Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Clin Exp Hypertens ; 46(1): 2323532, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38471134

RESUMEN

BACKGROUND: Physical activity has profound benefits on health, especially in patients with cardiovascular and metabolic disease. Exercise training can reduce oxidative stress, improve renal function, and thus lower blood pressure. However, the effect of exercise training on angiotensin II type 1 receptors (AT1R) and endothelin subtype B receptors (ETBR)-mediated diuresis and natriuresis in obese Zucker rats is unclear. METHODS: Lean and obese Zucker rats were exercised or placed on a nonmoving treadmill for 8 weeks. Blood pressure was measured by tail-cuff plethysmography, and functions of AT1R and ETBR in the kidney were measured by natriuresis, respectively. RESULTS: Our data showed that exercise training improved glucose and lipid metabolism, renal function and sodium excretion in obese Zucker rats, accompanied by decreased oxidative stress and GRK4 expression in obese Zucker rats. Moreover, exercise training reduced the Candesartan-induced an increase in diuresis and natriuresis and increased ETBR agonists (BQ3020)-mediated diuresis and natriuresis in obese Zucker rats, which were associated with decreased renal AT1R expression and ETBR phosphorylation levels. CONCLUSIONS: The results demonstrate that exercise training lowers blood pressure via improving renal AT1R and ETBR function through modulating GRK4 expression in Obese Zucker Rats and provides potentially effective targets for obesity-related hypertension.


Asunto(s)
Hipertensión , Riñón , Humanos , Ratas , Animales , Ratas Zucker , Riñón/metabolismo , Obesidad/complicaciones , Presión Sanguínea , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo
2.
Yale J Biol Med ; 96(1): 95-105, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009199

RESUMEN

Essential hypertension is caused by the interaction of genetic, behavioral, and environmental factors. Abnormalities in the regulation of renal ion transport cause essential hypertension. The renal dopaminergic system, which inhibits sodium transport in all the nephron segments, is responsible for at least 50% of renal sodium excretion under conditions of moderate sodium excess. Dopaminergic signals are transduced by two families of receptors that belong to the G protein-coupled receptor (GPCR) superfamily. D1-like receptors (D1R and D5R) stimulate, while D2-like receptors (D2R, D3R, and D4R) inhibit adenylyl cyclases. The dopamine receptor subtypes, themselves, or by their interactions, regulate renal sodium transport and blood pressure. We review the role of the D1R and D3R and their interaction in the natriuresis associated with volume expansion. The D1R- and D3R-mediated inhibition of renal sodium transport involves PKA and PKC-dependent and -independent mechanisms. The D3R also increases the degradation of NHE3 via USP-mediated ubiquitinylation. Although deletion of Drd1 and Drd3 in mice causes hypertension, DRD1 polymorphisms are not always associated with human essential hypertension and polymorphisms in DRD3 are not associated with human essential hypertension. The impaired D1R and D3R function in hypertension is related to their hyper-phosphorylation; GRK4γ isoforms, R65L, A142V, and A486V, hyper-phosphorylate and desensitize D1R and D3R. The GRK4 locus is linked to and GRK4 variants are associated with high blood pressure in humans. Thus, GRK4, by itself, and by regulating genes related to the control of blood pressure may explain the "apparent" polygenic nature of essential hypertension.


Asunto(s)
Hipertensión , Humanos , Ratones , Animales , Hipertensión/genética , Riñón/metabolismo , Presión Sanguínea , Dopamina/metabolismo , Hipertensión Esencial/genética , Hipertensión Esencial/complicaciones , Hipertensión Esencial/metabolismo , Sodio/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo
3.
Clin Sci (Lond) ; 136(12): 989-1003, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695067

RESUMEN

Activation of the angiotensin II type 2 receptor (AT2R) induces diuresis and natriuresis. Increased expression or/and activity of G-protein-coupled receptor kinase 4 (GRK4) or genetic variants (e.g., GRK4γ142V) cause sodium retention and hypertension. Whether GRK4 plays a role in the regulation of AT2R in the kidney remains unknown. In the present study, we found that spontaneously hypertensive rats (SHRs) had increased AT2R phosphorylation and impaired AT2R-mediated diuretic and natriuretic effects, as compared with normotensive Wistar-Kyoto (WKY) rats. The regulation by GRK4 of renal AT2R phosphorylation and function was studied in human (h) GRK4γ transgenic mice. hGRK4γ142V transgenic mice had increased renal AT2R phosphorylation and impaired AT2R-mediated natriuresis, relative to hGRK4γ wild-type (WT) littermates. These were confirmed in vitro; AT2R phosphorylation was increased and AT2R-mediated inhibition of Na+-K+-ATPase activity was decreased in hGRK4γ142V, relative to hGRK4γ WT-transfected renal proximal tubule (RPT) cells. There was a direct physical interaction between renal GRK4 and AT2R that was increased in SHRs, relative to WKY rats. Ultrasound-targeted microbubble destruction of renal GRK4 decreased the renal AT2R phosphorylation and restored the impaired AT2R-mediated diuresis and natriuresis in SHRs. In vitro studies showed that GRK4 siRNA reduced AT2R phosphorylation and reversed the impaired AT2R-mediated inhibition of Na+-K+-ATPase activity in SHR RPT cells. Our present study shows that GRK4, at least in part, impairs renal AT2R-mediated diuresis and natriuresis by increasing its phosphorylation; inhibition of GRK4 expression and/or activity may be a potential strategy to improve the renal function of AT2R.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G , Hipertensión , Adenosina Trifosfatasas/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Fosforilación , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo
4.
Eur Heart J ; 42(14): 1415-1430, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33280021

RESUMEN

AIMS: G protein-coupled receptor kinase 4 (GRK4) has been reported to play an important role in hypertension, but little is known about its role in cardiomyocytes and myocardial infarction (MI). The goal of present study is to explore the role of GRK4 in the pathogenesis and progression of MI. METHODS AND RESULTS: We studied the expression and distribution pattern of GRK4 in mouse heart after MI. GRK4 A486V transgenic mice, inducible cardiomyocyte-specific GRK4 knockout mice, were generated and subjected to MI with their control mice. Cardiac infarction, cardiac function, cardiomyocyte apoptosis, autophagic activity, and HDAC4 phosphorylation were assessed. The mRNA and protein levels of GRK4 in the heart were increased after MI. Transgenic mice with the overexpression of human GRK4 wild type (WT) or human GRK4 A486V variant had increased cardiac infarction, exaggerated cardiac dysfunction and remodelling. In contrast, the MI-induced cardiac dysfunction and remodelling were ameliorated in cardiomyocyte-specific GRK4 knockout mice. GRK4 overexpression in cardiomyocytes aggravated apoptosis, repressed autophagy, and decreased beclin-1 expression, which were partially rescued by the autophagy agonist rapamycin. MI also induced the nuclear translocation of GRK4, which inhibited autophagy by increasing HDAC4 phosphorylation and decreasing its binding to the beclin-1 promoter. HDAC4 S632A mutation partially restored the GRK4-induced inhibition of autophagy. MI caused greater impairment of cardiac function in patients carrying the GRK4 A486V variant than in WT carriers. CONCLUSION: GRK4 increases cardiomyocyte injury during MI by inhibiting autophagy and promoting cardiomyocyte apoptosis. These effects are mediated by the phosphorylation of HDAC4 and a decrease in beclin-1 expression.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/fisiología , Infarto del Miocardio , Miocitos Cardíacos , Animales , Apoptosis , Autofagia , Beclina-1 , Histona Desacetilasas , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Remodelación Ventricular
5.
J Gene Med ; 23(2): e3305, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33350037

RESUMEN

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) experience a two-fold increased risk of cardiovascular diseases. Genome-wide association studies (GWAS) have identified T2DM susceptibility genetic variants. Interestingly, the genetic variants associated with cardiovascular disease risk in T2DM Han Chinese remain to be elucidated. The present study aimed to investigate the genetic variants associated with cardiovascular disease risk in T2DM. METHODS: We performed bootstrapping, GWAS and an investigation of genetic variants associated with cardiovascular disease risk in a discovery T2DM cohort and in a replication cohort. The discovery cohort included 326 cardiovascular disease patients and 1209 noncardiovascular disease patients. The replication cohort included 68 cardiovascular disease patients and 317 noncardiovascular disease patients. The main outcome measures were genetic variants for genetic risk score (GRS) in cardiovascular disease risk in T2DM. RESULTS: In total, 35 genetic variants were associated with cardiovascular disease risk. A GRS was generated by combining risk alleles from these variants weighted by their estimated effect sizes (log odds ratio [OR]). T2DM patients with weighted GRS ≥ 12.63 had an approximately 15-fold increase in cardiovascular disease risk (odds ratio = 15.67, 95% confidence interval [CI] = 10.33-24.00) compared to patients with weighted GRS < 10.39. With the addition of weighted GRS, receiver-operating characteristic curves showed that area under the curve with conventional risk factors was improved from 0.719 (95% CI = 0.689-0.750) to 0.888 (95% CI = 0.866-0.910). CONCLUSIONS: These 35 genetic variants are associated with cardiovascular disease risk in T2DM, alone and cumulatively. T2DM patients with higher levels of weighted genetic risk score have higher cardiovascular disease risks.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , Alelos , Pueblo Asiatico/genética , Estudios de Cohortes , Contactinas/genética , Estudios Transversales , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Oportunidad Relativa , Curva ROC , Factores de Riesgo , Factores de Transcripción/genética
6.
Clin Sci (Lond) ; 135(22): 2575-2588, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34779863

RESUMEN

Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.


Asunto(s)
Hipertensión/etiología , Material Particulado/efectos adversos , Exposición Paterna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Presión Sanguínea , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/metabolismo , Masculino , Estrés Oxidativo , Embarazo , Ratas Sprague-Dawley , Sodio/orina
7.
FASEB J ; 34(9): 11594-11604, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32687659

RESUMEN

The endothelin receptor type B (ETBR) regulates water and electrolyte balance and blood pressure, in part, by inhibiting renal sodium transport. Our preliminary study found that the ETBR-mediated diuresis and natriuresis are impaired in hypertension with unknown mechanism. Persistently increased activity of G protein-coupled receptor kinase 4 (GRK4), caused by increased expression or genetic variants (eg, GRKγ142V), impairs the ability of the kidney to excrete a sodium load, in part, by impairing renal dopamine D1 receptor function through persistent phosphorylation. Our present study found that although renal ETBR expression was not different between Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs), renal ETBR phosphorylation was higher in SHRs. The role of hyper-phosphorylation in impaired ETBR-function was supported by results in human (h) GRK4γ transgenic mice. Stimulation of ETBR by BQ3020-induced natriuresis in human (h) GRK4γ wild-type (WT) mice. However, in hGRK4γ 142V transgenic mice, the renal ETBR was hyperphosphorylated and ETBR-mediated natriuresis and diuresis were not evident. There were co-localization and co-immunoprecipitation of ETBR and GRK4 in renal proximal tubule (RPT) cells from both WKY and SHRs but was greater in the latter than the former group. SiRNA-mediated downregulation of GRK4 expression, recovered the impaired inhibitory effect of ETBR on Na+ -K+ -ATPase activity in RPT cells from SHR. In vivo downregulation of renal GRK4 expression, via ultrasound-targeted microbubble destruction, decreased ETBR phosphorylation and restored ETBR-mediated natriuresis and diuresis in SHRs. This study provides a mechanism by which GRK4, via regulation of renal ETBR function, participates in the pathogenesis of hypertension.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Receptor de Endotelina B/metabolismo , Animales , Células Cultivadas , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Hipertensión/genética , Túbulos Renales Proximales/metabolismo , Masculino , Ratones Transgénicos , Fosforilación , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Endotelina B/genética , Sodio/metabolismo , Especificidad de la Especie
8.
Clin Exp Hypertens ; 43(7): 597-603, 2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33899625

RESUMEN

Background: Genetic variants of coding genes related to blood pressure regulation participate in the pathogenesis of hypertension and determines the response to specific antihypertensive drugs. G protein-coupled receptor kinase 4 (GRK4) and its variants are of great importance in pathogenesis of hypertension. However, little is known about role of GRK4 variants in determine circadian rhythm of blood pressure and response to candesartan in hypertension. The aim of this study was to analyze the correlation of GRK4 variants and circadian rhythm of blood pressure, and to explore their effect on antihypertensive efficiency of candestartan.Methods: In this study, a total of 1239 cases were eligible, completed ambulatory blood pressure monitoring (ABPm) observation and exon sequencing of G protein-coupled receptor kinase 4 (GRK4). ABPm was obtained before and after 4-week treatment of candesartan. Diurnal variation of systolic blood pressure and antihypertensive effect of candesartan were then assessed.Results: Compared to GRK4 wild type (GRK4-WT), patients with GRK4 variants were more likely to be non-dippers (odds ratio (OR) 6.672, 95% confidence interval (CI) 5.124-8.688, P < .001), with GRK4 A142V (OR 5.888, 95% CI 4.332-8.003, P < .001), A486V (OR 7.102, 95% CI 5.334-9.455, P < .001) and GRK4 R65L (OR 3.273, 95% CI 2.271-4.718, P < .001), respectively. Correlation analysis revealed that non-dippers rhythm of blood pressure were associated with GRK4 variants (r = .420, P < .001), with GRK4 A142V (r = .416, P < .001), A486V (r = .465, P < .001) and GRK4 R65L (r = .266, P < .001), respectively. When given 4-week candesartan, patients with GRK4 variants showed better antihypertensive effect as to drop in blood pressure (24 h mSBP, 21.21 ± 4.99 vs 12.34 ± 4.78 mmHg, P < .001) and morning peak (MP-SBP, 16.54 ± 4.37 vs 11.52 ± 4.14 mmHg, P < .001), as well as greater increase in trough to peak ratio (SBP-T/P, .71 ± .07 vs .58 ± .07, P < .001) and smoothness index (SBP-SI, 1.44 ± .16 vs 1.17 ± .11, P < .001) than those with GRK4 WT.Conclusion: This study indicates that hypertensive patients with GRK4 variants are more likely to be non-dippers. What's more, patients with GRK4 variants possess a significantly better antihypertensive response to candesartan than those with GRK4 WT.


Asunto(s)
Bencimidazoles/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Monitoreo Ambulatorio de la Presión Arterial , Ritmo Circadiano , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Hipertensión , Tetrazoles/uso terapéutico , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Ritmo Circadiano/genética , Variación Genética , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/genética
9.
Clin Sci (Lond) ; 134(18): 2453-2467, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32940654

RESUMEN

Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Receptores de Adiponectina/metabolismo , Sodio/metabolismo , Adiponectina/metabolismo , Animales , Presión Sanguínea , Línea Celular , Diuresis , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Hipertensión/fisiopatología , Ratones Transgénicos , Mutación/genética , Natriuresis , Fosforilación , Ratas Endogámicas SHR , Ratas Endogámicas WKY
10.
Curr Hypertens Rep ; 22(7): 45, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591971

RESUMEN

PURPOSE OF REVIEW: Excessive dietary salt intake is associated with an increased risk of hypertension. Salt sensitivity, i.e., an elevation in blood pressure in response to high dietary salt intake, has been associated with a high risk of cardiovascular disease and mortality. We investigated whether a causal association exists between dietary sodium intake and hypertension risk using Mendelian randomization (MR). RECENT FINDINGS: We performed an MR study using data from a large genome-wide association study comprising 15,034 Korean adults in a community-based cohort study. A total of 1282 candidate single nucleotide polymorphisms associated with dietary sodium intake, such as rs2960306, rs4343, and rs1937671, were selected as instrumental variables. The inverse variance weighted method was used to assess the evidence for causality. Higher dietary sodium intake was associated with salt-sensitive hypertension risk. The variants of SLC8E1 rs2241543 and ADD1 rs16843589 were strongly associated with increased blood pressure. In the logistic regression model, after adjusting for age, gender, smoking, drinking, exercise, and body mass index, the GRK4 rs2960306TT genotype was inversely associated with hypertension risk (OR, 0.356; 95% CI, 0.236-0.476). However, the 2350GG genotype (ACE rs4343) exhibited a 2.11-fold increased hypertension risk (OR, 2.114; 95% CI, 2.004-2.224) relative to carriers of the 2350AA genotype, after adjusting for confounders. MR analysis revealed that the odds ratio for hypertension per 1 mg/day increment of dietary sodium intake was 2.24 in participants with the PRKG1 rs12414562 AA genotype. Our findings suggest that dietary sodium intake may be causally associated with hypertension risk.


Asunto(s)
Hipertensión , Sodio en la Dieta , Adulto , Estudios de Cohortes , Quinasa 4 del Receptor Acoplado a Proteína-G , Estudio de Asociación del Genoma Completo , Humanos , Hipertensión/genética , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Cloruro de Sodio Dietético/efectos adversos , Sodio en la Dieta/efectos adversos
11.
Clin Exp Hypertens ; 42(2): 99-104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30698033

RESUMEN

Objective:Environmental cold stress is an important factor that leads to hypertension. The role and the mechanisms of in-utero cold stress in hypertension in adult offspring remain unknown.Methods: The pregnant rats were housed in cold (4°C) rooms from 14 to 21 days of gestation for prenatal cold exposure. The blood pressure and vascular response offspring of control and cold exposure were measured. And the receptor expression, phosphorylation and internalization were checked by immunoblotting or immunoprecipitation.Results: In the present study, we report that prenatal cold stress elevated the blood pressure via decreasing D1 receptor-associated vasodilation, which is ascribed to decreased D1 receptor expression and function. Moreover, the artery G protein-coupled receptor kinase 4 (GRK4) expression has been found to be higher in the prenatal cold stress treated offspring than the controls, which could cause the increased phosphorylation and internalization of D1 receptor in mesenteric artery from prenatal cold stress treated offspring, and led to receptor desensitization and vascular dysfunction.Conclusion: The results illustrate a new paradigm for the developmental origins of hypertension and imply that GRK4 and dopamine D1 receptor may be crucial determinants for the maternal hypertension.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Dopamina/fisiología , Hipertensión/prevención & control , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Animales , Presión Sanguínea/fisiología , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/fisiopatología , Arterias Mesentéricas/fisiología , Fosforilación/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Vasodilatación/fisiología
12.
Int J Mol Sci ; 20(5)2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832344

RESUMEN

Hypertension is the leading cause of cardiovascular disease in the United States, affecting up to one-third of adults. When compared to other ethnic or racial groups in the United States, African Americans and other people of African descent show a higher incidence of hypertension and its related comorbidities; however, the genetics of hypertension in these populations has not been studied adequately. Several genes have been identified to play a role in the genetics of hypertension. They include genes regulating the renin-aldosterone-angiotensin system (RAAS), such as Sodium Channel Epithelial 1 Beta Subunit (SCNN1B), Armadillo Repeat Containing 5 (ARMC5), G Protein-Coupled Receptor Kinase 4 (GRK4), and Calcium Voltage-Gated Channel Subunit Alpha1 D (CACNA1D). In this review, we focus on recent genetic findings available in the public domain for potential differences between African Americans and other populations. We also cover some recent and relevant discoveries in the field of low-renin hypertension from our laboratory at the National Institutes of Health. Understanding the different genetics of hypertension among various groups is essential for effective precision-guided medical therapy of high blood pressure.


Asunto(s)
Negro o Afroamericano/genética , Hipertensión/genética , Proteínas del Dominio Armadillo , Canales de Calcio Tipo L/genética , Canales Epiteliales de Sodio/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Hipertensión/etnología , Proteínas Supresoras de Tumor/genética
13.
Exp Cell Res ; 360(2): 273-280, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912086

RESUMEN

Senescent cells have lost their capacity for proliferation and manifest as irreversibly in cell cycle arrest. Many membrane receptors, including G protein-coupled receptors (GPCRs), initiate a variety of intracellular signaling cascades modulating cell division and potentially play roles in triggering cellular senescence response. GPCR kinases (GRKs) belong to a family of serine/threonine kinases. Although their role in homologous desensitization of activated GPCRs is well established, the involvement of the kinases in cell proliferation is still largely unknown. In this study, we isolated GRK4-GFP expressing HEK293 cells by fluorescence-activated cell sorting (FACS) and found that the ectopic expression of GRK4 halted cell proliferation. Cells expressing GRK4 (GRK4(+)) demonstrated cell cycle G1/G0 phase arrest, accompanied with significant increase of senescence-associated-ß-galactosidase (SA-ß-Gal) activity. Expression profiling analysis of 78 senescence-related genes by qRT-PCR showed a total of 17 genes significantly changed in GRK4(+) cells (≥ 2 fold, p < 0.05). Among these, 9 genes - AKT1, p16INK4, p27KIP1, p19INK4, IGFBP3, MAPK14, PLAU, THBS1, TP73 - were up-regulated, while 8 genes, Cyclin A2, Cyclin D1, CDK2, CDK6, ETS1, NBN, RB1, SIRT1, were down-regulated. The increase in cyclin-dependent kinase inhibitors (p16, p27) and p38 MAPK proteins (MAPK14) was validated by immunoblotting. Neither p53 nor p21Waf1/Cip1 protein was detectable, suggesting no p53 activation in the HEK293 cells. These results unveil a novel function of GRK4 on triggering a p53-independent cellular senescence, which involves an intricate signaling network.


Asunto(s)
Senescencia Celular/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/fisiología , Perfilación de la Expresión Génica , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Citometría de Flujo , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Células MCF-7 , Transcriptoma , Proteína p53 Supresora de Tumor/fisiología
14.
Int J Obes (Lond) ; 41(4): 542-550, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28017963

RESUMEN

Backgrounds/Objectives:This panel study was to predict the incidences of pediatric obesity by the interaction of sodium (Na) intake and nine single-nucleotide polymorphisms (SNPs) of salt-sensitive genes (SSGs), ACE(angiotensin-converting enzyme), ADD1 G460W,AGT M235T,CYP11ß2 (cytochrome P450 family 11-subfamily ß-2, -aldosterone synthase),GNB3 C285T,GRK4(A142V)(G-protein-coupled receptor kinases type 4),GRK4 (A486V),NEDD4L (neural precursor cell expressed developmentally downregulated 4 like; rs2288774) and SLC12A3 (solute carrier family 12 (Na/Cl transporters)-member 3), selected from genome-wide association study. SUBJECTS/METHODS: Non-obese (non-OB) Korean children of 9 years old were recruited from eight elementary schools in Seoul in 2007 and 2009, each. Follow-up subjects (total=798) in 2010 and 2012 were final participants. Participants were classified as OB group for those whose body mass index were over the 85th percentile using the 'Korean National Growth Charts', and others were classified as non-OB. With nine SNPs typing, the genetic interaction with the variation of Na intake for 3 years was evaluated as an obesity risk. RESULTS: The obesity incidence rate for non-OB children at baseline after 3 years was 10.31%. Na intake in non-OB after 3 years was significantly decreased compared with the baseline, whereas Na intake reduction was undetectable in OB. We found gender differences on association between the changes of Na intake and the obesity incidence for 3 years by the SSG variation. Odds ratio for the obesity risk was 5.75 times higher in girls having hetero/mutant types of NEDD4L with higher Na intakes (Q2+Q3+Q4 in quartiles) compared with that in the wild type with the lowest Na intake (Q1). Girls with hetero/mutant of CYP11ß2 tended to increase the obesity incidence as Na intake increased (Q1

Asunto(s)
Citocromo P-450 CYP11B2/genética , Variación Genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Obesidad Infantil/genética , Peptidil-Dipeptidasa A/sangre , Caracteres Sexuales , Sodio en la Dieta/efectos adversos , Análisis de Varianza , Índice de Masa Corporal , Niño , Estudios Transversales , Citocromo P-450 CYP11B2/sangre , Registros de Dieta , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/sangre , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ubiquitina-Proteína Ligasas Nedd4/sangre , Obesidad Infantil/sangre , Obesidad Infantil/epidemiología , Polimorfismo de Nucleótido Simple/genética , República de Corea/epidemiología
15.
Gynecol Oncol ; 147(3): 621-625, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28969913

RESUMEN

OBJECTIVE: Bevacizumab, a monoclonal antibody to VEGF, has shown efficacy in ovarian, cervical and endometrial cancer in addition to several other solid tumors. Serious side effects include hypertension, proteinuria, bowel perforation, and thrombosis. We tested the hypothesis that genetic variation in hypertension-associated genes is associated with bevacizumab-induced hypertension (BIH). METHODS: Patients with solid tumors treated with bevacizumab in combination with other therapy were identified from six clinical trials. Haplotype-tagging (ht) SNPs for 10 candidate genes associated with hypertension were identified through the International Hapmap Project. Germline DNA was genotyped for 103 htSNPs using mass spectrometry. Bevacizumab toxicities were identified from clinical trial reports. Haplotypes were reconstructed from diploid genotyping data and frequencies were compared using standard two-sided statistical tests. RESULTS: The study included 114 patients with breast, lung, ovarian, or other cancers, of whom 38 developed BIH. WNK1, KLKB1, and GRK4 were found to contain single loci associated with BIH. Haplotype analysis of WNK1, KLKB1, and GRK4 identified risk haplotypes in each gene associated with grade 3/4 BIH. A composite risk model was created based on these haplotypes. Patients with the highest risk score were the most likely to develop grade 3/4 BIH (OR=6.45; P=0.005; 95%CI, 1.86-22.39). CONCLUSIONS: We concluded that genetic variation in WNK1, KLKB1, and GRK4 may be associated with BIH. These genes are biologically plausible mediators due to their role in blood pressure control, regulating sodium homeostasis and vascular tone. This preliminary risk model performed better than population-based risk models and when further validated may help risk-stratify patients for BIH prior to initiating therapy.


Asunto(s)
Bevacizumab/efectos adversos , Hipertensión/inducido químicamente , Hipertensión/genética , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos Inmunológicos/efectos adversos , Estudios de Casos y Controles , Femenino , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Calicreínas/genética , Masculino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Polimorfismo de Nucleótido Simple , Proteína Quinasa Deficiente en Lisina WNK 1/genética
16.
Nucleic Acids Res ; 43(17): 8540-50, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26250109

RESUMEN

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.


Asunto(s)
Cerebelo/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/química
17.
J Biol Chem ; 290(33): 20360-73, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26134571

RESUMEN

G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl ß,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/química , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
18.
J Biol Chem ; 290(17): 10775-90, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25770216

RESUMEN

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in homologous desensitization of GPCRs. It is widely assumed that most GRKs selectively phosphorylate only active GPCRs. Here, we show that although this seems to be the case for the GRK2/3 subfamily, GRK5/6 effectively phosphorylate inactive forms of several GPCRs, including ß2-adrenergic and M2 muscarinic receptors, which are commonly used as representative models for GPCRs. Agonist-independent GPCR phosphorylation cannot be explained by constitutive activity of the receptor or membrane association of the GRK, suggesting that it is an inherent ability of GRK5/6. Importantly, phosphorylation of the inactive ß2-adrenergic receptor enhanced its interactions with arrestins. Arrestin-3 was able to discriminate between phosphorylation of the same receptor by GRK2 and GRK5, demonstrating preference for the latter. Arrestin recruitment to inactive phosphorylated GPCRs suggests that not only agonist activation but also the complement of GRKs in the cell regulate formation of the arrestin-receptor complex and thereby G protein-independent signaling.


Asunto(s)
Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arrestinas/metabolismo , Bovinos , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Fosforilación , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biochem Biophys Res Commun ; 470(4): 894-9, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26820533

RESUMEN

Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [(125)I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or ß2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449-453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM1 receptor and further determined the region of the CLR C-tail responsible for this GRK function.


Asunto(s)
Membrana Celular/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Regulación hacia Abajo/fisiología , Células HEK293 , Humanos
20.
Int J Mol Sci ; 16(3): 5741-9, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25775155

RESUMEN

Salt sensitivity is probably caused by either a hereditary or acquired defect of salt excretion by the kidney, and it is reasonable to consider that this is the basis for differences in hypertension between black and white people. Dopamine acts in an autocrine/paracrine fashion to promote natriuresis in the proximal tubule and thick ascending loop of Henle. G-protein receptor kinases (or GRKs) are serine and threonine kinases that phosphorylate G protein-coupled receptors in response to agonist stimulation and uncouple the dopamine receptor from its G protein. This results in a desensitisation process that protects the cell from repeated agonist exposure. GRK4 activity is increased in spontaneously hypertensive rats, and infusion of GRK4 antisense oligonucleotides attenuates the increase in blood pressure (BP). This functional defect is replicated in the proximal tubule by expression of GRK4 variants namely p.Arg65Leu, p.Ala142Val and p.Val486Ala, in cell lines, with the p.Ala142Val showing the most activity. In humans, GRK4 polymorphisms were shown to be associated with essential hypertension in Australia, BP regulation in young adults, low renin hypertension in Japan and impaired stress-induced Na excretion in normotensive black men. In South Africa, GRK4 polymorphisms are more common in people of African descent, associated with impaired Na excretion in normotensive African people, and predict blood pressure response to Na restriction in African patients with mild to moderate essential hypertension. The therapeutic importance of the GRK4 single nucleotide polymorphisms (SNPs) was emphasised in the African American Study of Kidney Disease (AASK) where African-Americans with hypertensive nephrosclerosis were randomised to receive amlodipine, ramipril or metoprolol. Men with the p.Ala142Val genotype were less likely to respond to metoprolol, especially if they also had the p.Arg65Leu variant. Furthermore, in the analysis of response to treatment in two major hypertension studies, the 65Leu/142Val heterozygote predicted a significantly decreased response to atenolol treatment, and the 65Leu/142Val heterozygote and 486Val homozygote were associated in an additive fashion with adverse cardiovascular outcomes, independent of BP. In conclusion, there is considerable evidence that GRK4 variants are linked to impaired Na excretion, hypertension in animal models and humans, therapeutic response to dietary Na restriction and response to antihypertensive drugs. It may also underlie the difference in hypertension between different geographically derived population groups, and form a basis for pharmacogenomic approaches to treatment of hypertension.


Asunto(s)
Antihipertensivos/uso terapéutico , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Hipertensión/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Quinasa 4 del Receptor Acoplado a Proteína-G/genética , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Polimorfismo de Nucleótido Simple , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA