Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Nature ; 613(7943): 324-331, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599989

RESUMEN

Pathogens generate ubiquitous selective pressures and host-pathogen interactions alter social behaviours in many animals1-4. However, very little is known about the neuronal mechanisms underlying pathogen-induced changes in social behaviour. Here we show that in adult Caenorhabditis elegans hermaphrodites, exposure to a bacterial pathogen (Pseudomonas aeruginosa) modulates sensory responses to pheromones by inducing the expression of the chemoreceptor STR-44 to promote mating. Under standard conditions, C. elegans hermaphrodites avoid a mixture of ascaroside pheromones to facilitate dispersal5-13. We find that exposure to the pathogenic Pseudomonas bacteria enables pheromone responses in AWA sensory neurons, which mediate attractive chemotaxis, to suppress the avoidance. Pathogen exposure induces str-44 expression in AWA neurons, a process regulated by a transcription factor zip-5 that also displays a pathogen-induced increase in expression in AWA. STR-44 acts as a pheromone receptor and its function in AWA neurons is required for pathogen-induced AWA pheromone response and suppression of pheromone avoidance. Furthermore, we show that C. elegans hermaphrodites, which reproduce mainly through self-fertilization, increase the rate of mating with males after pathogen exposure and that this increase requires str-44 in AWA neurons. Thus, our results uncover a causal mechanism for pathogen-induced social behaviour plasticity, which can promote genetic diversity and facilitate adaptation of the host animals.


Asunto(s)
Caenorhabditis elegans , Feromonas , Pseudomonas aeruginosa , Reproducción , Conducta Sexual Animal , Animales , Femenino , Masculino , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Glucolípidos/metabolismo , Organismos Hermafroditas/fisiología , Feromonas/metabolismo , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Receptores de Feromonas/metabolismo , Reproducción/fisiología , Células Receptoras Sensoriales/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(20): e2221166120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155838

RESUMEN

Pheromone communication is an essential component of reproductive isolation in animals. As such, evolution of pheromone signaling can be linked to speciation. For example, the evolution of sex pheromones is thought to have played a major role in the diversification of moths. In the crop pests Spodoptera littoralis and S. litura, the major component of the sex pheromone blend is (Z,E)-9,11-tetradecadienyl acetate, which is lacking in other Spodoptera species. It indicates that a major shift occurred in their common ancestor. It has been shown recently in S. littoralis that this compound is detected with high specificity by an atypical pheromone receptor, named SlitOR5. Here, we studied its evolutionary history through functional characterization of receptors from different Spodoptera species. SlitOR5 orthologs in S. exigua and S. frugiperda exhibited a broad tuning to several pheromone compounds. We evidenced a duplication of OR5 in a common ancestor of S. littoralis and S. litura and found that in these two species, one duplicate is also broadly tuned while the other is specific to (Z,E)-9,11-tetradecadienyl acetate. By using ancestral gene resurrection, we confirmed that this narrow tuning evolved only in one of the two copies issued from the OR5 duplication. Finally, we identified eight amino acid positions in the binding pocket of these receptors whose evolution has been responsible for narrowing the response spectrum to a single ligand. The evolution of OR5 is a clear case of subfunctionalization that could have had a determinant impact in the speciation process in Spodoptera species.


Asunto(s)
Mariposas Nocturnas , Atractivos Sexuales , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Atractivos Sexuales/metabolismo , Spodoptera/genética , Feromonas/genética , Feromonas/metabolismo
3.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38649162

RESUMEN

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Receptores Odorantes , Roedores , Órgano Vomeronasal , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Roedores/genética , Olfato/genética , Gusto/genética , Órgano Vomeronasal/metabolismo
4.
Annu Rev Genet ; 51: 311-333, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28876981

RESUMEN

Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.


Asunto(s)
Bacillus/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Feromonas/genética , Receptores de Feromonas/genética , Streptococcus/genética , Bacillus/clasificación , Bacillus/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , Feromonas/metabolismo , Filogenia , Percepción de Quorum/genética , Receptores de Feromonas/metabolismo , Transducción de Señal , Streptococcus/clasificación , Streptococcus/metabolismo , Relación Estructura-Actividad , Transactivadores/genética , Transactivadores/metabolismo
5.
Cell Mol Life Sci ; 81(1): 259, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878072

RESUMEN

Sex pheromones play crucial role in mating behavior of moths, involving intricate recognition mechanisms. While insect chemical biology has extensively studied type I pheromones, type II pheromones remain largely unexplored. This study focused on Helicoverpa armigera, a representative species of noctuid moth, aiming to reassess its sex pheromone composition. Our research unveiled two previously unidentified candidate type II sex pheromones-3Z,6Z,9Z-21:H and 3Z,6Z,9Z-23:H-in H. armigera. Furthermore, we identified HarmOR11 as an orphan pheromone receptor of 3Z,6Z,9Z-21:H. Through AlphaFold2 structural prediction, molecular docking, and molecular dynamics simulations, we elucidated the structural basis and key residues governing the sensory nuances of both type I and type II pheromone receptors, particularly HarmOR11 and HarmOR13. This study not only reveals the presence and recognition of candidate type II pheromones in a noctuid moth, but also establishes a comprehensive structural framework for PRs, contributing to the understanding of connections between evolutionary adaptations and the emergence of new pheromone types.


Asunto(s)
Mariposas Nocturnas , Receptores de Feromonas , Atractivos Sexuales , Animales , Atractivos Sexuales/metabolismo , Atractivos Sexuales/química , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/fisiología , Receptores de Feromonas/metabolismo , Receptores de Feromonas/genética , Masculino , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Femenino , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Filogenia , Simulación de Dinámica Molecular , Conducta Sexual Animal/fisiología
6.
Cell Mol Life Sci ; 80(8): 199, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37421463

RESUMEN

Male moths utilize their pheromone communication systems to distinguish potential mates from other sympatric species, which contributes to maintaining reproductive isolation and even drives speciation. The molecular mechanisms underlying the evolution of pheromone communication systems are usually studied between closely-related moth species for their similar but divergent traits associated with pheromone production, detection, and/or processing. In this study, we first identified the functional differentiation in two orthologous pheromone receptors, OR14b, and OR16, in four Helicoverpa species, Helicoverpa armigera, H. assulta, H. zea, and H. gelotopoeon. To understand the substrate response specificity of these two PRs, we performed all-atom molecular dynamics simulations of OR14b and OR16 based on AlphaFold2 structural prediction, and molecular docking, allowing us to predict a few key amino acids involved in substrate binding. These candidate residues were further tested and validated by site-directed mutagenesis and functional analysis. These results together identified two hydrophobic amino acids at positions 164 and 232 are the determinants of the response specificity of HarmOR14b and HzeaOR14b to Z9-14:Ald and Z9-16:Ald by directly interacting with the substrates. Interestingly, in OR16 orthologs, we found that position 66 alone determines the specific binding of Z11-16:OH, likely via allosteric interactions. Overall, we have developed an effective integrated method to identify the critical residues for substrate selectivity of ORs and elucidated the molecular mechanism of the diversification of pheromone recognition systems.


Asunto(s)
Mariposas Nocturnas , Receptores de Feromonas , Animales , Masculino , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Simulación del Acoplamiento Molecular , Feromonas/genética , Feromonas/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo
7.
Genes Dev ; 30(19): 2226-2239, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798845

RESUMEN

Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone-GPCR (G-protein-coupled receptor)-MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell-cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Feromonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Comunicación Autocrina/fisiología , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo
8.
Cell ; 133(7): 1255-1265, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585358

RESUMEN

Detection of volatile odorants by olfactory neurons is thought to result from direct activation of seven-transmembrane odorant receptors by odor molecules. Here, we show that detection of the Drosophila pheromone, 11-cis vaccenyl acetate (cVA), is instead mediated by pheromone-induced conformational shifts in the extracellular pheromone-binding protein, LUSH. We show that LUSH undergoes a pheromone-specific conformational change that triggers the firing of pheromone-sensitive neurons. Amino acid substitutions in LUSH that are predicted to reduce or enhance the conformational shift alter sensitivity to cVA as predicted in vivo. One substitution, LUSH(D118A), produces a dominant-active LUSH protein that stimulates T1 neurons through the neuronal receptor components Or67d and SNMP in the complete absence of pheromone. Structural analysis of LUSH(D118A) reveals that it closely resembles cVA-bound LUSH. Therefore, the pheromone-binding protein is an inactive, extracellular ligand converted by pheromone molecules into an activator of pheromone-sensitive neurons and reveals a distinct paradigm for detection of odorants.


Asunto(s)
Drosophila melanogaster/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Atractivos Sexuales/metabolismo , Acetatos/química , Acetatos/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Modelos Moleculares , Ácidos Oléicos/química , Ácidos Oléicos/metabolismo , Neuronas Receptoras Olfatorias/química , Feromonas/química , Feromonas/metabolismo , Conformación Proteica , Receptores de Superficie Celular/metabolismo , Receptores Odorantes/genética , Receptores de Feromonas/metabolismo
9.
PLoS Genet ; 16(6): e1008622, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32520935

RESUMEN

Insect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways. Loss of Bmdsx gene expression significantly reduced the peripheral perception of the major pheromone component bombykol by reducing expression of the product of the BmOR1 gene which completely blocked courtship in adult males. Interestingly, we found that mating behavior was regulated independently by another sexual differentiation gene, Bmfru. Loss of Bmfru completely blocked mating, but males displayed normal courtship behavior. Lack of Bmfru expression significantly reduced the perception of the minor pheromone component bombykal due to the down regulation of BmOR3 expression; further, functional analysis revealed that loss of the product of BmOR3 played a key role in terminating male mating behavior. Our results suggest that Bmdsx and Bmfru are at the base of the two primary pathways that regulate olfactory-based sexual behavior.


Asunto(s)
Bombyx/genética , Genes de Insecto , Preferencia en el Apareamiento Animal , Atractivos Sexuales/metabolismo , Procesos de Determinación del Sexo/genética , Animales , Bombyx/metabolismo , Bombyx/fisiología , Femenino , Masculino , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Atractivos Sexuales/genética , Olfato
10.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026387

RESUMEN

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Asunto(s)
Candida albicans , Genes del Tipo Sexual de los Hongos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes del Tipo Sexual de los Hongos/genética , Feromonas/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Reproducción
11.
PLoS Biol ; 17(5): e2006619, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112532

RESUMEN

The Drosophila wing was proposed to be a taste organ more than 35 years ago, but there has been remarkably little study of its role in chemoreception. We carry out a differential RNA-seq analysis of a row of sensilla on the anterior wing margin and find expression of many genes associated with pheromone and chemical perception. To ask whether these sensilla might receive pheromonal input, we devised a dye-transfer paradigm and found that large, hydrophobic molecules comparable to pheromones can be transferred from one fly to the wing margin of another. One gene, Ionotropic receptor (IR)52a, is coexpressed in neurons of these sensilla with fruitless, a marker of sexual circuitry; IR52a is also expressed in legs. Mutation of IR52a and optogenetic silencing of IR52a+ neurons decrease levels of male sexual behavior. Optogenetic activation of IR52a+ neurons induces males to show courtship toward other males and, remarkably, toward females of another species. Surprisingly, IR52a is also required in females for normal sexual behavior. Optogenetic activation of IR52a+ neurons in mated females induces copulation, which normally occurs at very low levels. Unlike other chemoreceptors that act in males to inhibit male-male interactions and promote male-female interactions, IR52a acts in both males and females, and can promote male-male as well as male-female interactions. Moreover, IR52a+ neurons can override the circuitry that normally suppresses sexual behavior toward unproductive targets. Circuit mapping and Ca2+ imaging using the trans-Tango system reveals second-order projections of IR52a+ neurons in the subesophageal zone (SEZ), some of which are sexually dimorphic. Optogenetic activation of IR52a+ neurons in the wing activates second-order projections in the SEZ. Taken together, this study provides a molecular description of the chemosensory sensilla of a greatly understudied taste organ and defines a gene that regulates the sexual circuitry of the fly.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de Feromonas/metabolismo , Sensilos/metabolismo , Alas de Animales/metabolismo , Animales , Proteínas de Drosophila/genética , Femenino , Silenciador del Gen , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Masculino , Neuronas/metabolismo , Optogenética , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Gusto/fisiología
12.
PLoS Biol ; 17(1): e3000101, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668560

RESUMEN

In fungi, mating between partners depends on the molecular recognition of two peptidyl mating pheromones by their respective receptors. The fission yeast Schizosaccharomyces pombe (Sp) has two mating types, Plus (P) and Minus (M). The mating pheromones P-factor and M-factor, secreted by P and M cells, are recognized by the receptors mating type auxiliary minus 2 (Mam2) and mating type auxiliary plus 3 (Map3), respectively. Our recent study demonstrated that a few mutations in both M-factor and Map3 can trigger reproductive isolation in S. pombe. Here, we explored the mechanism underlying reproductive isolation through genetic changes of pheromones/receptors in nature. We investigated the diversity of genes encoding the pheromones and their receptor in 150 wild S. pombe strains. Whereas the amino acid sequences of M-factor and Map3 were completely conserved, those of P-factor and Mam2 were very diverse. In addition, the P-factor gene contained varying numbers of tandem repeats of P-factor (4-8 repeats). By exploring the recognition specificity of pheromones between S. pombe and its close relative Schizosaccharomyces octosporus (So), we found that So-M-factor did not have an effect on S. pombe P cells, but So-P-factor had a partial effect on S. pombe M cells. Thus, recognition of M-factor seems to be stringent, whereas that of P-factor is relatively relaxed. We speculate that asymmetric diversification of the two pheromones might be facilitated by the distinctly different specificities of the two receptors. Our findings suggest that M-factor communication plays an important role in defining the species, whereas P-factor communication is able to undergo a certain degree of flexible adaptation-perhaps as a first step toward prezygotic isolation in S. pombe.


Asunto(s)
Genes del Tipo Sexual de los Hongos/fisiología , Péptidos/genética , Receptores de Feromonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos/genética , Proteínas de Unión al ADN , Genes Fúngicos/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meiosis , Mutación , Péptidos/metabolismo , Feromonas/genética , Feromonas/metabolismo , Receptores de Feromonas/genética , Receptores de Feromonas/fisiología , Reproducción , Aislamiento Reproductivo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Arch Microbiol ; 202(10): 2671-2678, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32719947

RESUMEN

Pheromone receptor-like genes (PRLGs) belong to the G protein-coupled receptors (GPCRs) family that interacts with biotic and abiotic stimulants and transmits signals to intracellular downstream pathways in eukaryotic cells. In this study, we investigated the structure and expressions patterns of PRLGs in Winter Mushroom Flammulina filiformis. Based on the alignment analysis, the structure of PRLGs was found conserved in F. filiformis strains expect few single-nucleotide polymorphism (SNP) sites. Six PRLGs were found at five different unlinked loci, scattered in the genomes of F. filiformis strains. These genes contain 2-5 introns; however, the introns were not found in the same relative positions regarding the encoded protein sequences in tested strains of F. filiformis. Three conserved motifs were identified in peptides structures of PRLGs, however, FfSte3.s6 contained only two types, suggests its difference in evolution and function. We have further analyzed the expression patterns of each PRLGs in different developmental stages of the fruiting body in F. filiformis by quantitative real-time polymerase chain reaction (qRT-PCR). The results exhibited expression variation of PRLGs at different developmental stages of the F. filiformis. Especially, FfSte3.s1 and FfSte3.s2 exhibited maximum expression level in mycelia stage. Other PRLGs exhibited high expression level in fruiting body stages. This study suggests that PRLGs could be vital genes involving in fruiting body development in F. filiformis. However, further studies could be performed to reveal their specific functional pathways in the fruiting body development.


Asunto(s)
Flammulina/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Receptores de Feromonas/genética , Secuencia de Aminoácidos , Flammulina/crecimiento & desarrollo , Flammulina/metabolismo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Micelio/genética , Micelio/crecimiento & desarrollo , Receptores de Feromonas/metabolismo
14.
Mol Biol Evol ; 35(12): 2928-2939, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252081

RESUMEN

Pheromones are crucial for eliciting social and sexual behaviors in diverse animal species. The vomeronasal receptor type-1 (V1R) genes, encoding members of a pheromone receptor family, are highly variable in number and repertoire among mammals due to extensive gene gain and loss. Here, we report a novel pheromone receptor gene belonging to the V1R family, named ancient V1R (ancV1R), which is shared among most Osteichthyes (bony vertebrates) from the basal lineage of ray-finned fishes to mammals. Phylogenetic and syntenic analyses of ancV1R using 115 vertebrate genomes revealed that it represents an orthologous gene conserved for >400 My of vertebrate evolution. Interestingly, the loss of ancV1R in some tetrapods is coincident with the degeneration of the vomeronasal organ in higher primates, cetaceans, and some reptiles including birds and crocodilians. In addition, ancV1R is expressed in most mature vomeronasal sensory neurons in contrast with canonical V1Rs, which are sparsely expressed in a manner that is consistent with the "one neuron-one receptor" rule. Our results imply that a previously undescribed V1R gene inherited from an ancient Silurian ancestor may have played an important functional role in the evolution of vertebrate vomeronasal organ.


Asunto(s)
Evolución Biológica , Receptores de Feromonas/genética , Células Receptoras Sensoriales/metabolismo , Vertebrados/genética , Órgano Vomeronasal/metabolismo , Animales , Humanos , Receptores de Feromonas/metabolismo , Selección Genética , Homología de Secuencia , Vertebrados/metabolismo
15.
Cell Tissue Res ; 378(3): 485-497, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31321488

RESUMEN

In insects, male and female pheromone signals are detected by olfactory sensory neurons (OSNs) expressing the "sensory neuron membrane protein type 1". SNMP1 is supposed to function as a co-receptor involved in the transfer of pheromones to adjacent pheromone receptors. In the moth Heliothis virescens, we previously found OSNs that project their dendrites into pheromone-responsive trichoid sensilla and are associated with cells containing transcripts for the HvirSNMP1-related protein HvirSNMP2. Like HvirSNMP1, HvirSNMP2 belongs to the CD36-family of two-transmembrane domain receptors and transporters for lipophilic compounds, but its role in the olfactory system is unknown. Here, we generated polyclonal anti-peptide antibodies against HvirSNMP2 as well as HvirSNMP1 and conducted an in-depth immunohistochemical analysis of their subcellular localization in the antenna of both sexes. In line with a function in pheromone detection, HvirSNMP1 was immunodetected in the somata and the dendrites of distinct OSNs in subsets of trichoid sensilla. These trichoid sensilla contained only one α-SNMP1-positive OSN in males and clusters of 2-3 labeled cells in females. In contrast, experiments with α-SNMP2-antibodies revealed a broad labeling of non-neuronal support cells (SCs) that are associated with OSNs in likely all trichoid and basiconic sensilla of the antenna with no differences between sexes. Detailed confocal microscope examinations of olfactory sensilla revealed SNMP2-like immunoreactivity close to the apical membrane of SCs and interestingly inside the sensillum. Together, these findings indicate a potential function of SNMP2 in pheromone- as well as general odorant-responsive sensilla and a role fundamentally different from SNMP1.


Asunto(s)
Antígenos CD36/metabolismo , Proteínas de Insectos/metabolismo , Lepidópteros/metabolismo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Feromonas/metabolismo , Sensilos/metabolismo , Animales , Femenino , Masculino , Neuronas Receptoras Olfatorias/citología
16.
Org Biomol Chem ; 18(1): 36-40, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31781713

RESUMEN

Identification of pheromone receptors plays a central role for uncovering signaling pathways that underlie chemical communication in animals. Here, we describe the synthesis and bioactivity of photoaffinity probes for the ascaroside ascr#8, a sex-pheromone of the model nematode, Caenorhabditis elegans. Structure-activity studies guided incorporation of alkyne- and diazirine-moieties and revealed that addition of functionality in the sidechain of ascr#8 was well tolerated, whereas modifications to the ascarylose moiety resulted in loss of biological activity. Our study will guide future probe design and provides a basis for pheromone receptor identification via photoaffinity labeling in C. elegans.


Asunto(s)
Caenorhabditis elegans/química , Nematodos/química , Etiquetas de Fotoafinidad/química , Receptores de Feromonas/análisis , Animales , Estructura Molecular , Etiquetas de Fotoafinidad/síntesis química , Receptores de Feromonas/metabolismo
17.
Pestic Biochem Physiol ; 158: 69-76, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31378363

RESUMEN

Sex pheromones are crucial for communication between females and males in moths, and pheromone receptors (PRs) play a key role in peripheral coding of sex pheromones. During the last decade, many PR candidates have been identified based on transcriptome sequencing and bioinformatic analysis, but their detailed functions remain mostly unknown. Here, focusing on four PR candidates of Athetis dissimilis (AdisOR1, AdisOR6, AdisOR11 and AdisOR14) identified in a previous study, we first cloned the full-length cDNAs and determined the tissue expression profiles by quantitative real-time PCR (qPCR). The results revealed that expression of three of these genes were male antennae-specific, while AdisOR11 was similar in expression between male and female antennae. Furthermore, the expression level of AdisOR1 was much higher than those of the other three genes. Then, functional analysis was conducted using Xenopus oocyte system. AdisOR1 responded strongly to the sex pheromone component Z9-14:OH and the potential pheromone component Z9,E12-14:OH, suggesting its important role in the sex pheromone perception; AdisOR14 showed specificity for Z9,E12-14:OH; while AdisOR6 and AdisOR11 did not respond to any of the pheromone components and analogs tested. Taken together, this study contributes to elucidate the molecular mechanism of sex pheromone reception and provides potential targets for development of OR based pest control techniques in A. dissimilis.


Asunto(s)
Proteínas de Insectos/metabolismo , Lepidópteros/metabolismo , Receptores de Feromonas/metabolismo , Animales , Femenino , Proteínas de Insectos/genética , Lepidópteros/genética , Masculino , Feromonas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Feromonas/genética
18.
Mol Biol Evol ; 34(11): 2733-2746, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126322

RESUMEN

Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to ß-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles.


Asunto(s)
Lepidópteros/genética , Receptores de Feromonas/genética , Atractivos Sexuales/genética , Animales , Proteínas Portadoras/metabolismo , Evolución Molecular , Células HEK293/metabolismo , Humanos , Cetonas/metabolismo , Mariposas Nocturnas/genética , Feromonas/metabolismo , Filogenia , Sesquiterpenos Policíclicos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores de Feromonas/metabolismo , Sesquiterpenos/metabolismo , Atractivos Sexuales/metabolismo
19.
PLoS Comput Biol ; 13(2): e1005386, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207738

RESUMEN

The ability to detect a chemical gradient is fundamental to many cellular processes. In multicellular organisms gradient sensing plays an important role in many physiological processes such as wound healing and development. Unicellular organisms use gradient sensing to move (chemotaxis) or grow (chemotropism) towards a favorable environment. Some cells are capable of detecting extremely shallow gradients, even in the presence of significant molecular-level noise. For example, yeast have been reported to detect pheromone gradients as shallow as 0.1 nM/µm. Noise reduction mechanisms, such as time-averaging and the internalization of pheromone molecules, have been proposed to explain how yeast cells filter fluctuations and detect shallow gradients. Here, we use a Particle-Based Reaction-Diffusion model of ligand-receptor dynamics to test the effectiveness of these mechanisms and to determine the limits of gradient sensing. In particular, we develop novel simulation methods for establishing chemical gradients that not only allow us to study gradient sensing under steady-state conditions, but also take into account transient effects as the gradient forms. Based on reported measurements of reaction rates, our results indicate neither time-averaging nor receptor endocytosis significantly improves the cell's accuracy in detecting gradients over time scales associated with the initiation of polarized growth. Additionally, our results demonstrate the physical barrier of the cell membrane sharpens chemical gradients across the cell. While our studies are motivated by the mating response of yeast, we believe our results and simulation methods will find applications in many different contexts.


Asunto(s)
Membrana Celular/metabolismo , Quimiotaxis/fisiología , Modelos Biológicos , Feromonas/farmacocinética , Receptores de Feromonas/metabolismo , Saccharomyces cerevisiae/fisiología , Membrana Celular/química , Quimiotaxis/efectos de los fármacos , Simulación por Computador , Difusión , Modelos Químicos , Modelos Estadísticos , Feromonas/química , Receptores de Feromonas/química , Saccharomyces cerevisiae/química
20.
J Insect Sci ; 18(5)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247742

RESUMEN

Sex pheromone communication in Lepidoptera has long been a valuable model system for studying fundamental aspects of olfaction and its study has led to the establishment of environmental-friendly pest control strategies. The cabbage moth, Mamestra brassicae (Linnaeus) (Lepidoptera: Noctuidae), is a major pest of Cruciferous vegetables in Europe and Asia. Its sex pheromone has been characterized and is currently used as a lure to trap males; however, nothing is known about the molecular mechanisms of sex pheromone reception in male antennae. Using homology cloning and rapid amplification of cDNA ends-PCR strategies, we identified the first candidate pheromone receptor in this species. The transcript was specifically expressed in the antennae with a strong male bias. In situ hybridization experiments within the antennae revealed that the receptor-expressing cells were closely associated with the olfactory structures, especially the long trichoid sensilla known to be pheromone-sensitive. The deduced protein is predicted to adopt a seven-transmembrane structure, a hallmark of insect odorant receptors, and phylogenetically clustered in a clade that grouped a majority of the Lepidoptera pheromone receptors characterized to date. Taken together, our data support identification of a candidate pheromone receptor and provides a basis for better understanding how this species detects a signal critical for reproduction.


Asunto(s)
Antenas de Artrópodos/metabolismo , Proteínas de Insectos/genética , Mariposas Nocturnas/genética , Receptores de Feromonas/genética , Atractivos Sexuales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Insectos/metabolismo , Masculino , Mariposas Nocturnas/metabolismo , Filogenia , Receptores de Feromonas/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA