Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 511
Filtrar
1.
Handb Exp Pharmacol ; 285: 185-245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38755350

RESUMEN

Presynaptic α2-adrenoceptors are localized on axon terminals of many noradrenergic and non-noradrenergic neurons in the peripheral and central nervous systems. Their activation by exogenous agonists leads to inhibition of the exocytotic release of noradrenaline and other transmitters from the neurons. Most often, the α2A-receptor subtype is involved in this inhibition. The chain of molecular events between receptor occupation and inhibition of the exocytotic release of transmitters has been determined. Physiologically released endogenous noradrenaline elicits retrograde autoinhibition of its own release. Some clonidine-like α2-receptor agonists have been used to treat hypertension. Dexmedetomidine is used for prolonged sedation in the intensive care; It also has a strong analgesic effect. The α2-receptor antagonist mirtazapine increases the noradrenaline concentration in the synaptic cleft by interrupting physiological autoinhibion of release. It belongs to the most effective antidepressive drugs. ß2-Adrenoceptors are also localized on axon terminals in the peripheral and central nervous systems. Their activation leads to enhanced transmitter release, however, they are not activated by endogenous adrenaline.


Asunto(s)
Receptores Adrenérgicos alfa 2 , Animales , Humanos , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Adrenérgicos alfa 2/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Receptores Presinapticos/efectos de los fármacos , Receptores Presinapticos/fisiología , Receptores Presinapticos/metabolismo , Transmisión Sináptica/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/efectos de los fármacos
2.
Pharmacology ; 106(1-2): 114-118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32950991

RESUMEN

Obsessive compulsive disorder (OCD) is a psychiatric disorder characterized by excessive and repetitive thoughts and gestures, mainly treated pharmacologically with selective serotonin reuptake inhibitors (SSRIs). The marble burying test in mice is commonly used to model OCD and has been shown to be sensitive to SSRIs, which decrease burying behavior. The activity of SSRIs in this model is mediated through activation of 5-hydroxytryptamine (5-HT) 1A receptors, but the respective implication of pre- versus postsynaptic 5-HT1A receptors has not been elucidated. Here, we investigated marble burying behavior by male NMRI mice following acute administration of 3 biased agonists, which preferentially activate presynaptic 5-HT1A receptors (F13714) or postsynaptic receptors (NLX-101) or which exhibit balanced activation of both pre- and postsynaptic 5-HT1A receptors (NLX-112). When administered at the dose of 2.5 mg/kg i.p., all 3 biased agonists completely or nearly completely abolished marble burying behavior. However, they varied in their potency with minimal effective doses of 0.16, 0.63, and 2.5 mg/kg i.p., for F13714, NLX-112, and NLX-101, respectively. The selective 5-HT1A receptor antagonist, WAY100,635 was inactive up to 2.5 mg/kg. These results suggest that marble burying behavior in male NMRI mice is preferentially sensitive to activation of pre- versus postsynaptic 5-HT1A receptors. Moreover, they suggest that targeting 5-HT1A receptors with biased agonists could provide an innovative therapeutic approach to combat OCD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT1/administración & dosificación , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inyecciones Intraperitoneales , Masculino , Ratones Endogámicos , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Piperazinas/administración & dosificación , Piperazinas/farmacología , Piperidinas/administración & dosificación , Piperidinas/farmacología , Piridinas/administración & dosificación , Piridinas/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Antagonistas de la Serotonina/administración & dosificación , Antagonistas de la Serotonina/farmacología , Sinapsis/efectos de los fármacos
3.
Epilepsia ; 61(5): 914-923, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32297665

RESUMEN

OBJECTIVE: The antiepileptic drug candidate, padsevonil, is the first in a novel class of drugs designed to interact with both presynaptic and postsynaptic therapeutic targets: synaptic vesicle 2 proteins and γ-aminobutyric acid type A receptors (GABAA Rs), respectively. Functional aspects of padsevonil at the postsynaptic target, GABAA Rs, were characterized in experiments reported here. METHODS: The effect of padsevonil on GABA-mediated Cl- currents was determined by patch clamp on recombinant human GABAA Rs (α1ß2γ2) stably expressed in a CHO-K1 cell line and on native GABAA Rs in cultured rat primary cortical neurons. Padsevonil selectivity for GABAA R subtypes was evaluated using a two-electrode voltage clamp on recombinant human GABAA Rs (α1-5/ß2/γ2) in Xenopus oocytes. RESULTS: In recombinant GABAA Rs, padsevonil did not evoke Cl- currents in the absence of the agonist GABA. However, when co-administered with GABA at effective concentration (EC)20 , padsevonil potentiated GABA responses by 167% (EC50 138 nmol/L) and demonstrated a relative efficacy of 41% compared with zolpidem, a reference benzodiazepine site agonist. Similarly, padsevonil demonstrated GABA-potentiating activity at native GABAA Rs (EC50 208 nmol/L) in cultured rat cortical neurons. Padsevonil also potentiated GABA (EC20 ) responses in GABAA Rs expressed in oocytes, with higher potency at α1- and α5-containing receptors (EC50 295 and 281 nmol/L) than at α2- and α3-containing receptors (EC50 1737 and 2089 nmol/L). Compared with chlordiazepoxide-a nonselective, full GABAA R agonist-the relative efficacy of padsevonil was 60% for α1ß2γ2, 26% for α2ß2γ2, 56% for α3ß2γ2, and 41% for α5ß2γ2; no activity was observed at benzodiazepine-insensitive α4ß2γ2 receptors. SIGNIFICANCE: Results of functional investigations on recombinant and native neuronal GABAA Rs show that padsevonil acts as a positive allosteric modulator of these receptors, with a partial agonist profile at the benzodiazepine site. These properties may confer better tolerability and lower potential for tolerance development compared with classic benzodiazepines currently used in the clinic.


Asunto(s)
Anticonvulsivantes/farmacología , Imidazoles/farmacología , Pirrolidinonas/farmacología , Receptores de GABA-A/efectos de los fármacos , Tiadiazoles/farmacología , Animales , Células CHO , Cricetulus , Femenino , Humanos , Neuronas/efectos de los fármacos , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Ratas Wistar , Receptores Presinapticos/efectos de los fármacos , Proteínas Recombinantes , Potenciales Sinápticos/efectos de los fármacos , Xenopus laevis
4.
J Neurochem ; 148(2): 275-290, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30444263

RESUMEN

Opioid-induced hyperalgesia and analgesic tolerance can lead to dose escalation and inadequate pain treatment with µ-opioid receptor agonists. Opioids cause tonic activation of glutamate NMDA receptors (NMDARs) at primary afferent terminals, increasing nociceptive input. However, the signaling mechanisms responsible for opioid-induced activation of pre-synaptic NMDARs in the spinal dorsal horn remain unclear. In this study, we determined the role of MAPK signaling in opioid-induced pre-synaptic NMDAR activation caused by chronic morphine administration. Whole-cell recordings of excitatory post-synaptic currents (EPSCs) were performed on dorsal horn neurons in rat spinal cord slices. Chronic morphine administration markedly increased the frequency of miniature EPSCs, increased the amplitude of monosynaptic EPSCs evoked from the dorsal root, and reduced the paired-pulse ratio of evoked EPSCs. These changes were fully reversed by an NMDAR antagonist and normalized by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2), p38, or c-Jun N-terminal kinase (JNK). Furthermore, intrathecal injection of a selective ERK1/2, p38, or JNK inhibitor blocked pain hypersensitivity induced by chronic morphine treatment. These inhibitors also similarly attenuated a reduction in morphine's analgesic effect in rats. In addition, co-immunoprecipitation assays revealed that NMDARs formed a protein complex with ERK1/2, p38, and JNK in the spinal cord and that chronic morphine treatment increased physical interactions of NMDARs with these three MAPKs. Our findings suggest that opioid-induced hyperalgesia and analgesic tolerance are mediated by tonic activation of pre-synaptic NMDARs via three functionally interrelated MAPKs at the spinal cord level. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Analgésicos Opioides/farmacología , Tolerancia a Medicamentos/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Células del Asta Posterior/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Masculino , Morfina/farmacología , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Receptores Presinapticos/metabolismo
5.
J Integr Neurosci ; 18(3): 245-251, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31601072

RESUMEN

The cognitive impairment associated with schizophrenia is highly prevalent and affects the overall functioning of subjects. The stimulation of the serotonin 1A receptor is a primary characteristic of some atypical antipsychotic drugs. We measured the levels of cognitive impairment using the Morris water maze test and protein kinase A activity in hippocampal neurons on presynaptic and postsynaptic serotonin 1A receptors to investigate the effect of dizocilpine-induced cognitive impairment associated with atypical antipsychotic drugs in rats treated by quetiapine alone or combined with WAY100635/tandospirone. The results of the Morris water maze test presented evidence that quetiapine alone alleviated the cognitive impairment associated with atypical antipsychotic drugs induced by dizocilpine. However, quetiapine plus WAY100635 induced no improvement of cognitive impairment associated with atypical antipsychotic drugs. The results of protein kinase A assay suggested that neither quetiapine alone nor in combination with tandospirone, but not quetiapine plus WAY100635, raised protein kinase A activity in hippocampus neurons. The present study demonstrated the key role of presynaptic serotonin 1A receptors on the therapeutic effect of quetiapine on cognitive impairment associated with atypical antipsychotic drugs. Moreover, that protein kinase A activity in hippocampal cells is involved in the mechanism of quetiapine's effect on cognitive impairment associated with atypical antipsychotic drugs.


Asunto(s)
Antipsicóticos/farmacología , Disfunción Cognitiva , Fumarato de Quetiapina/farmacología , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Esquizofrenia , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/efectos de los fármacos , Esquizofrenia/complicaciones , Esquizofrenia/metabolismo
6.
Cereb Cortex ; 27(10): 4733-4749, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600841

RESUMEN

Synaptic dysfunctions and altered neuronal activity play major role in the pathophysiology of Alzheimer's disease (AD), with underlying mechanisms largely unknown. We report that in the prefrontal cortex of amyloid precursor protein-presenilin 1 and APP23 AD mice, baseline activity of pyramidal cells is disrupted by episodes of paroxysmal hyperactivity. Induced by spontaneous EPSC bursts, these incidents are prevalent in neurons proximal to amyloid plaques and involve enhanced activity of glutamate with metabotropic effects. Abolition of EPSC bursts by tetrodotoxin and SERCA ATPase blockers thapsigargin or cyclopiasonic acid suggests their presynaptic origin and sensitized store-released calcium. Accordingly, the rate of EPSC bursts activated by single axon stimulation is enhanced. Aggravation of the hyperactivity by blockers of excitatory amino acid transporter (±)-HIP-A and DL-TBOA together with histochemical and ultrastructural evidence for enrichment of plaque-related dystrophies with synaptic vesicles and SNARE protein SNAP-25 infer the later as hot-spots for ectopic release of glutamate. Inhibition of EPSC bursts by I/II mGluR1 blocker MCPG or selective mGluR1 antagonist LY367385 implicate metabotropic glutamatergic effects in generation of paroxysmal bursts. These findings demonstrate for the first time that at amyloid plaques, enhanced activity of nonsynaptic glutamate can promote irregular EPSC bursts with hyperactivity of pyramidal cells via mGluR1 receptors.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ácido Glutámico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Benzoatos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Glicina/análogos & derivados , Glicina/farmacología , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Placa Amiloide/metabolismo , Células Piramidales/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
J Pharmacol Exp Ther ; 357(2): 300-10, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26941170

RESUMEN

Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.


Asunto(s)
Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Memoria Espacial/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Brioestatinas/farmacología , Espinas Dendríticas/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large , Activadores de Enzimas/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/psicología , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Proteína Quinasa C-epsilon/efectos de los fármacos , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores Presinapticos/efectos de los fármacos , Sinapsis/patología
8.
Proc Natl Acad Sci U S A ; 110(2): 713-8, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267100

RESUMEN

The nucleus accumbens (NAc) regulates motivated behavior by, in part, processing excitatory synaptic projections from several brain regions. Among these regions, the prefrontal cortex (PFC) and basolateral amygdala, convey executive control and affective states, respectively. Whereas glutamatergic synaptic transmission within the NAc has been recognized as a primary cellular target for cocaine and other drugs of abuse to induce addiction-related pathophysiological motivational states, the understanding has been thus far limited to drug-induced postsynaptic alterations. It remains elusive whether exposure to cocaine or other drugs of abuse influences presynaptic functions of these excitatory projections, and if so, in which projection pathways. Using optogenetic methods combined with biophysical assays, we demonstrate that the presynaptic release probability (Pr) of the PFC-to-NAc synapses was enhanced after short-term withdrawal (1 d) and long-term (45 d) withdrawal from either noncontingent (i.p. injection) or contingent (self-administration) exposure to cocaine. After long-term withdrawal of contingent drug exposure, the Pr was higher compared with i.p. injected rats. In contrast, within the basolateral amygdala afferents, presynaptic Pr was not significantly altered in any of these experimental conditions. Thus, cocaine-induced procedure- and pathway-specific presynaptic enhancement of excitatory synaptic transmission in the NAc. These results, together with previous findings of cocaine-induced postsynaptic enhancement, suggest an increased PFC-to-NAc shell glutamatergic synaptic transmission after withdrawal from exposure to cocaine. This presynaptic alteration may interact with other cocaine-induced cellular adaptations to shift the functional output of NAc neurons, contributing to the addictive emotional and motivational state.


Asunto(s)
Cocaína/farmacología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Receptores Presinapticos/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Cocaína/administración & dosificación , Inyecciones Intraperitoneales , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/efectos de los fármacos , Autoadministración , Transmisión Sináptica/efectos de los fármacos
9.
J Neurosci ; 34(19): 6480-4, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24806674

RESUMEN

Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , Dronabinol/farmacología , Receptor de Adenosina A2A/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dronabinol/antagonistas & inhibidores , Masculino , Abuso de Marihuana/tratamiento farmacológico , Purinas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Refuerzo en Psicología , Recompensa , Saimiri , Autoadministración , Xantinas/farmacología
10.
J Neurosci ; 34(8): 2785-96, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553921

RESUMEN

Fatty acid metabolism plays an important role in brain development and function. Mutations in acyl-CoA synthetase long-chain family member 4 (ACSL4), which converts long-chain fatty acids to acyl-CoAs, result in nonsyndromic X-linked mental retardation. ACSL4 is highly expressed in the hippocampus, a structure critical for learning and memory. However, the underlying mechanism by which mutations of ACSL4 lead to mental retardation remains poorly understood. We report here that dAcsl, the Drosophila ortholog of ACSL4 and ACSL3, inhibits synaptic growth by attenuating BMP signaling, a major growth-promoting pathway at neuromuscular junction (NMJ) synapses. Specifically, dAcsl mutants exhibited NMJ overgrowth that was suppressed by reducing the doses of the BMP pathway components, accompanied by increased levels of activated BMP receptor Thickveins (Tkv) and phosphorylated mothers against decapentaplegic (Mad), the effector of the BMP signaling at NMJ terminals. In addition, Rab11, a small GTPase involved in endosomal recycling, was mislocalized in dAcsl mutant NMJs, and the membrane association of Rab11 was reduced in dAcsl mutant brains. Consistently, the BMP receptor Tkv accumulated in early endosomes but reduced in recycling endosomes in dAcsl mutant NMJs. dAcsl was also required for the recycling of photoreceptor rhodopsin in the eyes, implying a general role for dAcsl in regulating endocytic recycling of membrane receptors. Importantly, expression of human ACSL4 rescued the endocytic trafficking and NMJ phenotypes of dAcsl mutants. Together, our results reveal a novel mechanism whereby dAcsl facilitates Rab11-dependent receptor recycling and provide insights into the pathogenesis of ACSL4-related mental retardation.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Coenzima A Ligasas/farmacología , Sinapsis/efectos de los fármacos , Vesículas Transportadoras/efectos de los fármacos , Animales , Western Blotting , Proteínas Morfogenéticas Óseas/efectos de los fármacos , Drosophila , Proteínas de Drosophila/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Electrónica , Músculos/metabolismo , Mutación/genética , Mutación/fisiología , Unión Neuromuscular/efectos de los fármacos , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Presinapticos/efectos de los fármacos , Rodopsina/metabolismo , Transducción de Señal/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Proteínas de Unión al GTP rab/metabolismo
11.
J Neurosci ; 34(41): 13819-33, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25297108

RESUMEN

The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Nocicepción/fisiología , Receptores Presinapticos/fisiología , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Animales , Capsaicina/farmacología , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Técnicas In Vitro , Masculino , Ratones , Fibras Nerviosas/fisiología , Neuronas Aferentes/fisiología , Nocicepción/efectos de los fármacos , Técnicas de Placa-Clamp , Receptores Presinapticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
12.
J Neurosci ; 33(25): 10405-26, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785153

RESUMEN

Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence.


Asunto(s)
Acetilcolina/fisiología , Inhibidores de Captación Adrenérgica/farmacología , Anfetamina/farmacología , Ácido Glutámico/fisiología , Neostriado/fisiología , Plasticidad Neuronal/fisiología , Receptores Presinapticos/fisiología , Sinapsis/fisiología , Animales , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/fisiología , Dependovirus/genética , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Vectores Genéticos , Interneuronas/fisiología , Locomoción/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Neostriado/citología , Neostriado/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Equilibrio Postural/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos
13.
Tidsskr Nor Laegeforen ; 134(1): 42-6, 2014 Jan 14.
Artículo en Nor | MEDLINE | ID: mdl-24429755

RESUMEN

BACKGROUND: There are currently around 25 antiepileptic drugs in use in Norway, of which 15 have entered the market in the last 20 years. All have somewhat different effect- and adverse effect profiles and mechanisms of action. Here we present a brief overview of current knowledge regarding the basic mechanisms of action of these drugs. METHOD: The review is based on a discretionary selection of relevant articles found through a literature search in PubMed and our own clinical and research experience. RESULTS: There are, roughly speaking, four main mechanisms; 1) modulation of ion channels (sodium and calcium channel blockers, potassium channel openers), 2) potentiation of GABAergic inhibition, 3) reduction of glutamatergic excitation and 4) modulation of presynaptic neurotransmitter release. Some of the drugs have several mechanisms of action, and for some of them it is unclear which mechanism is clinically most important. To some extent, the drugs' mechanisms of action predict their effect against different types of epilepsy and seizures. For instance, sodium channel blockers work best against focal seizures, while calcium channel blockers work best against absences, a type of generalised seizure. INTERPRETATION: Optimal treatment of patients with epilepsy requires not only thorough knowledge of seizure- and epilepsy classification, but also insight into the mechanisms of action of antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , GABAérgicos/farmacología , Humanos , Moduladores del Transporte de Membrana/farmacología , Receptores Ionotrópicos de Glutamato/antagonistas & inhibidores , Receptores Presinapticos/efectos de los fármacos
14.
J Neurosci ; 32(46): 16530-8, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23152635

RESUMEN

Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.


Asunto(s)
Catecolaminas/fisiología , Ácido Glutámico/fisiología , Neuronas/efectos de los fármacos , Serotonina/farmacología , Núcleo Solitario/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Ratones , Técnicas de Placa-Clamp , Piperazinas/farmacología , Pirazinas/farmacología , Quinoxalinas/farmacología , Receptores Presinapticos/efectos de los fármacos , Receptores de Serotonina 5-HT3/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacología , Núcleo Solitario/citología , Tirosina 3-Monooxigenasa/genética
15.
J Neurosci ; 32(23): 7862-8, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674262

RESUMEN

Synapses formed by one cell type onto another cell type tend to show characteristic short-term plasticity, which varies from facilitating to depressing depending on the particular system. Within a population of synapses, plasticity can also be variable, and it is unknown how this plasticity is determined on a cell-by-cell level. We have investigated this in the mouse cochlear nucleus, where auditory nerve (AN) fibers contact bushy cells (BCs) at synapses called "endbulbs of Held." Synapses formed by different AN fibers onto one BC had plasticity that was more similar than would be expected at random. Experiments using MK-801 indicated that this resulted in part from similarity in the presynaptic probability of release. The similarity was not present in immature synapses but emerged after the onset of hearing. In addition, the phenomenon occurred at excitatory synapses in the cerebellum. This indicates that postsynaptic cells coordinate the plasticity of their inputs, which suggests that plasticity is of fundamental importance to synaptic function.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/fisiología , Nervio Coclear/crecimiento & desarrollo , Nervio Coclear/fisiología , Plasticidad Neuronal/fisiología , Algoritmos , Animales , Cerebelo/efectos de los fármacos , Nervio Coclear/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Audición/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos CBA , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Plasticidad Neuronal/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Receptores Presinapticos/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
16.
J Neurochem ; 126(5): 565-78, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23692284

RESUMEN

We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 µM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 µM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/fisiología , Corteza Cerebral/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Glutamatos/metabolismo , Receptores de Ácido Kaínico/fisiología , Receptores Presinapticos/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Algoritmos , Animales , Corteza Cerebral/efectos de los fármacos , AMP Cíclico/metabolismo , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Técnicas de Placa-Clamp , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinaptosomas/metabolismo , Tálamo/efectos de los fármacos
17.
Br J Anaesth ; 110(4): 592-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23213036

RESUMEN

BACKGROUND: Presynaptic effects of general anaesthetics are not well characterized. We tested the hypothesis that isoflurane exhibits transmitter-specific effects on neurotransmitter release from neurochemically and functionally distinct isolated mammalian nerve terminals. METHODS: Nerve terminals from adult male rat brain were prelabelled with [(3)H]glutamate and [(14)C]GABA (cerebral cortex), [(3)H]norepinephrine (hippocampus), [(14)C]dopamine (striatum), or [(3)H]choline (precursor of [(3)H]acetylcholine; striatum). Release evoked by depolarizing pulses of 4-aminopyridine (4AP) or elevated KCl was quantified using a closed superfusion system. RESULTS: Isoflurane at clinical concentrations (<0.7 mM; ~2 times median anaesthetic concentration) inhibited Na(+) channel-dependent 4AP-evoked release of the five neurotransmitters tested in a concentration-dependent manner. Isoflurane was a more potent inhibitor [expressed as IC(50) (SEM)] of glutamate release [0.37 (0.03) mM; P<0.05] compared with the release of GABA [0.52 (0.03) mM], norepinephrine [0.48 (0.03) mM], dopamine [0.48 (0.03) mM], or acetylcholine [0.49 (0.02) mM]. Inhibition of Na(+) channel-independent release evoked by elevated K(+) was not significant at clinical concentrations of isoflurane, with the exception of dopamine release [IC(50)=0.59 (0.03) mM]. CONCLUSIONS: Isoflurane inhibited the release of the major central nervous system neurotransmitters with selectivity for glutamate release, consistent with both widespread inhibition and nerve terminal-specific presynaptic effects. Glutamate release was most sensitive to inhibition compared with GABA, acetylcholine, dopamine, and norepinephrine release due to presynaptic specializations in ion channel expression, regulation, and/or coupling to exocytosis. Reductions in neurotransmitter release by volatile anaesthetics could contribute to altered synaptic transmission, leading to therapeutic and toxic effects involving all major neurotransmitter systems.


Asunto(s)
Anestésicos por Inhalación/farmacología , Sistema Nervioso Central/metabolismo , Éteres Metílicos/farmacología , Neurotransmisores/metabolismo , Receptores Presinapticos/efectos de los fármacos , 4-Aminopiridina/farmacología , Acetilcolina/metabolismo , Animales , Sistema Nervioso Central/efectos de los fármacos , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Masculino , Norepinefrina/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Presinapticos/metabolismo , Sevoflurano , Estimulación Química , Ácido gamma-Aminobutírico/metabolismo
18.
J Neurosci ; 31(15): 5782-91, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490220

RESUMEN

Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits ß2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) ß3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.


Asunto(s)
Antagonistas del GABA/farmacología , Receptores de GABA/fisiología , Papilas Gustativas/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Animales , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Neurotransmisores/metabolismo , ARN/genética , Receptores de GABA/genética , Receptores Presinapticos/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Gusto/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
19.
J Neurosci ; 31(22): 8134-42, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632935

RESUMEN

Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABA(A) receptors (those containing the α2 subunit) to spinal pain control in mice lacking α2-GABA(A) receptors specifically in primary nociceptors (sns-α2(-/-) mice). sns-α2(-/-) mice exhibited GABA(A) receptor currents and dorsal root potentials of normal amplitude in vitro, and normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain sensitization. However, the positive allosteric GABA(A) receptor modulator diazepam (DZP) had almost completely lost its potentiating effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of GABA(A) receptors residing on primary nociceptors.


Asunto(s)
Hiperalgesia/fisiopatología , Neuralgia/fisiopatología , Neuronas Aferentes/fisiología , Receptores de GABA-A/fisiología , Receptores Presinapticos/fisiología , Raíces Nerviosas Espinales/fisiología , Animales , Diazepam/administración & dosificación , Diazepam/farmacología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Hiperalgesia/tratamiento farmacológico , Inyecciones Espinales , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuralgia/tratamiento farmacológico , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Técnicas de Placa-Clamp , Receptores de GABA-A/biosíntesis , Receptores de GABA-A/genética , Receptores Presinapticos/efectos de los fármacos , Raíces Nerviosas Espinales/efectos de los fármacos
20.
J Neurochem ; 122(2): 470-81, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22607164

RESUMEN

This study determined how preconditioned neurons responded to oxygen-glucose deprivation (OGD) to result in neuroprotection instead of neurotoxicity. Neurons preconditioned using chronically elevated synaptic activity displayed suppressed elevations in extracellular glutamate ([glutamateex ]) and intracellular Ca(2+) (Ca(2+) in ) during OGD. The glutamate uptake inhibitor TBOA induced neurotoxicity, but at a longer OGD duration for preconditioned cultures, suggestive of delayed up-regulation of transporter activity relative to non-preconditioned cultures. This delay was attributed to a critically attenuated release of glutamate, based on tolerance observed against insults mimicking key neurotoxic signaling during OGD (OGD-mimetics). Specifically, in the presence of TBOA, preconditioned neurons displayed potent protection to the OGD-mimetics: ouabain (a Na(+) /K(+) ATPase inhibitor), high 55 mM KCl extracellular buffer (plasma membrane depolarization), veratridine (a Na(+) ionophore), and paraquat (intracellular superoxide producer), which correlated with suppressed [glutamateex ] elevations in the former two insults. Tolerance by preconditioning was reversed by manipulations that increased [glutamateex ], such as by exposure to TBOA or GABAA receptor agonists during OGD, or by exposure to exogenous NMDA or glutamate. Pre-synaptic suppression of neuronal glutamate release by preconditioning, possibly via suppressed exocytic release, represents a key convergence point in neuroprotection during exposure to OGD and OGD-mimetics.


Asunto(s)
Ácido Glutámico/metabolismo , Isquemia/patología , Precondicionamiento Isquémico/métodos , Neuronas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Tamaño de la Célula , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Femenino , Glucosa/deficiencia , Isquemia/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de GABA/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Zinc/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA