Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Immunity ; 39(5): 899-911, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24211183

RESUMEN

Psoriasis is a common chronic inflammatory skin disease with a prevalence of about 2% in the Caucasian population. Tumor necrosis factor (TNF) plays an essential role in the pathogenesis of psoriasis, but its mechanism of action remains poorly understood. Here we report that the development of psoriasis-like skin inflammation in mice with epidermis-specific inhibition of the transcription factor NF-κB was triggered by TNF receptor 1 (TNFR1)-dependent upregulation of interleukin-24 (IL-24) and activation of signal transducer and activator of transcription 3 (STAT3) signaling in keratinocytes. IL-24 was strongly expressed in human psoriatic epidermis, and pharmacological inhibition of NF-κB increased IL-24 expression in TNF-stimulated human primary keratinocytes, suggesting that this mechanism is relevant for human psoriasis. Therefore, our results expand current views on psoriasis pathogenesis by revealing a new keratinocyte-intrinsic mechanism that links TNFR1, NF-κB, ERK, IL-24, IL-22R1, and STAT3 signaling to disease initiation.


Asunto(s)
Citocinas/fisiología , Queratinocitos/patología , Psoriasis/etiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Células Cultivadas , Cruzamientos Genéticos , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Epidermis/patología , Regulación de la Expresión Génica/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/fisiología , Interleucinas/fisiología , Queratinocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/metabolismo , Psoriasis/patología , Psoriasis/fisiopatología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Interleucina/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Transcripción STAT3/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
2.
Nat Rev Mol Cell Biol ; 11(10): 700-14, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20823910

RESUMEN

For a long time, apoptosis was considered the sole form of programmed cell death during development, homeostasis and disease, whereas necrosis was regarded as an unregulated and uncontrollable process. Evidence now reveals that necrosis can also occur in a regulated manner. The initiation of programmed necrosis, 'necroptosis', by death receptors (such as tumour necrosis factor receptor 1) requires the kinase activity of receptor-interacting protein 1 (RIP1; also known as RIPK1) and RIP3 (also known as RIPK3), and its execution involves the active disintegration of mitochondrial, lysosomal and plasma membranes. Necroptosis participates in the pathogenesis of diseases, including ischaemic injury, neurodegeneration and viral infection, thereby representing an attractive target for the avoidance of unwarranted cell death.


Asunto(s)
Apoptosis/fisiología , Muerte Celular/fisiología , Receptores de Muerte Celular/fisiología , Animales , Membrana Celular/patología , Membrana Celular/fisiología , Humanos , Lisosomas/patología , Lisosomas/fisiología , Macrófagos/microbiología , Macrófagos/patología , Mitocondrias/patología , Mitocondrias/fisiología , Morfogénesis/fisiología , Necrosis , Proteínas Quinasas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Shigella flexneri/patogenicidad
3.
BMC Cancer ; 21(1): 507, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957885

RESUMEN

BACKGROUND: Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine with both anti-tumorigenic and pro-tumorigenic activity, affecting tumor cell biology, the balance between cell survival and death. The final effect of TNFα is dependent on the type of malignant cells, with the potential to arrest cancer progression. METHODS: In order to explain the diverse cellular response to TNFα, we engineered melanoma and colorectal carcinoma cell lines stably overexpressing this cytokine. RESULTS: Under the TNFα overexpression, significant upregulation of two genes was observed: proinflammatory cytokine IL6 gene in melanoma cells A375 and gene for pro-apoptotic ligand TRAIL in colorectal carcinoma cells HT29, both mediated by TNFα/TNFR1 signaling. Malignant melanoma line A375 displayed also increased autophagy on day 3, followed by premature senescence on day 6. Both processes seem to be interconnected, following earlier apoptosis induction and deregulation of mitochondrial functions. We documented altered mitochondrial status, lowered ATP production, lowered mitochondrial mass, and changes in mitochondrial morphology (shortened and condensed mitochondria) both in melanoma and colorectal carcinoma cells. Overexpression of TNFα was not linked with significant affection of the subpopulation of cancer stem-like cells in vitro. However, we could demonstrate a decrease in aldehyde dehydrogenase (ALDH) activity up to 50%, which is associated with to the stemness phenotype. CONCLUSIONS: Our in vitro study of direct TNFα influence demonstrates two distinct outcomes in tumor cells of different origin, in non-epithelial malignant melanoma cells of neural crest origin, and in colorectal carcinoma cells derived from the epithelium.


Asunto(s)
Autofagia/fisiología , Melanoma/patología , Mitocondrias/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Aldehído Deshidrogenasa/metabolismo , Línea Celular Tumoral , Senescencia Celular , Neoplasias Colorrectales/patología , Humanos , Interleucina-6/genética , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Ligando Inductor de Apoptosis Relacionado con TNF/genética
4.
Cell Biol Int ; 44(12): 2383-2394, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32808710

RESUMEN

Periodontitis is a chronic inflammatory disease that results in the destruction of periodontal soft tissue and the resorption of alveolar bone. Evidence indicates that in diabetic patients, hyperglycemia suppresses periodontal ligament stem cell (PDLSC) functions and leads to difficulties in periodontal repair. The present study aimed to explore the mechanisms by which high-glucose concentrations aggravate cell viability reduction in human CD146-positive PDLCs (CD146+ PDLCs) under tumor necrosis factor-alpha (TNF-alpha) induction. CD146+ PDLCs were isolated from periodontal ligament tissues and treated in the absence or presence of 10 ng/ml of TNF-alpha and 30 mM glucose. Cell viability was detected using Cell Counting Kit-8 assays and Luminescent Cell Viability Assays. Western blotting and real-time polymerase chain reaction were performed to determine tumor necrosis factor-alpha receptor-1 (TNFR-1) protein and messenger RNA expression. Bisulfite and MassArray methylation analyses were used to analyze the methylation status of the TNFR-1 gene. Our results indicated that cell viability was reduced after treatment with a combination of both high-glucose concentration and TNF-alpha. Treatment with 30 mM glucose suppressed DNA methyltransferase (DNMT) activities and DNMT1 protein expression, and this was accompanied by the upregulation of TNFR-1. Additionally, we found that the CpG island located within the TNFR-1 gene was hypomethylated under 30 mM glucose conditions. S-adenosylmethionine, an established methyl donor, reversed TNFR-1 upregulation and restored cell viability against high-glucose concentration and TNF-alpha. In conclusion, the present findings suggest that high-glucose-induced CpG island hypomethylation within the TNFR-1 gene plays an essential role in TNFR-1 upregulation, and this further enhances the cell viability reduction of CD146+ PDLCs caused by TNF-alpha.


Asunto(s)
Glucosa/metabolismo , Periodontitis/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Desmetilación , Humanos , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/metabolismo , Periodontitis/fisiopatología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Células Madre/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Nat Rev Mol Cell Biol ; 9(8): 655-62, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18545270

RESUMEN

The death receptors tumour-necrosis factor receptor-1 (TNFR1) and CD95 (also known as FAS and APO-1) transduce signals that promote cell death by apoptosis. However, these receptors are also capable of inducing anti-apoptotic signals through the activation of the transcription factor nuclear factor-kappaB (NF-kappaB) or through activation of the proliferative mitogen-activated protein kinase (MAPK) cascade. Recent findings reveal a role for receptor internalization and endosomal trafficking in selectively transmitting the signals that lead either to apoptosis or to the survival of the cell.


Asunto(s)
Compartimento Celular/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptor fas/metabolismo , Animales , Apoptosis/fisiología , Humanos , Modelos Biológicos , Transporte de Proteínas/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Transducción de Señal/fisiología , Receptor fas/fisiología
6.
Crit Care Med ; 46(1): e67-e75, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095202

RESUMEN

OBJECTIVES: Sepsis causes very high mortality and morbidity rates and remains one of the biggest medical challenges. This study investigates whether plasma levels of both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 are associated with sepsis severity and also investigates the therapeutic applicability of simultaneous inhibition of the two molecules in sepsis. DESIGN: Observational human pilot study-prospective controlled animal study. SETTING: University hospital and research laboratory. SUBJECTS: Sepsis patients and C57BL/6 mice deficient for matrix metalloproteinase 8 and/or tumor necrosis factor receptor 1. INTERVENTION: Plasma and whole blood RNA were collected from 13 sepsis patients for 7 consecutive days and within 24 hours of admission to ICU. Matrix metalloproteinase 8 and tumor necrosis factor receptor 1 plasma and expression levels were determined in these patients. Mice deficient for both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were generated and subjected to endotoxemia and cecal ligation and puncture. Additionally, a bispecific Nanobody that simultaneously blocks matrix metalloproteinase 8 and tumor necrosis factor receptor 1 was created. MEASUREMENTS AND MAIN RESULTS: Plasma levels of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were positively correlated with the Sequential Organ Failure Assessment score (r, 0.51 and 0.58) and interleukin 6 levels (r, 0.59 and 0.52) in 13 sepsis patients. Combined elimination of tumor necrosis factor receptor 1 and matrix metalloproteinase 8 in double knockout mice resulted in superior survival in endotoxemia and CLP compared with single knockouts and wild-type mice. Cotreatment with our bispecific Nanobody in CLP resulted in improved survival rates (28% vs 19%) compared with untreated mice. CONCLUSIONS: Inhibition of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 might have therapeutic potential to treat sepsis and proof-of-principle was provided as therapeutics that inhibit both tumor necrosis factor receptor 1 and matrix metalloproteinase 8 are effective in CLP.


Asunto(s)
Inflamación/fisiopatología , Metaloproteinasa 8 de la Matriz/fisiología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Sepsis/fisiopatología , Animales , Interleucina-6/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyectos Piloto , Estudios Prospectivos , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología
7.
J Am Soc Nephrol ; 28(3): 761-768, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27612997

RESUMEN

Intrarenal crystals trigger inflammation and renal cell necroptosis, processes that involve TNF receptor (TNFR) signaling. Here, we tested the hypothesis that TNFRs also have a direct role in tubular crystal deposition and progression of hyperoxaluria-related CKD. Immunohistochemical analysis revealed upregulated tubular expression of TNFR1 and TNFR2 in human and murine kidneys with calcium oxalate (CaOx) nephrocalcinosis-related CKD compared with controls. Western blot and mRNA expression analyses in mice yielded consistent data. When fed an oxalate-rich diet, wild-type mice developed progressive CKD, whereas Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice did not. Despite identical levels of hyperoxaluria, Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice also lacked the intrarenal CaOx deposition and tubular damage observed in wild-type mice. Inhibition of TNFR signaling prevented the induced expression of the crystal adhesion molecules, CD44 and annexin II, in tubular epithelial cells in vitro and in vivo, and treatment with the small molecule TNFR inhibitor R-7050 partially protected hyperoxaluric mice from nephrocalcinosis and CKD. We conclude that TNFR signaling is essential for CaOx crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of oxalate nephropathy. Furthermore, therapeutic blockade of TNFR might delay progressive forms of nephrocalcinosis in oxalate nephropathy, such as primary hyperoxaluria.


Asunto(s)
Hiperoxaluria/complicaciones , Cálculos Renales/etiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Animales , Cristalización , Humanos , Hiperoxaluria/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
Brain Behav Immun ; 65: 284-295, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28666938

RESUMEN

Earlier studies from our laboratory demonstrated that acute experimental Trypanosoma cruzi infection promotes an intense inflammation along with a sepsis-like dysregulated adrenal response characterized by normal levels of ACTH with raised glucocorticoid secretion. Inflammation was also known to result in adrenal cell apoptosis, which in turn may influence HPA axis uncoupling. To explore factors and pathways which may be involved in the apoptosis of adrenal cells, together with its impact on the functionality of the gland, we carried out a series of studies in mice lacking death receptors, such as TNF-R1 (C57BL/6-Tnfrsf1a tm1Imx or TNF-R1-/-) or Fas ligand (C57BL/6 Fas-deficient lpr mice), undergoing acute T. cruzi infection. Here we demonstrate that the late hypercorticosterolism seen in C57BL/6 mice during acute T. cruzi infection coexists with and hyperplasia and hypertrophy of zona fasciculata, paralleled by increased number of apoptotic cells. Apoptosis seems to be mediated mainly by the type II pathway of Fas-mediated apoptosis, which engages the mitochondrial pathway of apoptosis triggering the cytochrome c release to increase caspase-3 activation. Fas-induced apoptosis of adrenocortical cells is also related with an exacerbated production of intra-adrenal cytokines that probably maintain the late supply of adrenal hormones during host response. Present results shed light on the molecular mechanisms dealing with these phenomena which are crucial not only for the development of interventions attempting to avoid adrenal dysfunction, but also for its wide occurrence in other infectious-based critical illnesses.


Asunto(s)
Corteza Suprarrenal/fisiopatología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptor fas/fisiología , Corteza Suprarrenal/microbiología , Animales , Apoptosis/inmunología , Apoptosis/fisiología , Caspasa 3/metabolismo , Citocinas/metabolismo , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/fisiología , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Inflamación , Ratones , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Trypanosoma cruzi/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo , Receptor fas/metabolismo
9.
Cell Biol Int ; 41(4): 415-422, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28150360

RESUMEN

TNF-α has long been implicated in the progression of rheumatoid arthritis (RA). However, how the receptors of TNF-α, namely TNFR1 and TNFR2, mediate TNF-α-induced inflammatory responses in fibroblast-like synoviocytes (FLS) in RA has not been elucidated. In the present study, primary FLS cells were isolated from RA patients and treated with TNF-α in vitro. The exogenous TNF-α induced the expression and release of endogenous TNF-α in FLS. In addition, TNF-α led to gradual downregulation of TNFR1 following 1 h treatment. By contrast, the expression of TNFR2 was markedly upregulated after 12 h treatment with TNF-α. Moreover, following TNF-α treatment, the expression of interleukin (IL)-2, IL-6, and IL-8 was gradually increased with time, but their mRNA levels dropped significantly at 48 h. We further investigated the differential functions of TNFR1 and TNFR2 in FLS by conducting siRNA-mediated knockdown. The TNF-α autocrine was inhibited to a greater extent in TNFR1-silenced FLS compared with TNFR2-silenced FLS. Silencing of TNFR1, not TNFR2, activated intrinsic apoptosis and inhibited TNF-α-induced cytokine production in FLS. These results suggest that TNFR1 is the major pro-inflammatory mediator of TNF-α in FLS, whereas TNFR2, which is upregulated in response to prolonged TNF-α stimulation, may act as an immunosuppressor in FLS for the prevention of overwhelming inflammatory reactions.


Asunto(s)
Artritis Reumatoide/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Apoptosis , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Células Cultivadas , Expresión Génica , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Sinoviocitos
10.
Prostate ; 76(10): 917-26, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27018768

RESUMEN

BACKGROUND: TNF-α is a key cytokine involved in prostate carcinogenesis and is mediated by the TNF-α receptor type 1 (TNFR-1). This receptor triggers two opposite pathways: cell death or cell survival and presents a protective or stimulator role in cancer. Thus, the purpose of this study was to evaluate the role of TNF signaling in chemically induced prostate carcinogenesis in mice. METHODS: C57bl/6 wild type (WT) and p55 TNFR-1 knockout mice (KO) were treated with mineral oil (control) or N-methyl N-nitrosurea (MNU) in association with testosterone (MNU+T, single injection of 40 mg/kg and weekly injection 2 mg/kg, respectively) over the course of 6 months. After this induction period, prostate samples were processed for histological and biochemical analysis. RESULTS: MNU+T treatment led to the development of prostate intraepithelial neoplasia (PIN) and adenocarcinoma (PCa) in both WT and KO animals; however, the incidence of PCa was lower in KO group than in WT. Cell proliferation analysis showed that PCNA levels were significantly lower in the KO group, even after carcinogenesis induction. Furthermore, the prostate of KO animals had lower levels of p65 and p-mTOR after treatment with MNU+T than WT. There was also a decrease in prostate androgen receptor levels after induction of carcinogenesis in both KO and WT mice. Regarding the extracellular matrix in the prostate, KO mice had higher levels of fibronectin and lower levels of matrix metalloproteinase 2 (MMP2) after carcinogenesis. Finally, there was a similar increase in apoptosis in both groups after carcinogenesis, indicating that the TNAFr1 pathway in prostate carcinogenesis presented proliferative, and not apoptotic, stimuli. CONCLUSIONS: TNF-α, through its receptor TNFR-1, promoted cell proliferation and cell survival in prostate by activation of the AKT/mTOR and NFKB pathway, which stimulated prostate carcinogenesis in chemically induced mice. Prostate 76: 917-926, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Carcinogénesis , Neoplasias de la Próstata , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Adenocarcinoma/patología , Animales , Apoptosis , Carcinogénesis/patología , Proliferación Celular , Supervivencia Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Antígeno Nuclear de Célula en Proliferación/análisis , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/química , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/análisis , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Serina-Treonina Quinasas TOR/análisis , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción ReIA/análisis
11.
Hepatology ; 61(3): 883-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25251280

RESUMEN

UNLABELLED: Intestinal barrier dysfunction is an important contributor to alcoholic liver disease (ALD). Translocated microbial products trigger an inflammatory response in the liver and contribute to steatohepatitis. Our aim was to investigate mechanisms of barrier disruption after chronic alcohol feeding. A Lieber-DeCarli model was used to induce intestinal dysbiosis, increased intestinal permeability, and liver disease in mice. Alcohol feeding for 8 weeks induced intestinal inflammation in the jejunum, which is characterized by an increased number of tumor necrosis factor alpha (TNF-α)-producing monocytes and macrophages. These findings were confirmed in duodenal biopsies from patients with chronic alcohol abuse. Intestinal decontamination with nonabsorbable antibiotics restored eubiosis, decreased intestinal inflammation and permeability, and reduced ALD in mice. TNF-receptor I (TNFRI) mutant mice were protected from intestinal barrier dysfunction and ALD. To investigate whether TNFRI on intestinal epithelial cells mediates intestinal barrier dysfunction and ALD, we used TNFRI mutant mice carrying a conditional gain-of-function allele for this receptor. Reactivation of TNFRI on intestinal epithelial cells resulted in increased intestinal permeability and liver disease that is similar to wild-type mice after alcohol feeding, suggesting that enteric TNFRI promotes intestinal barrier dysfunction. Myosin light-chain kinase (MLCK) is a downstream target of TNF-α and was phosphorylated in intestinal epithelial cells after alcohol administration. Using MLCK-deficient mice, we further demonstrate a partial contribution of MLCK to intestinal barrier dysfunction and liver disease after chronic alcohol feeding. CONCLUSION: Dysbiosis-induced intestinal inflammation and TNFRI signaling in intestinal epithelial cells mediate a disruption of the intestinal barrier. Therefore, intestinal TNFRI is a crucial mediator of ALD.


Asunto(s)
Disbiosis/complicaciones , Hepatopatías Alcohólicas/etiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Animales , Enteritis/complicaciones , Mucosa Intestinal/fisiología , Enfermedades del Yeyuno/complicaciones , Ratones , Ratones Endogámicos C57BL , Quinasa de Cadena Ligera de Miosina/fisiología , Permeabilidad , Factor de Necrosis Tumoral alfa/genética
12.
J Immunol ; 192(3): 1320-31, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24379122

RESUMEN

It has been reported that TNFR2 is involved in regulatory T cell induction and myeloid-derived suppressor cell (MDSC) accumulation, two kinds of immunosuppressive cells contributing to tumor immune evasion. Because transmembrane TNF-α (tmTNF-α) is the primary ligand for TNFR2, we hypothesized that tmTNF-α is mainly responsible for the activation of MDSCs. Indeed, we found that tmTNF-α, rather than secretory TNF-α (sTNF-α), activated MDSCs with enhanced suppressive activities, including upregulating arginase-1 and inducible NO synthase transcription, promoting secretion of NO, reactive oxygen species, IL-10, and TGF-ß, and enhancing inhibition of lymphocyte proliferation. This effect of tmTNF-α was mediated by TNFR2, as TNFR2 deficiency significantly impaired tmTNF-α-induced release of IL-10 and NO and inhibition of T cell proliferation by MDSC supernatant. Furthermore, tmTNF-α caused p38 phosphorylation and NF-κB activation, whereas inhibition of NF-κB or p38 with an inhibitor pyrrolidine dithiocarbamate or SB203580 abrogated tmTNF-α-mediated increased suppression of lymphocyte proliferation by MDSCs. Consistently, our in vivo study showed that ectopic expression of uncleavable tmTNF-α mutant by 4T1 cells significantly promoted tumor progression and angiogenesis, accompanied with more accumulation of MDSCs and regulatory T cells in the tumor site, increased production of NO, IL-10, and TGF-ß, as well as poor lymphocyte infiltration. In contrast, enforced expression of sTNF-α mutant by 4T1 cells that only released sTNF-α without expression of surface tmTNF-α markedly reduced MDSC accumulation and induced more lymphocyte infiltration instead, showing obvious tumor regression. Our data suggest that tmTNF-α acts as a potent activator of MDSCs via TNFR2 and reveals another novel immunosuppressive effect of this membrane molecule that promotes tumor immune escape.


Asunto(s)
Neoplasias Mamarias Experimentales/inmunología , Células Mieloides/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Arginasa/biosíntesis , Arginasa/genética , Secuencia de Bases , Inducción Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Proteínas Recombinantes de Fusión/farmacología , Solubilidad , Organismos Libres de Patógenos Específicos , Bazo/inmunología , Bazo/patología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba
13.
Ann Neurol ; 76(1): 43-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24798682

RESUMEN

OBJECTIVE: Brain damage and ischemia often trigger cortical spreading depression (CSD), which aggravates brain damage. The proinflammatory cytokine tumor necrosis factor (TNF) is significantly upregulated during brain damage, but it is unknown whether TNF influences spreading depression in cerebral cortex in vivo. This question is important because TNF not only furthers inflammatory reactions but might also be neuroprotective. Here we tested the hypothesis that TNF affects CSD, and we explored the direction in which CSD is modified by TNF. METHODS: CSD, elicited by pressure microinjection of KCl, was recorded in anesthetized rats and mice. TNF was administered locally into a trough, providing local TNF treatment of a cortical area. For further analysis, antibodies to TNF receptor (TNFR) 1 or 2 were applied, or CSD was monitored in TNFR1 and TNFR2 knockout mice. γ-Aminobutyric acid (GABA)A receptors were blocked by bicuculline. Immunohistochemistry localized the cortical expression of TNFR1 and TNFR2. RESULTS: Local application of TNF to the cortex reduced dose-dependently the amplitude of CSD. This effect was prevented by blockade or knockout of TNFR2 but not by blockade or knockout of TNFR1. TNFR2 was localized at cortical neurons including parvalbumin-positive inhibitory interneurons, and blockade of GABAA receptors by bicuculline prevented the reduction of CSD amplitudes by TNF. INTERPRETATION: We identified a functional link between TNF and CSD. TNF activates TNFR2 in cortical inhibitory interneurons. The resulting release of GABA reduces CSD amplitudes. In this manner, TNF might be neuroprotective in pathological conditions.


Asunto(s)
Depresión de Propagación Cortical/fisiología , Inhibición Neural/fisiología , Factores de Necrosis Tumoral/fisiología , Animales , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Wistar , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Factores de Necrosis Tumoral/administración & dosificación , Ácido gamma-Aminobutírico/metabolismo
14.
Brain Behav Immun ; 44: 213-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25449670

RESUMEN

Musculoskeletal pain is a widespread health problem in the United States. Back pain, neck pain, and facial pain are three of the most prevalent types of chronic pain, and each is characterized as musculoskeletal in origin. Despite its prevalence, preclinical research investigating musculoskeletal pain is limited. Musculoskeletal sensitization is a preclinical model of muscle pain that produces mechanical hypersensitivity. In a rodent model of musculoskeletal sensitization, mechanical hypersensitivity develops at the hind paws after injection of acidified saline (pH 4.0) into the gastrocnemius muscle. Inflammatory cytokines contribute to pain during a variety of pathologies, and in this study we investigate the role of local, intramuscular cytokines in the development of mechanical hypersensitivity after musculoskeletal sensitization in mice. Local intramuscular concentrations of interleukin-1ß (IL-1), IL-6 and tumor necrosis factor-α (TNF) were quantified following injection of normal (pH 7.2) or acidified saline into the gastrocnemius muscle. A cell-permeable inhibitor was used to determine the impact on mechanical hypersensitivity of inhibiting nuclear translocation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) prior to musculoskeletal sensitization. The role of individual cytokines in mechanical hypersensitivity following musculoskeletal sensitization was assessed using knockout mice lacking components of the IL-1, IL-6 or TNF systems. Collectively, our data demonstrate that acidified saline injection increases intramuscular IL-1 and IL-6, but not TNF; that intramuscular pre-treatment with an NF-κB inhibitor blocks mechanical hypersensitivity; and that genetic manipulation of the IL-1 and IL-6, but not TNF systems, prevents mechanical hypersensitivity following musculoskeletal sensitization. These data establish that actions of IL-1 and IL-6 in local muscle tissue play an acute regulatory role in the development of mechanical hypersensitivity following musculoskeletal sensitization.


Asunto(s)
Hiperalgesia/metabolismo , Mialgia/metabolismo , Miositis/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético , Mialgia/inducido químicamente , Miositis/inducido químicamente , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología
15.
Circ Res ; 113(5): 562-70, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23817200

RESUMEN

RATIONALE: Myosin light chain (MLC) phosphorylation determines vascular contractile status. In addition to the classic Ca²âº-dependent MLC kinase (MLCK), another unidentified kinase(s) also contributes to MLC phosphorylation in living cells. Inhibitor κB kinase 2 (IKK2)-deficient mouse embryonic fibroblasts demonstrate abnormal morphology and migration, suggesting that IKK2 may be involved in MLC phosphorylation. OBJECTIVE: Therefore, we tested whether IKK2 is an MLCK in living cells and the role of IKK2 in mediating vasoconstriction and blood pressure regulation. METHODS AND RESULTS: In the present study, we showed that recombinant IKK2-phosphorylated MLC and intact myosin in vitro, and the kinetic parameters were comparable with those of the classic MLCK. Overexpression of IKK2 increased cellular MLC phosphorylation level, and pharmacological inhibition of IKK2 markedly decreased vascular smooth muscle cell MLC phosphorylation, suggesting that IKK2 is an MLCK in living cells. IKK2 inhibitors dose- and time-dependently attenuated vasoconstriction elicited by diverse agonists, suggesting the physiological importance of IKK2 as an MLCK. Vascular smooth muscle cell-specific IKK2-deficient mice had decreased aortic contractile responses, and reduced hypertensive responses to several vasoconstrictors, compared with wild-type mice, confirming the physiological importance of IKK2 as an MLCK. CONCLUSIONS: Our data provide a novel mechanism whereby IKK2 regulates MLC phosphorylation as an MLCK and, thus, vascular function and blood pressure.


Asunto(s)
Quinasa I-kappa B/fisiología , Músculo Liso Vascular/enzimología , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Vasoconstricción/fisiología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Línea Celular , Cruzamientos Genéticos , Dermatitis/enzimología , Dermatitis/genética , Humanos , Quinasa I-kappa B/deficiencia , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Miocitos del Músculo Liso/citología , Miosinas/metabolismo , Fragmentos de Péptidos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Tiofenos/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
16.
Arterioscler Thromb Vasc Biol ; 34(3): 635-43, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24458710

RESUMEN

OBJECTIVE: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. APPROACH AND RESULTS: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. CONCLUSIONS: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.


Asunto(s)
Células Madre Adultas/citología , Células Endoteliales/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Macrófagos Peritoneales/fisiología , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Células Madre Adultas/efectos de los fármacos , Proteínas Angiogénicas/farmacología , Animales , Antígenos CD/biosíntesis , Antígenos CD/genética , Apoptosis , Cadherinas/biosíntesis , Cadherinas/genética , Línea Celular , Linaje de la Célula , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/citología , Endotelio Vascular/citología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Interleucina-6/farmacología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Neointima/patología , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/fisiología , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Quimera por Radiación , Receptores Tipo I de Factores de Necrosis Tumoral/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Proteínas Recombinantes/farmacología , Transducción de Señal , Trombofilia/etiología , Trombofilia/fisiopatología , Andamios del Tejido , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/deficiencia , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología , Venas/trasplante
17.
Gastroenterology ; 145(2): 407-15, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23619146

RESUMEN

BACKGROUND & AIMS: Tight junction dysregulation and epithelial damage contribute to barrier loss in patients with inflammatory bowel disease. However, the mechanisms that regulate these processes and their relative contributions to disease pathogenesis are not completely understood. We investigated these processes using colitis models in mice. METHODS: We induced colitis by adoptive transfer of CD4(+)CD45RB(hi) cells or administration of dextran sulfate sodium to mice, including those deficient in tumor necrosis factor receptor (TNFR) 1, TNFR2, or the long isoform of myosin light chain kinase (MLCK). Intestinal tissues and isolated epithelial cells were analyzed by immunoblot, immunofluorescence, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction assays. RESULTS: Induction of immune-mediated colitis by CD4(+)CD45RB(hi) adoptive transfer increased intestinal permeability, epithelial expression of claudin-2, the long isoform of MLCK, and TNFR2 (but not TNFR1) and phosphorylation of the myosin II light chain. Long MLCK upregulation, myosin II light chain phosphorylation, barrier loss, and weight loss were attenuated in TNFR2(-/-) , but not TNFR1(-/-) , recipients of wild-type CD4(+)CD45RB(hi) cells. Similarly, long MLCK(-/-) mice had limited increases in myosin II light chain phosphorylation, claudin-2 expression, and intestinal permeability and delayed onset of adoptive transfer-induced colitis. However, coincident with onset of epithelial apoptosis, long MLCK(-/-) mice ultimately developed colitis. This indicates that disease progresses via apoptosis in the absence of MLCK-dependent tight junction regulation. In support of this conclusion, long MLCK(-/-) mice were not protected from epithelial apoptosis-mediated, damage-dependent dextran sulfate sodium colitis. CONCLUSIONS: In immune-mediated inflammatory bowel disease models, TNFR2 signaling increases long MLCK expression, resulting in tight junction dysregulation, barrier loss, and induction of colitis. At advanced stages, colitis progresses by apoptosis and mucosal damage that result in tight junction- and MLCK-independent barrier loss. Therefore, barrier loss in immune-mediated colitis occurs via two temporally and morphologically distinct mechanisms. Differential targeting of these mechanisms can lead to improved inflammatory bowel disease therapies.


Asunto(s)
Colitis/fisiopatología , Células Epiteliales/fisiología , Mucosa Intestinal/fisiopatología , Quinasa de Cadena Ligera de Miosina/fisiología , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Uniones Estrechas/fisiología , Traslado Adoptivo , Animales , Apoptosis/fisiología , Claudina-2/metabolismo , Colitis/inmunología , Colitis/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Permeabilidad , Fosforilación , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal , Uniones Estrechas/metabolismo , Regulación hacia Arriba , Pérdida de Peso
18.
Toxicol Appl Pharmacol ; 276(2): 121-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24582689

RESUMEN

BACKGROUND AND PURPOSE: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. EXPERIMENTAL APPROACH: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR1, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR1 was suppressed with its siRNA. The protein levels of TNFα, TNFR1 and caspase-12 were assayed using Western blotting. KEY RESULTS: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR1, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR1-siRNA interference. CONCLUSIONS AND IMPLICATIONS: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage.


Asunto(s)
Antibacterianos/toxicidad , Apoptosis/efectos de los fármacos , Condrocitos/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Ofloxacino/toxicidad , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Envejecimiento , Animales , Caspasa 12/análisis , Células Cultivadas , Condrocitos/patología , Perros , Relación Dosis-Respuesta a Droga , ARN Mensajero/análisis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética
19.
Brain Behav Immun ; 41: 65-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24938671

RESUMEN

Patients suffering from neuropathic pain have a higher incidence of mood disorders such as depression. Increased expression of tumor necrosis factor (TNF) has been reported in neuropathic pain and depressive-like conditions and most of the pro-inflammatory effects of TNF are mediated by the TNF receptor 1 (TNFR1). Here we sought to investigate: (1) the occurrence of depressive-like behavior in chronic neuropathic pain and the associated forms of hippocampal plasticity, and (2) the involvement of TNFR1-mediated TNF signaling as a possible regulator of such events. Neuropathic pain was induced by chronic constriction injury of the sciatic nerve in wild-type and TNFR1(-/-) mice. Anhedonia, weight loss and physical state were measured as symptoms of depression. Hippocampal neurogenesis, neuroplasticity, myelin remodeling and TNF/TNFRs expression were analyzed by immunohistochemical analysis and western blot assay. We found that neuropathic pain resulted in the development of depressive symptoms in a time dependent manner and was associated with profound hippocampal alterations such as impaired neurogenesis, reduced expression of neuroplasticity markers and myelin proteins. The onset of depressive-like behavior also coincided with increased hippocampal levels of TNF, and decreased expression of TNF receptor 2 (TNFR2), which were all fully restored after mice spontaneously recovered from pain. Notably, TNFR1(-/-) mice did not develop depressive-like symptoms after injury, nor were there changes in hippocampal neurogenesis and plasticity. Our data show that neuropathic pain induces a cluster of depressive-like symptoms and profound hippocampal plasticity that are dependent on TNF signaling through TNFR1.


Asunto(s)
Depresión/etiología , Hipocampo/patología , Neuralgia/fisiopatología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Ciática/fisiopatología , Transducción de Señal/fisiología , Anhedonia/fisiología , Animales , Corticosterona/sangre , Depresión/fisiopatología , Conducta de Ingestión de Líquido/fisiología , Conducta Exploratoria/fisiología , Preferencias Alimentarias/fisiología , Calor/efectos adversos , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuralgia/patología , Neuralgia/psicología , Presión/efectos adversos , Receptores del Factor de Necrosis Tumoral/biosíntesis , Receptores del Factor de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/deficiencia , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Nervio Ciático/lesiones , Ciática/patología , Ciática/psicología , Método Simple Ciego , Factor de Necrosis Tumoral alfa/fisiología
20.
J Physiol ; 591(15): 3709-23, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23753529

RESUMEN

Tumour necrosis factor-α (TNF-α) has been reported to play a central role in intestinal barrier dysfunction in many diseases; however, the precise role of the TNF-α receptors (TNFRs) has not been well defined using in vivo models. Our previous data showed that enteral nutrient deprivation or total parenteral nutrition (TPN) led to a loss of intestinal epithelial barrier function (EBF), with an associated upregulation of TNF-α and TNFR1. In this study, we hypothesized that TNF-α plays an important role in TPN-associated EBF dysfunction. Using a mouse TPN model, we explored the relative roles of TNFR1 vs. TNFR2 in mediating this barrier loss. C57/BL6 mice underwent intravenous cannulation and were given enteral nutrition or TPN for 7 days. Tumour necrosis factor-α receptor knockout (KO) mice, including TNFR1KO, TNFR2KO or TNFR1R2 double KO (DKO), were used. Outcomes included small intestine transepithelial resistance (TER) and tracer permeability, junctional protein zonula occludens-1, occludin, claudins and E-cadherin expression. In order to address the dependence of EBF on TNF-α further, exogenous TNF-α and pharmacological blockade of TNF-α (Etanercept) were also performed. Total parenteral nutrition led to a loss of EBF, and this was almost completely prevented in TNFR1R2DKO mice and partly prevented in TNFR1KO mice but not in TNFR2KO mice. The TPN-associated downregulation of junctional protein expression and junctional assembly was almost completely prevented in the TNFR1R2DKO group. Blockade of TNF-α also prevented dysfunction of the EBF and junctional protein losses in mice undergoing TPN. Administration of TPN upregulated the downstream nuclear factor-B and myosin light-chain kinase (MLCK) signalling, and these changes were almost completely prevented in TNFR1R2DKO mice, as well as with TNF-α blockade, but not in TNFR1KO or TNFR2KO TPN groups. Tumour necrosis factor-α is a critical factor for TPN-associated epithelial barrier dysfunction, and both TNFR1 and TNFR2 are involved in EBF loss. Nuclear factor-B and MLCK signalling appear to be important downstream mediators involved in this TNF-α signalling process.


Asunto(s)
Mucosa Intestinal/fisiopatología , Nutrición Parenteral Total/efectos adversos , Receptores Tipo II del Factor de Necrosis Tumoral/fisiología , Receptores Tipo I de Factores de Necrosis Tumoral/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Etanercept , Inmunoglobulina G/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/fisiología , FN-kappa B/fisiología , Receptores del Factor de Necrosis Tumoral , Transducción de Señal , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA