Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Nature ; 567(7747): 244-248, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842656

RESUMEN

Germinal centres are important sites for antibody diversification and affinity maturation, and are also a common origin of B cell malignancies. Despite being made up of motile cells, germinal centres are tightly confined within B cell follicles. The cues that promote this confinement are incompletely understood. P2RY8 is a Gα13-coupled receptor that mediates the inhibition of migration and regulates the growth of B cells in lymphoid tissues1,2. P2RY8 is frequently mutated in germinal-centre B cell-like diffuse large B cell lymphoma (GCB-DLBCL) and Burkitt lymphoma1,3-6, and the ligand for this receptor has not yet been identified. Here we perform a search for P2RY8 ligands and find P2RY8 bioactivity in bile and in culture supernatants of several mouse and human cell lines. Using a seven-step biochemical fractionation procedure and a drop-out mass spectrometry approach, we show that a previously undescribed biomolecule, S-geranylgeranyl-L-glutathione (GGG), is a potent P2RY8 ligand that is detectable in lymphoid tissues at the nanomolar level. GGG inhibited the chemokine-mediated migration of human germinal-centre B cells and T follicular helper cells, and antagonized the induction of phosphorylated AKT in germinal-centre B cells. We also found that the enzyme gamma-glutamyltransferase-5 (GGT5), which was highly expressed by follicular dendritic cells, metabolized GGG to a form that did not activate the receptor. Overexpression of GGT5 disrupted the ability of P2RY8 to promote B cell confinement to germinal centres, which indicates that GGT5 establishes a GGG gradient in lymphoid tissues. This work defines GGG as an intercellular signalling molecule that is involved in organizing and controlling germinal-centre responses. As the P2RY8 locus is modified in several other types of cancer in addition to GCB-DLBCL and Burkitt lymphoma, we speculate that GGG might have organizing and growth-regulatory roles in multiple human tissues.


Asunto(s)
Linfocitos B/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiocinas/inmunología , Femenino , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Tonsila Palatina/citología , Tonsila Palatina/inmunología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Purinérgicos P2Y/genética , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , gamma-Glutamiltransferasa/metabolismo
2.
J Physiol ; 601(19): 4375-4395, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37715703

RESUMEN

Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.


Asunto(s)
Calcio , Pérdida Auditiva , Humanos , Ratones , Animales , Anciano , Lactante , Calcio/metabolismo , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2Y2 , Receptores Purinérgicos P2Y1 , Adenosina Trifosfato/fisiología , Mamíferos/metabolismo
3.
Eur J Haematol ; 110(6): 669-679, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36814093

RESUMEN

OBJECTIVES: CRLF2 alterations are associated with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This study aimed to explore the clinical, biological, and outcome features of pediatric BCP-ALL with CRLF2 abnormalities. METHODS: This study enrolled 630 childhood BCP-ALLs treated on CCLG-ALL 2008 or 2018 protocol. P2RY8-CRLF2 was determined by Sanger sequencing and CRLF2 expression was evaluated by qRT-PCR. The correlation between clinical, biological features and outcomes with P2RY8-CRLF2 or CRLF2 over-expression were analyzed. RESULTS: P2RY8-CRLF2 and CRLF2 over-expression were found in 3.33% and 5.71% respectively. P2RY8-CRLF2 was associated with male, higher frequency of CD7 expression, high WBC and MRD before consolidation. CRLF2 over-expression showed ETV6-RUNX1- , higher frequency of CD22, CD34, CD66c, CD86 expression, hyperdiploidy and high MRD at early treatment. The lower overall survival (OS) was found in patients with P2RY8-CRLF2 and confined only in IR group. Furthermore, adverse event-free survival and OS of P2RY8-CRLF2 were discovered comparing to those without known fusions or treated on CCLG-ALL 2008 protocol. However, P2RY8-CRLF2 was not confirmed as independent prognostic factors and no prognostic impact of CRLF2 over-expression was found. CONCLUSIONS: These findings indicate P2RY8-CRLF2 identifies a subset of patients with specific features and adverse outcomes that could be improved by risk-directed treatment.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Niño , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Pronóstico , Supervivencia sin Progresión , Receptores Purinérgicos P2Y/genética
4.
J Immunol ; 207(4): 1001-1008, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34330752

RESUMEN

Mast cells express multiple metabotropic purinergic P2Y receptor (P2YR) subtypes. Few studies have evaluated their role in human mast cell (HMC) allergic response as quantified by degranulation induced by cross-linking the high-affinity IgE receptor (FcεRI). We have previously shown that extracellular nucleotides modify the FcεRI activation-dependent degranulation in HMCs derived from human lungs, but the mechanism of this action has not been fully delineated. This study was undertaken to determine the mechanism of activation of P2YRs on the degranulation of HMCs and elucidate the specific postreceptor pathways involved. Sensitized LAD2 cells, a human-derived mast cell line, were subjected to a weak allergic stimulation (WAS) using a low concentration of Ag in the absence and presence of P2YR agonists. Only the metabotropic purinergic P2Y11 receptor (P2Y11R) agonist, adenosine 5'-(3-thio)triphosphate (ATPγS), enhanced WAS-induced degranulation resulting in a net 7-fold increase in release (n = 4; p < 0.01). None of the P2YR agonists tested, including high concentrations of ATPγS (1000 µM), enhanced WAS-induced intracellular Ca2+ mobilization, an essential component of activated FcεRI-induced degranulation. Both a PI3K inhibitor and the relevant gene knockout decreased the ATPγS-induced enhancement. The effect of ATPγS was associated with enhanced phosphorylation of PI3K type δ and protein kinase B, but not the phosphoinositide-dependent kinase-1. The effects of ATPγS were dose dependently inhibited by NF157, a P2Y11R antagonist. To our knowledge, these data indicate for the first time that P2YR is linked to enhancement of allergic degranulation in HMC via the PI3K/protein kinase B pathway.


Asunto(s)
Degranulación de la Célula/fisiología , Mastocitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Células Cultivadas , Humanos , Hipersensibilidad/metabolismo , Fosforilación/fisiología , Transducción de Señal/fisiología
5.
J Cell Physiol ; 237(1): 881-896, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34435368

RESUMEN

Purinergic P2Y receptors, by binding adenosine triphosphate (ATP), are known for enhancing glucose-stimulated insulin secretion (GSIS) in pancreatic ß cells. However, the impact of these receptors in the actin dynamics and insulin granule exocytosis in these cells is not established, neither in normal nor in glucotoxic environment. In this study, we investigate the involvement of P2Y receptors on the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 ß cells exposed to normal or glucotoxic environment and their role in GSIS. Our results show that the activation of P2Y purinergic receptors by ATP or its agonist increase the insulin granules exocytosis and the reorganization of the subcortical actin network and participate in the potentiation of GSIS. In addition, their activation in INS-1832/13 ß-cells, with impaired insulin secretion following exposure to elevated glucose levels, restores GSIS competence through the distal steps of insulin exocytosis. These results are confirmed ex vivo by perifusion experiments on islets from type 2 diabetic (T2D) Goto-Kakizaki (GK) rats. Indeed, the P2Y receptor agonist restores the altered GSIS, which is normally lost in this T2D animal model. Moreover, we observed an improvement of the glucose tolerance, following the acute intraperitoneal injection of the P2Y agonist concomitantly with glucose, in diabetic GK rats. All these data provide new insights into the unprecedented therapeutic role of P2Y purinergic receptors in the pathophysiology of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Glucosa/metabolismo , Glucosa/toxicidad , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratas , Receptores Purinérgicos P2Y/metabolismo
6.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682562

RESUMEN

The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Animales , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Ratones , Nucleótidos , Receptores Purinérgicos P2Y , Vasodilatación/fisiología
7.
J Physiol ; 599(15): 3697-3714, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34089532

RESUMEN

KEY POINTS: Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+ -activated Cl- channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+ -activated Cl- currents blocked by Ani-9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+ -activated Cl- currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells. ABSTRACT: The Ca2+ -activated Cl- channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl- homeostasis. Here, we examined the presence of Ca2+ -activated Cl- channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co-localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole-cell patch-clamp recordings in isolated cells from taste buds, we measured an average current of -1083 pA at -100 mV in 1.5 µm Ca2+ and symmetrical Cl- in type I cells. Ion substitution experiments and blockage by Ani-9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+ -activated Cl- currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto-ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+ -activated Cl- currents blocked by Ani-9, indicating a possible role of TMEM16A in ATP-mediated signalling. These results provide a definitive demonstration that TMEM16A-mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often-neglected taste cells.


Asunto(s)
Anoctamina-1/metabolismo , Papilas Gustativas , Animales , Calcio/metabolismo , Canales de Cloruro , Ratones , Técnicas de Placa-Clamp , Receptores Purinérgicos P2Y , Papilas Gustativas/metabolismo
8.
J Neurophysiol ; 126(4): 1045-1054, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34433003

RESUMEN

The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are oculomotor neural integrators involved in the control of horizontal and vertical gaze, respectively. We previously reported that local application of adenosine 5'-trisphosphate (ATP) to PHN neurons induced P2X receptor-mediated fast inward currents, P2Y receptor-mediated slow inward currents, and/or adenosine P1 receptor-mediated slow outward currents. In contrast to the findings on PHN neurons, the expression of functional purinergic receptors in INC neurons has not been examined. In this study, we investigated ATP-induced current responses in INC neurons and the distributions of the three current types across distinct firing patterns in PHN and INC neurons using whole cell recordings of rat brainstem slices. The application of ATP induced all three current types in INC neurons. Pharmacological analyses indicated that the fast inward and slow outward currents were mainly mediated by the P2X and P1 subtypes, respectively, corresponding to the receptor subtypes in PHN neurons. However, agonists of the P2Y subtype did not induce the slow inward current in INC neurons, suggesting that other subtypes or mechanisms are responsible for this current. Analysis of the distribution of the three current types in PHN and INC neurons revealed that the proportions of the currents were distinctly dependent on the firing patterns of PHN neurons whereas the proportion of the fast inward current was higher during all firing patterns of INC neurons. The different distributions of ATP-induced currents suggest distinct modes of purinergic modulation specific to horizontal and vertical integrators.NEW & NOTEWORTHY The roles of purinergic signaling on vertical (mediated by the interstitial nucleus of Cajal; INC) and horizontal (prepositus hypoglossal nucleus; PHN) gaze control are not understood. Here, we report three current types induced by ATP in INC neurons; the distribution of these current types across different types of INC neurons is different from that in PHN neurons. These results suggest distinct modes of purinergic modulation in horizontal and vertical gaze control centers.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fenómenos Electrofisiológicos/fisiología , Movimientos Oculares/fisiología , Neuronas/fisiología , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Tegmento Mesencefálico/fisiología , Animales , Femenino , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Long-Evans
9.
Am J Physiol Heart Circ Physiol ; 320(2): H699-H712, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306443

RESUMEN

Brain capillary pericytes have been suggested to play a role in the regulation of cerebral blood flow under physiological and pathophysiological conditions. ATP has been shown to cause constriction of capillaries under ischemic conditions and suggested to be involved in the "no-reflow" phenomenon. To investigate the effects of extracellular ATP on pericyte cell contraction, we studied purinergic receptor activation of cultured bovine brain capillary pericytes. We measured intracellular Ca2+ concentration ([Ca2+]i) responses to purinergic agonists with the fluorescent indicators fura-2 and Cal-520 and estimated contraction of pericytes as relative change in cell area, using real-time confocal imaging. Addition of ATP caused an increase in cytosolic calcium and contraction of the brain capillary pericytes, both reversible and inhibited by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Furthermore, we demonstrated that ATP-induced contraction could be eliminated by intracellular calcium chelation with BAPTA, indicating that the contraction was mediated via purinergic P2-type receptor-mediated [Ca2+]i signaling. ATP stimulation induced inositol triphosphate signaling, consistent with the notion of P2Y receptor activation. Receptor profiling studies demonstrated the presence of P2Y1 and P2Y2 receptors, using ATP, UTP, ADP, and the subtype specific agonists MRS2365 (P2Y1) and 2-thio-UTP (P2Y2). Addition of specific P2X agonists only caused an [Ca2+]i increase at high concentrations, attributed to activation of inositol triphosphate signaling. Our results suggest that contraction of brain capillary pericytes in vitro by activation of P2Y-type purinergic receptors is caused by intracellular calcium release. This adds more mechanistic understanding of the role of pericytes in vessel constriction and points toward P2Y receptors as potential therapeutic targets.NEW & NOTEWORTHY The study concerns brain capillary pericytes, which have been suggested to play a role in the regulation of cerebral blood flow. We show that extracellular ATP causes contraction of primary brain pericytes by stimulation of purinergic receptors and subsequent release of intracellular Ca2+ concentration ([Ca2+]i). The contraction is mainly mediated through activation of P2Y-receptor subtypes, including P2Y1 and P2Y2. These findings add more mechanistic understanding of the role of pericytes in regulation of capillary blood flow. ATP was earlier suggested to be involved in capillary constriction in brain pathologies, and our study gives a detailed account of a part of this important mechanism.


Asunto(s)
Adenosina Trifosfato/farmacología , Encéfalo/irrigación sanguínea , Señalización del Calcio/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Pericitos/efectos de los fármacos , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y/efectos de los fármacos , Animales , Capilares/citología , Bovinos , Células Cultivadas , Inositol 1,4,5-Trifosfato/metabolismo , Pericitos/metabolismo , Fenotipo , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y1/efectos de los fármacos , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y2/efectos de los fármacos , Receptores Purinérgicos P2Y2/metabolismo
11.
J Theor Biol ; 518: 110629, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33607144

RESUMEN

Calcium (Ca2+) oscillations in hepatocytes have a wide dynamic range. In particular, recent experimental evidence shows that agonist stimulation of the P2Y family of receptors leads to qualitatively diverse Ca2+ oscillations. We present a new model of Ca2+ oscillations in hepatocytes based on these experiments to investigate the mechanisms controlling P2Y-activated Ca2+ oscillations. The model accounts for Ca2+ regulation of the IP3 receptor (IP3R), the positive feedback from Ca2+ on phospholipase C (PLC) and the P2Y receptor phosphorylation by protein kinase C (PKC). Furthermore, PKC is shown to control multiple cellular substrates. Utilising the model, we suggest the activity and intensity of PLC and PKC necessary to explain the qualitatively diverse Ca2+ oscillations in response to P2Y receptor activation.


Asunto(s)
Señalización del Calcio , Proteína Quinasa C , Receptores Purinérgicos P2Y/metabolismo , Fosfolipasas de Tipo C , Calcio/metabolismo , Hepatocitos , Humanos , Fosforilación , Transducción de Señal , Fosfolipasas de Tipo C/metabolismo
12.
Purinergic Signal ; 17(4): 633-648, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34476721

RESUMEN

This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animales , Humanos
13.
Purinergic Signal ; 17(1): 55-61, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33011962

RESUMEN

The tumor microenvironment is rich in extracellular ATP. This nucleotide affects both cancer and infiltrating immune cell responses by acting at P2 receptors, chiefly P2X7. ATP is then degraded to generate adenosine, a very powerful immunosuppressant. The purinergic hypothesis put forward by Geoff Burnstock prompted innovative investigation in this field and provided the intellectual framework to interpret a myriad of experimental findings. This is a short appraisal of how Geoff's inspiration influenced cancer studies and my own investigation highlighting the key role of the P2X7 receptor.


Asunto(s)
Adenosina Trifosfato/metabolismo , Neoplasias/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Microambiente Tumoral/fisiología , Animales , Humanos , Transducción de Señal/fisiología
14.
Int J Mol Sci ; 22(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435297

RESUMEN

Metastasis accounts for over 90% of cancer-related deaths, yet the mechanisms guiding this process remain unclear. Secreted nucleoside diphosphate kinase A and B (NDPK) support breast cancer metastasis. Proteomic evidence confirms their presence in breast cancer-derived extracellular vesicles (EVs). We investigated the role of EV-associated NDPK in modulating the host microenvironment in favor of pre-metastatic niche formation. We measured NDPK expression and activity in EVs isolated from triple-negative breast cancer (MDA-MB-231) and non-tumorigenic mammary epithelial (HME1) cells using flow cytometry, western blot, and ATP assay. We evaluated the effects of EV-associated NDPK on endothelial cell migration, vascular remodeling, and metastasis. We further assessed MDA-MB-231 EV-induced proteomic changes in support of pre-metastatic lung niche formation. NDPK-B expression and phosphotransferase activity were enriched in MDA-MB-231 EVs that promote vascular endothelial cell migration and disrupt monolayer integrity. MDA-MB-231 EV-treated mice demonstrate pulmonary vascular leakage and enhanced experimental lung metastasis, whereas treatment with an NDPK inhibitor or a P2Y1 purinoreceptor antagonist blunts these effects. We identified perturbations to the purinergic signaling pathway in experimental lungs, lending evidence to support a role for EV-associated NDPK-B in lung pre-metastatic niche formation and metastatic outgrowth. These studies prompt further evaluation of NDPK-mediated EV signaling using targeted genetic silencing approaches.


Asunto(s)
Vesículas Extracelulares/patología , Neoplasias Pulmonares/secundario , Receptores Purinérgicos P2Y/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones SCID , Nucleósido Difosfato Quinasas NM23/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral
15.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199936

RESUMEN

Vincristine (VCR) is a widely used chemotherapy drug that induced peripheral painful neuropathy. Yet, it still lacks an ideal therapeutic strategy. The transient receptor potential (TRP) channels, purinergic receptor (P2Y), and mitogen-activated protein kinase (MAPK) signaling play a crucial role in the pathogenesis of neuropathic pain. Withametelin (WMT), a potential Phytosteroid isolated from datura innoxa, exhibits remarkable neuroprotective properties. The present investigation was designed to explore the effect of withametelin on VCR-induced neuropathic pain and its underlying molecular mechanism. Initially, the neuroprotective potential of WMT was confirmed against hydrogen peroxide (H2O2)-induced PC12 cells. To develop potential candidates for neuropathic pain treatment, a VCR-induced neuropathic pain model was established. Vincristine (75 µg/kg) was administered intraperitoneally (i.p.) for 10 consecutive days (day 1-10) for the induction of neuropathic pain. Gabapentin (GBP) (60 mg/kg, i.p.) and withametelin (0.1 and 1 mg/kg i.p.) treatments were given after the completion of VCR injection on the 11th day up to 21 days. The results revealed that WMT significantly reduced VCR-induced pain hypersensitivity, including mechanical allodynia, cold allodynia, and thermal hyperalgesia. It reversed the VCR-induced histopathological changes in the brain, spinal cord, and sciatic nerve. It inhibited VCR-induced changes in the biochemical composition of the myelin sheath of the sciatic nerve. It markedly downregulated the expression levels of TRPV1 (transient receptor potential vanilloid 1); TRPM8 (Transient receptor potential melastatin 8); and P2Y nociceptors and MAPKs signaling, including ERK (Extracellular Signal-Regulated Kinase), JNK (c-Jun N-terminal kinase), and p-38 in the spinal cord. It suppressed apoptosis by regulating Bax (Bcl2-associated X-protein), Bcl-2 (B-cell-lymphoma-2), and Caspase-3 expression. It considerably attenuated inflammatory cytokines, oxidative stress, and genotoxicity. This study suggests that WMT treatment suppressed vincristine-induced neuropathic pain by targeting the TRPV1/TRPM8/P2Y nociceptors and MAPK signaling.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Nociceptores/efectos de los fármacos , Fitosteroles/farmacología , Receptores Purinérgicos P2Y/química , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPV/antagonistas & inhibidores , Vincristina/toxicidad , Animales , Antineoplásicos Fitogénicos/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Ratas
16.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35008664

RESUMEN

Chronic wound healing is currently a severe problem due to its incidence and associated complications. Intensive research is underway on substances that retain their biological activity in the wound microenvironment and stimulate the formation of new blood vessels critical for tissue regeneration. This group includes synthetic compounds with proangiogenic activity. Previously, we identified phosphorothioate analogs of nucleoside 5'-O-monophosphates as multifunctional ligands of P2Y6 and P2Y14 receptors. The effects of a series of unmodified and phosphorothioate nucleotide analogs on the secretion of VEGF from keratinocytes and fibroblasts, as well as their influence on the viability and proliferation of keratinocytes, fibroblasts, and endothelial cells were analyzed. In addition, the expression profiles of genes encoding nucleotide receptors in tested cell models were also investigated. In this study, we defined thymidine 5'-O-monophosphorothioate (TMPS) as a positive regulator of angiogenesis. Preliminary analyses confirmed the proangiogenic potency of TMPS in vivo.


Asunto(s)
Espacio Extracelular/química , Fibroblastos/fisiología , Células Endoteliales de la Vena Umbilical Humana/fisiología , Queratinocitos/fisiología , Neovascularización Fisiológica , Nucleótidos/farmacología , Adulto , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HaCaT , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Oligonucleótidos Fosforotioatos/farmacología , Receptores Purinérgicos P2Y/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
J Cell Mol Med ; 24(8): 4580-4588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32150662

RESUMEN

Extracellular ATP through the activation of the P2X and P2Y purinergic receptors affects the migration, proliferation and differentiation of many types of cells, including stem cells. High plasticity, low immunogenicity and immunomodulation ability of mesenchymal stem cells derived from human endometrium (eMSCs) allow them to be considered a prominent tool for regenerative medicine. Here, we examined the role of ATP in the proliferation and migration of human eMSCs. Using a wound healing assay, we showed that ATP-induced activation of purinergic receptors suppressed the migration ability of eMSCs. We found the expression of one of the ATP receptors, the P2X7 receptor in eMSCs. In spite of this, cell activation with specific P2X7 receptor agonist, BzATP did not significantly affect the cell migration. The allosteric P2X7 receptor inhibitor, AZ10606120 also did not prevent ATP-induced inhibition of cell migration, confirming that inhibition occurs without P2X7 receptor involvement. Flow cytometry analysis showed that high concentrations of ATP did not have a cytotoxic effect on eMSCs. At the same time, ATP induced the cell cycle arrest, suppressed the proliferative and migration capacity of eMSCs and therefore could affect the regenerative potential of these cells.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Endometrio/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Receptores Purinérgicos P2X7/genética , Regeneración/genética , Adamantano/análogos & derivados , Adamantano/farmacología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/genética , Adenosina Trifosfato/farmacología , Aminoquinolinas/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/genética , Endometrio/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/metabolismo , Agonistas del Receptor Purinérgico P2X/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2Y/genética , Regeneración/efectos de los fármacos
18.
Neurobiol Dis ; 144: 105030, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32736084

RESUMEN

As critical regulators of brain homeostasis, microglia are influenced by numerous factors, including sex and genetic mutations. To study the impact of these factors on microglia biology, we employed genetically engineered mice that model Neurofibromatosis type 1 (NF1), a disorder characterized by clinically relevant sexually dimorphic differences. While microglia phagocytic activity was reduced in both male and female heterozygous Nf1 mutant (Nf1+/-) mice, purinergic control of phagocytosis was only affected in male Nf1+/- mice. ATP-induced P2Y-mediated membrane currents and P2RY12-dependent laser lesion-induced accumulation of microglial processes were also only impaired in male, but not female Nf1+/-, microglia. These defects resulted from Nf1+/- male-specific defects in cyclic AMP regulation, rather than from changes in purinergic receptor expression. Cyclic AMP elevation by phosphodiesterase blockade restored the male Nf1+/- microglia defects in P2Y-dependent membrane currents and process motility. Taken together, these data establish a sex-by-genotype interaction important to microglia function in the adult mouse brain.


Asunto(s)
AMP Cíclico/metabolismo , Microglía/metabolismo , Neurofibromatosis 1/metabolismo , Neurofibromina 1/genética , Fagocitosis/genética , Animales , Femenino , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Masculino , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Microglía/fisiología , Microscopía Confocal , Mutación , Neurofibromatosis 1/genética , Neurofibromatosis 1/fisiopatología , Técnicas de Placa-Clamp , Fagocitosis/fisiología , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Caracteres Sexuales , Factores Sexuales
19.
Brain Behav Immun ; 89: 480-490, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717399

RESUMEN

The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.


Asunto(s)
Infecciones del Sistema Nervioso Central/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Complejo SIDA Demencia/metabolismo , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/metabolismo , Encefalitis por Herpes Simple/metabolismo , Humanos , Malaria/metabolismo , Meningitis Bacterianas/metabolismo , Meningitis Criptocócica/metabolismo , Pandemias , Neumonía Viral/metabolismo , SARS-CoV-2 , Sepsis/metabolismo , Transducción de Señal , Toxoplasmosis Cerebral/metabolismo , Infección por el Virus Zika/metabolismo
20.
Purinergic Signal ; 16(1): 17-28, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31823189

RESUMEN

In this study, the distribution patterns of P2X1 to P2X7 receptors in the anterior pituitary cells of rat were studied with single-, double-, and triple-labeling immunofluorescence, combined method of immunofluorescence and in situ hybridization, and Western blot. The results showed that the expression level of the P2X4 receptor protein was highest, followed by P2X5, P2X3, P2X2, P2X6, and P2X7 receptor proteins, but no P2X1 receptor protein was detected. Strong P2X4 receptor-immunoreactivity was detected in almost all the anterior pituitary cells. Different combinations of P2X receptors were detected in each individual cell type of the rat anterior pituitary. Gonadotrophs express P2X4, P2X5, and P2X6 receptors. Corticotrophs express P2X3 and P2X4 receptors. Folliculo-stellate cells express P2X2 and P2X4 receptors, and somatotrophs, lactotrophs, and thyrotrophs express only P2X4 receptors. The macrophages with Iba-1-ir expressed P2X7 receptors. The possible functions of these P2X receptors in each individual cell type of the rat anterior pituitary are discussed.


Asunto(s)
Adenohipófisis/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animales , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA