accordance with the theory of quasi-equivalence. The VP7 layer occupies a shell that is between 260 A and 345 A from the centre of the core. Below this radius (230-260 A) lies the T = 1 layer of 120 molecules of VP3. By fitting the X-ray structure of an individual VP7 trimer onto the cryoEM BTV core structure, we have generated an atomic model of the VP7 layer of BTV. This demonstrates that one of the molecular structures seen in crystals of the isolated VP7 corresponds to the in vivo conformation of the molecule in the core. CONCLUSIONS: The beta-barrel domains of VP7 are external to the core and interact with protein in the outer layer of the mature virion. The lower, alpha-helical domains of VP7 interact with VP3 molecules which form the inner layer of the BTV core. Adjacent VP7 trimer-trimer interactions in the T = 13 layer are mediated principally through well-defined regions in the broader lower domains, to form a structure that conforms well with that expected from the theory of quasi-equivalence with no significant conformational changes within the individual trimers. The VP3 layer determines the particle size and forms a rather smooth surface upon which the two-dimensional lattice of VP7 trimers is laid down.


Asunto(s)
Virus de la Lengua Azul/química , Proteínas del Núcleo Viral/química , Gráficos por Computador , Cristalografía por Rayos X/métodos , Congelación , Microscopía Electrónica/métodos , Modelos Estructurales , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas del Núcleo Viral/ultraestructura , Difracción de Rayos X
19.
J Mol Biol ; 272(3): 362-8, 1997 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-9325096

RESUMEN

The rotavirus nucleocapsid protein (VP6) is the major structural protein of inner capsid particles (ICP). VP6 is essential for RNA transcription and binds to a virally encoded glycoprotein receptor (NSP4) involved in the rotavirus assembly pathway. To explore the structure of VP6, two-dimensional (2D) crystals of VP6 were generated and examined by electron microscopy and image processing. Fourier transforms computed from low-dose images of negatively stained 2D VP6 crystals displayed complete data to 13 A resolution for p6 plane group symmetry. To correct for the resolution dependent fall-off of the amplitudes derived from electron microscopic images, the rotavirus VP6 amplitudes were scaled to the bluetongue VP7 amplitudes derived from the atomic model by applying a B factor of -360 A-2. The unit cell (a=b=101(+/-2)A, gamma=120(+/-1) degrees) contains two VP6 trimers, each composed of three roughly circular subunits approximately 30 A in diameter. The trimeric organization of VP6 is similar to the oligomeric structure of VP6 when assembled in T=13l icosahedral inner capsid particles at 25 to 40 A resolution. However, a channel at the center of the trimer is better resolved in our map at 15 A resolution. The projection structure of rotavirus VP6 was compared to the homologous protein (VP7) of bluetongue virus, which is also a member of the family of Reoviridae. Notably, both VP6 and bluetongue VP7 assemble as 260 capsomers on the surface of the inner capsid. To compare VP6 and VP7, a projection map of bluetongue VP7 at 15 A resolution was generated using the atomic model derived by X-ray crystallography. VP6 and VP7 both exhibit a trimeric organization with a central channel, even though the alignment identity between the 45 kDa VP6 and the 38 kDa VP7 primary sequences is only 12%. The ability of VP6 to form well-ordered 2D crystals should enable a higher resolution structure analysis by cryo-electron microscopy that will extend our understanding of the icosahedral ICP structure, clarify the mechanism by which VP6 interacts with the NSP4 receptor, and allow a more detailed comparison of VP6 and VP7.


Asunto(s)
Antígenos Virales , Virus de la Lengua Azul/ultraestructura , Proteínas de la Cápside , Cápside/ultraestructura , Rotavirus/ultraestructura , Proteínas del Núcleo Viral/ultraestructura , Cristalografía , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica
20.
J Mol Biol ; 230(1): 228-47, 1993 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-8450538

RESUMEN

Crystal forms 2 and 3 of Sindbis virus core protein have been refined to 2.8 A and 3.0 A resolution, respectively. The three independent molecular copies in the two crystal forms are essentially identical, except for regions where the molecules are involved in different crystal packing interactions. The overall polypeptide backbone fold of Sindbis virus core protein is similar to other chymotrypsin-like serine proteinase structures despite a lack of significant sequence homology. Detailed analysis revealed differences in the catalytic triad and the substrate binding pockets between the Sindbis virus core protein and the other serine proteinases. The catalytic aspartic acid residue (Asp163) and residue Asp214 (corresponding to Asp194 in chymotrypsin) are partially exposed to solvent in Sindbis virus core protein. Chymotrypsin Ser214, hydrogen bonded to the catalytic aspartic acid residue in all other serine proteinase structures, is changed to Leu231 in Sindbis virus core protein. Deletions in the loop regions on the surface of the protein account for the smaller size of the ordered part of Sindbis virus core protein (151 residues) as compared to chymotrypsin (236 residues), and permits the cis autocatalytic cleavage of the polyprotein to produce the viral capsid protein.


Asunto(s)
Serina Endopeptidasas/ultraestructura , Virus Sindbis/ultraestructura , Proteínas del Núcleo Viral/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Quimotripsina/química , Quimotripsina/ultraestructura , Cricetinae , Cristalografía , Enlace de Hidrógeno , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química , Virus Sindbis/enzimología , Proteínas del Núcleo Viral/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA