Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.583
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294408

RESUMEN

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Asunto(s)
Acetilcolina/inmunología , Proteínas Bacterianas/farmacología , Cilios/inmunología , Depuración Mucociliar/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Canales Catiónicos TRPM/inmunología , Tráquea/inmunología , Acetilcolina/metabolismo , Animales , Proteínas Bacterianas/inmunología , Transporte Biológico , Cilios/efectos de los fármacos , Cilios/metabolismo , Femenino , Formiatos/metabolismo , Expresión Génica , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Comunicación Paracrina/inmunología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Papilas Gustativas/inmunología , Papilas Gustativas/metabolismo , Tráquea/efectos de los fármacos , Tráquea/patología , Virulencia
2.
Nature ; 586(7829): 417-423, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999463

RESUMEN

Microglia, the brain's resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.


Asunto(s)
Retroalimentación Fisiológica , Microglía/fisiología , Inhibición Neural , Neuronas/fisiología , 5'-Nucleotidasa/metabolismo , Potenciales de Acción , Adenosina/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Calcio/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Inhibición Neural/genética , Receptor de Adenosina A1/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Factores de Tiempo
3.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38438258

RESUMEN

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Asunto(s)
Acetilcolina , Colecistoquinina , Ratones Endogámicos C57BL , Ritmo Teta , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología , Animales , Masculino , Ratones , Femenino , Acetilcolina/farmacología , Acetilcolina/metabolismo , Colecistoquinina/farmacología , Colecistoquinina/metabolismo , Interneuronas/fisiología , Interneuronas/efectos de los fármacos , Somatostatina/metabolismo , Somatostatina/farmacología , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de los fármacos , Red Nerviosa/fisiología , Red Nerviosa/efectos de los fármacos , Receptor Muscarínico M3/fisiología , Receptor Muscarínico M3/metabolismo , Parvalbúminas/metabolismo
4.
Mol Pharmacol ; 105(6): 386-394, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641412

RESUMEN

The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor (GPCR) that regulates important physiologic processes, including vascular tone, bronchoconstriction, and insulin secretion. It is expressed on a wide variety of cell types, including pancreatic beta, smooth muscle, neuronal, and immune cells. Agonist binding to the M3R is thought to initiate intracellular signaling events primarily through the heterotrimeric G protein Gq. However, reports differ on the ability of M3R to couple to other G proteins beyond Gq. Using members from the four primary G protein families (Gq, Gi, Gs, and G13) in radioligand binding, GTP turnover experiments, and cellular signaling assays, including live cell G protein dissociation and second messenger assessment of cAMP and inositol trisphosphate, we show that other G protein families, particularly Gi and Gs, can also interact with the human M3R. We further show that these interactions are productive as assessed by amplification of classic second messenger signaling events. Our findings demonstrate that the M3R is more promiscuous with respect to G protein interactions than previously appreciated. SIGNIFICANCE STATEMENT: The study reveals that the human M3 muscarinic acetylcholine receptor (M3R), known for its pivotal roles in diverse physiological processes, not only activates intracellular signaling via Gq as previously known but also functionally interacts with other G protein families such as Gi and Gs, expanding our understanding of its versatility in mediating cellular responses. These findings signify a broader and more complex regulatory network governed by M3R and have implications for therapeutic targeting.


Asunto(s)
Proteínas de Unión al GTP , Receptor Muscarínico M3 , Transducción de Señal , Receptor Muscarínico M3/metabolismo , Humanos , Transducción de Señal/fisiología , Proteínas de Unión al GTP/metabolismo , Animales , Células CHO , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293
5.
BMC Genomics ; 24(1): 418, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488493

RESUMEN

Sepsis is a life-threatening condition characterized by a harmful host response to infection with organ dysfunction. Annually about 20 million people are dead owing to sepsis and its mortality rates is as high as 20%. However, no studies have been carried out to investigate sepsis from the system biology point of view, as previous research predominantly focused on individual genes without considering their interactions and associations. Here, we conducted a comprehensive exploration of genome-wide expression alterations in both mRNAs and long non-coding RNAs (lncRNAs) in sepsis, using six microarray datasets. Co-expression networks were conducted to identify mRNA and lncRNA modules, respectively. Comparing these sepsis modules with normal modules, we observed a homogeneous expression pattern within the mRNA/lncRNA members, with the majority of them displaying consistent expression direction. Moreover, we identified consistent modules across diverse datasets, consisting of 20 common mRNA members and two lncRNAs, namely CHRM3-AS2 and PRKCQ-AS1, which are potential regulators of sepsis. Our results reveal that the up-regulated common mRNAs are mainly involved in the processes of neutrophil mediated immunity, while the down-regulated mRNAs and lncRNAs are significantly overrepresented in T-cell mediated immunity functions. This study sheds light on the co-expression patterns of mRNAs and lncRNAs in sepsis, providing a novel perspective and insight into the sepsis transcriptome, which may facilitate the exploration of candidate therapeutic targets and molecular biomarkers for sepsis.


Asunto(s)
ARN Largo no Codificante , Sepsis , Humanos , Biología , Inmunidad Celular , ARN Mensajero , Receptor Muscarínico M3
6.
Nat Methods ; 17(11): 1139-1146, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32989318

RESUMEN

The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.


Asunto(s)
Acetilcolina/metabolismo , Técnicas Biosensibles/métodos , Encéfalo/metabolismo , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Colinérgicos/farmacología , Drosophila/genética , Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Corteza Olfatoria/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Corteza Somatosensorial/metabolismo
7.
Am J Obstet Gynecol ; 228(1): 36-47.e3, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932882

RESUMEN

OBJECTIVE: The contribution of genetic factors to the presence of an overactive bladder is recognized. This study aimed to (1) assemble and synthesize available data from studies assessing differential gene expression in patients with overactive bladder vs controls without overactive bladder and (2) determine possible correlations and functional pathways between genes. DATA SOURCES: We searched PubMed, Ovid or Medline, and Wiley Cochrane Central Register of Controlled Trials databases between January 1, 2000, and December 15, 2021. STUDY ELIGIBILITY CRITERIA: Studies were included if gene expression was detected and quantified using molecular approaches performed on human bladder tissue specimens directly and excluded if the gene expression analysis was carried out from blood and urine specimens alone. METHODS: A systematic review was completed to identify publications that reported differently expressed gene candidates among patients with overactive bladder vs healthy individuals. Gene networking connections and pathway analysis were performed employing Metascape software, where inputs were identified from our systematic review of differentially expressed genes in overactive bladder. RESULTS: A total of 9 studies were included in the final analysis and 11 genes were identified as being up-regulated (purinergic receptor P2X 2 [P2RX2], smoothelin [SMTN], growth-associated protein 43 [GAP43], transient receptor potential cation channel subfamily M member 8 [TRPM8], cadherin 11 [CDH1], gap junction protein gamma 1 [GJC1], cholinergic receptor muscarinic 2 [CHRM2], cholinergic receptor muscarinic 3 [CHRM3], and transient receptor potential cation channel subfamily V member 4 [TRPV4]) or down-regulated (purinergic receptor P2X 2 [P2RX3] and purinergic receptor P2X 5 [P2RX5]) in patients with overactive bladder. Gene network analysis showed that genes are involved in chemical synaptic transmission, smooth muscle contraction, blood circulation, and response to temperature stimulus. Network analysis demonstrated a significant genetic interaction between TRPV4, TRPM8, P2RX3, and PR2X2 genes. CONCLUSION: Outcomes of this systematic review highlighted potential biomarkers for treatment efficacy and have laid the groundwork for developing future gene therapies for overactive bladder in clinical settings.


Asunto(s)
Vejiga Urinaria Hiperactiva , Humanos , Vejiga Urinaria Hiperactiva/terapia , Canales Catiónicos TRPV/uso terapéutico , Marcadores Genéticos , Antagonistas Colinérgicos/uso terapéutico , Receptores Colinérgicos/uso terapéutico , Receptores Purinérgicos/uso terapéutico , Receptor Muscarínico M3/uso terapéutico
8.
J Chem Inf Model ; 63(9): 2842-2856, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37053454

RESUMEN

The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Muscarínico M3 , Cinética , Ligandos , Física
9.
Bioorg Chem ; 131: 106308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516520

RESUMEN

Muscarine acetylcholine receptors (mAChRs) regulate a variety of central and peripheral physiological functions and emerge as important therapeutic targets for a number of diseases including chronic obstructive pulmonary disease (COPD). Inspired by two active natural products, we designed and synthesized a series of 2-(2,2-diarylethyl)-cyclamine derivatives for screening M3 mAChR antagonists. On this skeleton, the structural units including N heterocycle, aryl groups and its substituents on aryl were examined and resulted in a clear structure-activity relationships on the M3 mAChR. In general, these 2-(2,2-diarylethyl)-cyclamine derivatives exhibited good to excellent M3 antagonistic potency and receptor selectivity. The most active 5b-C1 had an IC50 value of 3 nM and the most of compound 6 displayed inactivity against histamine H1 receptor closely related to M3. In in vitro and in vivo evaluations of tracheo-relaxation function, some compounds even showed comparable activity to tiotropium bromide, a known blockbuster drug for COPD. Such excellent properties made these novel compounds potential candidates for COPD drug development.


Asunto(s)
Antagonistas Muscarínicos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Antagonistas Muscarínicos/uso terapéutico , Derivados de Escopolamina/química , Derivados de Escopolamina/uso terapéutico , Receptor Muscarínico M3 , Bromuro de Tiotropio/uso terapéutico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
10.
Dig Dis Sci ; 68(2): 439-450, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35947306

RESUMEN

BACKGROUND: The specific role of the M3 muscarinic acetylcholine receptor in gastrointestinal motility under physiological conditions is unclear, due to a lack of subtype-selective compounds. AIMS: The objective of this study was to determine the region-specific role of the M3 receptor in gastrointestinal motility. METHODS: We developed a novel positive allosteric modulator (PAM) for the M3 receptor, PAM-369. The effects of PAM-369 on the carbachol-induced contractile response of porcine esophageal smooth muscle and mouse colonic smooth muscle (ex vivo) and on the transit in mouse small intestine and rat colon (in vivo) were examined. RESULTS: PAM-369 selectively potentiated the M3 receptor under the stimulation of its orthosteric ligands without agonistic or antagonistic activity. Half-maximal effective concentrations of PAM activity for human, mouse, and rat M3 receptors were 0.253, 0.345, and 0.127 µM, respectively. PAM-369 enhanced carbachol-induced contraction in porcine esophageal smooth muscle and mouse colonic smooth muscle without causing any contractile responses by itself. The oral administration of 30 mg/kg PAM-369 increased the small intestinal transit in both normal motility and loperamide-induced intestinal dysmotility mice but had no effects on the colonic transit, although the M3 receptor mRNA expression is higher in the colon than in the small intestine. CONCLUSIONS: This study provided the first direct evidence that the M3 receptor has different region-specific roles in the motility function between the small intestine and colon in physiological and pathophysiological contexts. Selective PAMs designed for targeted subtypes of muscarinic receptors are useful for elucidating the subtype-specific function.


Asunto(s)
Motilidad Gastrointestinal , Receptor Muscarínico M3 , Animales , Humanos , Ratones , Ratas , Carbacol/farmacología , Motilidad Gastrointestinal/genética , Motilidad Gastrointestinal/fisiología , Contracción Muscular , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Receptores Muscarínicos/fisiología , Porcinos
11.
Mol Divers ; 27(1): 103-123, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35266101

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high disability and mortality. Clinical studies have shown that the Traditional Chinese Medicine Bufei Granule (BFG) has conspicuous effects on relieving cough and improving lung function in patients with COPD and has a reliable effect on the treatment of COPD, whereas the therapeutic mechanism is vague. In the present study, the latent bronchodilators and mechanism of BFG in the treatment of COPD were discussed through the method of network pharmacology. Then, the molecular docking and molecular dynamics simulation were performed to calculate the binding efficacy of corresponding compounds in BFG to muscarinic receptor. Finally, the effects of BFG on bronchial smooth muscle were validated by in vitro experiments. The network pharmacology results manifested the anti-COPD effect of BFG was mainly realized via restraining airway smooth muscle contraction, activating cAMP pathways and relieving oxidative stress. The results of molecular docking and molecular dynamics simulation showed alpinetin could bind to cholinergic receptor muscarinic 3. The in vitro experiment verified both BFG and alpinetin could inhibit the levels of CHRM3 and acetylcholine and could be potential bronchodilators for treating COPD. This study provides an integrating network pharmacology method for understanding the therapeutic mechanisms of traditional Chinese medicine, as well as a new strategy for developing natural medicines for treating COPD.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Broncodilatadores/farmacología , Broncodilatadores/metabolismo , Broncodilatadores/uso terapéutico , Simulación del Acoplamiento Molecular , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/uso terapéutico
12.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108332

RESUMEN

Despite its increasing application in pursing potential ligands, the capacity of receptor affinity chromatography is greatly challenged as most current research studies lack a comprehensive characterization of the ligand-receptor interaction, particularly when simultaneously determining their binding thermodynamics and kinetics. This work developed an immobilized M3 muscarinic receptor (M3R) affinity column by fixing M3R on amino polystyrene microspheres via the interaction of a 6-chlorohexanoic acid linker with haloalkane dehalogenase. The efficiency of the immobilized M3R was tested by characterizing the binding thermodynamics and kinetics of three known drugs to immobilized M3R using a frontal analysis and the peak profiling method, as well as by analyzing the bioactive compounds in Daturae Flos (DF) extract. The data showed that the immobilized M3R demonstrated good specificity, stability, and competence for analyzing drug-protein interactions. The association constants of (-)-scopolamine hydrochloride, atropine sulfate, and pilocarpine to M3R were determined to be (2.39 ± 0.03) × 104, (3.71 ± 0.03) × 104, and (2.73 ± 0.04) × 104 M-1, respectively, with dissociation rate constants of 27.47 ± 0.65, 14.28 ± 0.17, and 10.70 ± 0.35 min-1, respectively. Hyoscyamine and scopolamine were verified as the bioactive compounds that bind to M3R in the DF extract. Our results suggest that the immobilized M3R method was capable of determining drug-protein binding parameters and probing specific ligands in a natural plant, thus enhancing the effectiveness of receptor affinity chromatography in diverse stages of drug discovery.


Asunto(s)
Pilocarpina , Receptor Muscarínico M3 , Receptor Muscarínico M3/metabolismo , Derivados de Escopolamina , Extractos Vegetales/farmacología
13.
Int J Mol Sci ; 24(9)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37175905

RESUMEN

Muscarinic acetylcholine receptor M3 (M3R) has repeatedly been shown to be prominently expressed in human colorectal cancer (CRC), playing roles in proliferation and cell invasion. Its therapeutic targetability has been suggested in vitro and in animal models. We aimed to investigate the clinical role of MR3 expression in CRC for human survival. Surgical tissue samples from 754 CRC patients were analyzed for high or low immunohistochemical M3R expression on a clinically annotated tissue microarray (TMA). Immunohistochemical analysis was performed for established immune cell markers (CD8, TIA-1, FOXP3, IL 17, CD16 and OX 40). We used Kaplan-Meier curves to evaluate patients' survival and multivariate Cox regression analysis to evaluate prognostic significance. High M3R expression was associated with increased survival in multivariate (hazard ratio (HR) = 0.52; 95% CI = 0.35-0.78; p = 0.001) analysis, as was TIA-1 expression (HR = 0.99; 95% CI = 0.94-0.99; p = 0.014). Tumors with high M3R expression were significantly more likely to be grade 2 compared to tumors with low M3R expression (85.7% vs. 67.1%, p = 0.002). The 5-year survival analysis showed a trend of a higher survival rate in patients with high M3R expression (46%) than patients with low M3R expression CRC (42%) (p = 0.073). In contrast to previous in vitro and animal model findings, this study demonstrates an increased survival for CRC patients with high M3R expression. This evidence is highly relevant for translation of basic research findings into clinically efficient treatments.


Asunto(s)
Neoplasias Colorrectales , Receptores Muscarínicos , Animales , Humanos , Neoplasias Colorrectales/genética , Receptor Muscarínico M3/metabolismo
14.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203175

RESUMEN

The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Terapia Combinada , Ácidos y Sales Biliares , Homeostasis , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Receptor Muscarínico M3
15.
Biol Reprod ; 106(4): 687-698, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34935917

RESUMEN

Assisted reproductive technology (ART) has been used globally among infertile couples. However, many epidemiological investigations have indicated that ART is associated with a range of long-term adverse health outcomes in offspring, including cardiovascular disease, obesity, and increased plasma lipid levels. Until now, direct evidence has been limited regarding the pathological changes in vascular function in fetuses with ART. In this study, human umbilical cords were collected from healthy normal pregnancies and in vitro fertilization and embryo transfer (IVF-ET) pregnancies. Vascular functional studies involving acetylcholine (ACh), antagonists of its specific receptors, and L-type calcium channel/PKC-MLC20 phosphorylation pathway specific inhibitors were conducted. Quantitative real-time PCR, Western blotting, and methylation analyses were performed on umbilical vein samples. We found that the umbilical vein constriction induced by ACh in the IVF-ET group was significantly attenuated compared with that in the healthy normal pregnancy group, which was not only associated with the hypermethylation of ACh muscarinic receptor subtype 3 (CHRM3) and decreased expression of CHRM3, PKCß, and CaV1.2, but was also related to the reduced phosphorylation of MLC20. This study revealed that the hypermethylation of CHRM3, leading to a reduction in CHRM3 expression and downregulation of the CaV1.2/PKC-MLC20 phosphorylation pathway, was responsible for the decreased sensitivity to ACh observed in the umbilical vein under IVF-ET conditions. The hypermethylation of CHRM3 caused by IVF-ET might play an important role in altered vasoconstriction and impact cardiovascular systems in the long run.


Asunto(s)
Transferencia de Embrión , Receptor Muscarínico M3 , Técnicas Reproductivas Asistidas , Acetilcolina , Metilación de ADN , Transferencia de Embrión/métodos , Femenino , Fertilización In Vitro/métodos , Humanos , Embarazo , Receptor Muscarínico M3/metabolismo , Venas Umbilicales
16.
Proc Natl Acad Sci U S A ; 116(37): 18684-18690, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451647

RESUMEN

Given the global epidemic in type 2 diabetes, novel antidiabetic drugs with increased efficacy and reduced side effects are urgently needed. Previous work has shown that M3 muscarinic acetylcholine (ACh) receptors (M3Rs) expressed by pancreatic ß cells play key roles in stimulating insulin secretion and maintaining physiological blood glucose levels. In the present study, we tested the hypothesis that a positive allosteric modulator (PAM) of M3R function can improve glucose homeostasis in mice by promoting insulin release. One major advantage of this approach is that allosteric agents respect the ACh-dependent spatiotemporal control of M3R activity. In this study, we first demonstrated that VU0119498, a drug known to act as a PAM at M3Rs, significantly augmented ACh-induced insulin release from cultured ß cells and mouse and human pancreatic islets. This stimulatory effect was absent in islets prepared from mice lacking M3Rs, indicative of the involvement of M3Rs. VU0119498 treatment of wild-type mice caused a significant increase in plasma insulin levels, accompanied by a striking improvement in glucose tolerance. These effects were mediated by ß-cell M3Rs, since they were absent in mutant mice selectively lacking M3Rs in ß cells. Moreover, acute VU0119498 treatment of obese, glucose-intolerant mice triggered enhanced insulin release and restored normal glucose tolerance. Interestingly, doses of VU0119498 that led to pronounced improvements in glucose homeostasis did not cause any significant side effects due to activation of M3Rs expressed by other peripheral cell types. Taken together, the data from this proof-of-concept study strongly suggest that M3R PAMs may become clinically useful as novel antidiabetic agents.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Islotes Pancreáticos/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M3/efectos de los fármacos , Acetilcolina/metabolismo , Adulto , Regulación Alostérica/efectos de los fármacos , Animales , Glucemia/análisis , Glucemia/metabolismo , Línea Celular Tumoral , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Obesos , Ratones Transgénicos , Persona de Mediana Edad , Agonistas Muscarínicos/uso terapéutico , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Cultivo Primario de Células , Prueba de Estudio Conceptual , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/metabolismo , Adulto Joven
17.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955642

RESUMEN

Endothelial cells derived from human induced pluripotent stem cells (hiPSC-ECs) provide a new opportunity for mechanistic research on vascular regeneration and drug screening. However, functions of hiPSC-ECs still need to be characterized. The objective of this study was to investigate electrophysiological and functional properties of hiPSC-ECs compared with primary human cardiac microvascular endothelial cells (HCMECs), mainly focusing on ion channels and membrane receptor signaling, as well as specific cell functions. HiPSC-ECs were derived from hiPS cells that were generated from human skin fibroblasts of three independent healthy donors. Phenotypic and functional comparison to HCMECs was performed by flow cytometry, immunofluorescence staining, quantitative reverse-transcription polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), tube formation, LDL uptake, exosome release assays and, importantly, patch clamp techniques. HiPSC-ECs were successfully generated from hiPS cells and were identified by endothelial markers. The mRNA levels of KCNN2, KCNN4, KCNMA1, TRPV2, and SLC8A1 in hiPSC-ECs were significantly higher than HCMECs. AT1 receptor mRNA level in hiPSC-ECs was higher than in HCMECs. AT2 receptor mRNA level was the highest among all receptors. Adrenoceptor ADRA2 expression in hiPSC-ECs was lower than in HCMECs, while ADRA1, ADRB1, ADRB2, and G-protein GNA11 and Gai expression were similar in both cell types. The expression level of muscarinic and dopamine receptors CHRM3, DRD2, DRD3, and DRD4 in hiPSC-ECs were significantly lower than in HCMECs. The functional characteristics of endothelial cells, such as tube formation and LDL uptake assay, were not statistically different between hiPSC-ECs and HCMECs. Phenylephrine similarly increased the release of the vasoconstrictor endothelin-1 (ET-1) in hiPSC-ECs and HCMECs. Acetylcholine also similarly increased nitric oxide generation in hiPSC-ECs and HCMECs. The resting potentials (RPs), ISK1-3, ISK4 and IK1 were similar in hiPSC-ECs and HCMECs. IBK was larger and IKATP was smaller in hiPSC-ECs. In addition, we also noted a higher expression level of exosomes marker CD81 in hiPSC-ECs and a higher expression of CD9 and CD63 in HCMECs. However, the numbers of exosomes extracted from both types of cells did not differ significantly. The study demonstrates that hiPSC-ECs are similar to native endothelial cells in ion channel function and membrane receptor-coupled signaling and physiological cell functions, although some differences exist. This information may be helpful for research using hiPSC-ECs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Biomarcadores/metabolismo , Diferenciación Celular/genética , Células Endoteliales , Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Mensajero/metabolismo , Receptor Muscarínico M3/metabolismo
18.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36614038

RESUMEN

Tumor cells have evolved to express immunosuppressive molecules allowing their evasion from the host's immune system. These molecules include programmed death ligands 1 and 2 (PD-L1 and PD-L2). Cancer cells can also produce acetylcholine (ACh), which plays a role in tumor development. Moreover, tumor innervation can stimulate vascularization leading to tumor growth and metastasis. The effects of atropine and muscarinic receptor 3 (M3R) blocker, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), on cancer growth and spread were evaluated in vitro using murine colon cancer cell line, CT-26, and in vivo in an orthotopic mouse model of colorectal cancer. In the in vitro model, atropine and 4-DAMP significantly inhibited CT-26 cell proliferation in a dose dependent manner and induced apoptosis. Atropine attenuated immunosuppressive markers and M3R via inhibition of EGFR/AKT/ERK signaling pathways. However, 4-DAMP showed no effect on the expression of PD-L1, PD-L2, and choline acetyltransferase (ChAT) on CT-26 cells but attenuated M3R by suppressing the phosphorylation of AKT and ERK. Blocking of M3R in vivo decreased tumor growth and expression of immunosuppressive, cholinergic, and angiogenic markers through inhibition of AKT and ERK, leading to an improved immune response against cancer. The expression of immunosuppressive and cholinergic markers may hold potential in determining prognosis and treatment regimens for colorectal cancer patients. This study's results demonstrate that blocking M3R has pronounced antitumor effects via several mechanisms, including inhibition of immunosuppressive molecules, enhancement of antitumor immune response, and suppression of tumor angiogenesis via suppression of the AKT/ERK signaling pathway. These findings suggest a crosstalk between the cholinergic and immune systems during cancer development. In addition, the cholinergic system influences cancer evasion from the host's immunity.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Animales , Ratones , Antígeno B7-H1 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Muscarínico M3/metabolismo , Colinérgicos/uso terapéutico , Neoplasias Pulmonares/metabolismo , Receptores Muscarínicos , Atropina , Neoplasias Colorrectales/tratamiento farmacológico
19.
J Pharmacol Exp Ther ; 379(1): 64-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34244231

RESUMEN

Muscarinic M3 (M3) receptors mediate a wide range of acetylcholine (ACh)-induced functions, including visceral smooth-muscle contraction and glandular secretion. Positive allosteric modulators (PAMs) can avoid various side effects of muscarinic agonists with their spatiotemporal receptor activation control and potentially better subtype selectivity. However, the mechanism of allosteric modulation of M3 receptors is not fully understood, presumably because of the lack of a potent and selective PAM. In this study, we investigated the pharmacological profile of ASP8302, a novel PAM of M3 receptors, and explored the principal site of amino-acid sequences in the human M3 receptor required for the potentiation of receptor activation. In cells expressing human M3 and M5 receptors, ASP8302 shifted the concentration-response curve (CRC) for carbachol to the lower concentrations with no significant effects on other subtypes. In a binding study with M3 receptor-expressing membrane, ASP8302 also shifted the CRC for ACh without affecting the binding of orthosteric agonists. Similar shifts in the CRC of contractions by multiple stimulants were also confirmed in isolated human bladder strips. Mutagenesis analysis indicated no interaction between ASP8302 and previously reported allosteric sites; however, it identified threonine 230 as the amino acid essential for the PAM effect of ASP8302. These results demonstrate that ASP8302 enhances the activation of human M3 receptors by interacting with a single amino acid distinct from the reported allosteric sites. Our findings suggest not only a novel allosteric site of M3 receptors but also the potential application of ASP8302 to diseases caused by insufficient M3 receptor activation. SIGNIFICANCE STATEMENT: The significance of this study is that the novel M3 receptor positive allosteric modulator ASP8302 enhances the activation of human M3 receptor by interacting with a residue distinct from the reported allosteric sites. The finding of Thr230 as a novel amino acid involved in the allosteric modulation of M3 receptors provides significant insight into further research of the mechanism of allosteric modulation of M3 and other muscarinic receptors.


Asunto(s)
Sitio Alostérico/efectos de los fármacos , Agonistas Muscarínicos/química , Agonistas Muscarínicos/metabolismo , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Agonistas Muscarínicos/farmacología , Técnicas de Cultivo de Órganos , Receptor Muscarínico M3/genética , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo
20.
Ann Neurol ; 88(6): 1237-1243, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32833276

RESUMEN

A 10-year-old girl presented with ileus, urinary retention, dry mouth, lack of tears, fixed dilated pupils, and diffuse anhidrosis 7 days after a febrile illness. We hypothesized that her syndrome was due to autoimmunity against muscarinic acetylcholine receptors, blocking their activation. Using an indirect enzyme-linked immunosorbent assay for all 5 muscarinic receptors (M1 -M5 ), we identified in the patient's serum antibodies that selectively bound to M3 receptors. In vitro functional studies confirmed that these autoantibodies selectively blocked M3 receptor activation. Thus, autoantibodies against M3 acetylcholine receptors cause acute postganglionic cholinergic dysautonomia. ANN NEUROL 2020;88:1237-1243.


Asunto(s)
Autoanticuerpos/inmunología , Disautonomías Primarias/inmunología , Receptor Muscarínico M3/inmunología , Autoanticuerpos/sangre , Niño , Femenino , Humanos , Receptor Muscarínico M3/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA