Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
PLoS Biol ; 17(8): e3000371, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31433808

RESUMEN

Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino-acid insert within the TM3-TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission.


Asunto(s)
Células del Asta Posterior/metabolismo , Receptores de Glicina/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glicina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Fosforilación , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/fisiología , Receptores de Glicina/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Columna Vertebral/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
2.
Reproduction ; 159(1): 41, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689234

RESUMEN

Oviduct fluid is essential for the fertilization and subsequent preimplantation development. Glycine is abundant in oviduct fluid and is reported to be critical for preimplantation development of fertilized eggs in mammals. However, the mechanism by which glycine exerts its action on fertilized eggs is yet to be understood. Here we show that glycine regulates the preimplantation development of mouse fertilized eggs via glycine receptors. Among them, the alpha-4 subunit (Glra4) and the ß subunit are expressed in mouse fertilized eggs, and lacking Glra4 inhibits embryonic development to the blastocyst stage, decreases the number of cells in the blastocysts and the litter size. Thus, we identify a novel function of the glycine receptor, which is considered to act mainly as a neurotransmitter receptor, as a regulator of embryonic development and our data provide new insights into the interactions between oviduct milieu and mammalian fertilized egg.


Asunto(s)
Blastocisto/citología , Desarrollo Embrionario , Receptores de Glicina/fisiología , Cigoto/citología , Secuencia de Aminoácidos , Animales , Blastocisto/metabolismo , Femenino , Glicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Transcriptoma , Cigoto/metabolismo
3.
Alcohol Clin Exp Res ; 44(2): 445-454, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782155

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve- and alcohol-dependent rats. METHODS: We recorded intracellularly from CeA neurons of naïve- and alcohol-dependent rats, quantifying locally evoked GABAA receptor-mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence-induced changes in the effects of taurine. RESULTS: We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol-induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)-induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in eIPSP amplitude in neurons from naïve rats. CONCLUSIONS: These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Núcleo Amigdalino Central/efectos de los fármacos , Etanol/toxicidad , Neuronas GABAérgicas/efectos de los fármacos , Receptores de Glicina/agonistas , Taurina/uso terapéutico , Alcoholismo/fisiopatología , Animales , Núcleo Amigdalino Central/fisiología , Etanol/administración & dosificación , Neuronas GABAérgicas/fisiología , Exposición por Inhalación/efectos adversos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Taurina/farmacología
4.
J Physiol ; 597(8): 2269-2295, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776090

RESUMEN

KEY POINTS: The lateral superior olive (LSO), a brainstem hub involved in sound localization, integrates excitatory and inhibitory inputs from the ipsilateral and the contralateral ear, respectively. In gerbils and rats, inhibition to the LSO reportedly shifts from GABAergic to glycinergic within the first three postnatal weeks. Surprisingly, we found no evidence for synaptic GABA signalling during this time window in mouse LSO principal neurons. However, we found that presynaptic GABAB Rs modulate Ca2+ influx into medial nucleus of the trapezoid body axon terminals, resulting in reduced synaptic strength. Moreover, GABA elicited strong responses in LSO neurons that were mediated by extrasynaptic GABAA Rs. RNA sequencing revealed highly abundant δ subunits, which are characteristic of extrasynaptic receptors. Whereas GABA increased the excitability of neonatal LSO neurons, it reduced the excitability around hearing onset. Collectively, GABA appears to control the excitability of mouse LSO neurons via extrasynaptic and presynaptic signalling. Thus, GABA acts as a modulator, rather than as a classical transmitter. ABSTRACT: GABA and glycine mediate fast inhibitory neurotransmission and are coreleased at several synapse types. Here we assessed the contribution of GABA and glycine in synaptic transmission between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO), two nuclei involved in sound localization. Whole-cell patch-clamp experiments in acute mouse brainstem slices at postnatal days (P) 4 and 11 during pharmacological blockade of GABAA receptors (GABAA Rs) and/or glycine receptors demonstrated no GABAergic synaptic component on LSO principal neurons. A GABAergic component was absent in evoked inhibitory postsynaptic currents and miniature events. Coimmunofluorescence experiments revealed no codistribution of the presynaptic GABAergic marker GAD65/67 with gephyrin, a postsynaptic marker for GABAA Rs, corroborating the conclusion that GABA does not act synaptically in the mouse LSO. Imaging experiments revealed reduced Ca2+ influx into MNTB axon terminals following activation of presynaptic GABAB Rs. GABAB R activation reduced the synaptic strength at P4 and P11. GABA appears to act on extrasynaptic GABAA Rs as demonstrated by application of 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol, a δ-subunit-specific GABAA R agonist. RNA sequencing showed high mRNA levels for the δ-subunit in the LSO. Moreover, GABA transporters GAT-1 and GAT-3 appear to control extracellular GABA. Finally, we show an age-dependent effect of GABA on the excitability of LSO neurons. Whereas tonic GABA increased the excitability at P4, leading to spike facilitation, it decreased the excitability at P11 via shunting inhibition through extrasynaptic GABAA Rs. Taken together, we demonstrate a modulatory role of GABA in the murine LSO, rather than a function as a classical synaptic transmitter.


Asunto(s)
Complejo Olivar Superior/fisiología , Cuerpo Trapezoide/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calcio/fisiología , Femenino , Glicina/fisiología , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Localización de Sonidos , Transmisión Sináptica
5.
J Biol Chem ; 293(36): 13889-13896, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-29941455

RESUMEN

Glycine receptors (GlyRs) are Cys-loop receptors that mediate fast synaptic inhibition in the brain stem and spinal cord. They are involved in the generation of motor rhythm, reflex circuit coordination, and sensory signal processing and therefore represent targets for therapeutic interventions. The extracellular domains (ECDs) of Cys-loop receptors typically contain many aromatic amino acids, but only those in the receptor binding pocket have been extensively studied. Here, we show that many Phe residues in the ECD that are not located in the binding pocket are also involved in GlyR function. We examined these Phe residues by creating several GlyR variants, characterizing these variants with the two-electrode voltage clamp technique in Xenopus oocytes, and interpreting changes in receptor parameters by using currently available structural information on the open and closed states of the GlyR. Substitution of six of the eight Phe residues in the ECD with Ala resulted in loss of function or significantly increased the EC50 and also altered the maximal response to the partial GlyR agonist taurine compared with glycine in those receptor variants that were functional. Substitutions with other amino acids, combined with examination of nearby residues that could potentially interact with these Phe residues, suggested interactions that could be important for GlyR function, and possibly similar interactions could contribute to the function of other members of the Cys-loop receptor family. Overall, our results suggest that many ECD regions are important for GlyR function and that these regions could inform the design of therapeutic agents targeting GlyR activity.


Asunto(s)
Fenilalanina/genética , Receptores de Glicina/genética , Sustitución de Aminoácidos , Animales , Humanos , Mutación con Pérdida de Función , Fenilalanina/fisiología , Unión Proteica/genética , Dominios Proteicos/genética , Ingeniería de Proteínas/métodos , Receptores de Glicina/fisiología , Taurina/metabolismo
6.
Cell Mol Life Sci ; 75(3): 447-465, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28791431

RESUMEN

Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.


Asunto(s)
Analgésicos/uso terapéutico , Descubrimiento de Drogas , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Terapia Molecular Dirigida/métodos , Receptores de Glicina/fisiología , Analgésicos/aislamiento & purificación , Animales , Drogas en Investigación , Humanos
7.
J Neurophysiol ; 120(2): 601-609, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718808

RESUMEN

Motor neuron (MN) development in early onset spasticity is poorly understood. For example, spastic cerebral palsy (sCP), the most common motor disability of childhood, is poorly predicted by brain imaging, yet research remains focused on the brain. By contrast, MNs, via the motor unit and neurotransmitter signaling, are the target of most therapeutic spasticity treatments and are the final common output of motor control. MN development in sCP is a critical knowledge gap, because the late embryonic and postnatal periods are not only when the supposed brain injury occurs but also are critical times for spinal cord neuromotor development. Using an animal model of early onset spasticity [ spa mouse (B6.Cg- Glrbspa/J) with a glycine (Gly) receptor mutation], we hypothesized that removal of effective glycinergic neurotransmitter inputs to MNs during development will influence MN pruning (including primary dendrites) and MN size. Spa (Glrb-/-) and wild-type (Glrb+/+) mice, ages 4-9 wk, underwent unilateral retrograde labeling of the tibialis anterior muscle MNs via peroneal nerve dip in tetramethylrhodamine. After 3 days, mice were euthanized and perfused with 4% paraformaldehyde, and the spinal cord was excised and processed for confocal imaging. Spa mice had ~61% fewer lumbar tibialis anterior MNs ( P < 0.01), disproportionately affecting larger MNs. Additionally, a ~23% reduction in tibialis anterior MN somal surface area ( P < 0.01) and a 12% increase in primary dendrites ( P = 0.046) were observed. Thus MN pruning and MN somal surface area are abnormal in early onset spasticity. Fewer and smaller MNs may contribute to the spastic phenotype. NEW & NOTEWORTHY Motor neuron (MN) development in early onset spasticity is poorly understood. In an animal model of early onset spasticity, spa mice, we found ~61% fewer lumbar tibialis anterior MNs compared with controls. This MN loss disproportionately affected larger MNs. Thus number and heterogeneity of the MN pool are decreased in spa mice, likely contributing to the spastic phenotype.


Asunto(s)
Parálisis Cerebral/fisiopatología , Neuronas Motoras/fisiología , Plasticidad Neuronal , Receptores de Glicina/fisiología , Médula Espinal/fisiopatología , Animales , Parálisis Cerebral/patología , Dendritas/patología , Modelos Animales de Enfermedad , Femenino , Región Lumbosacra , Masculino , Ratones Noqueados , Neuronas Motoras/patología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Receptores de Glicina/genética , Médula Espinal/patología , Transmisión Sináptica
8.
J Pharmacol Exp Ther ; 364(1): 70-76, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29118035

RESUMEN

The amino acid taurine is an endogenous ligand acting on glycine receptors (GlyRs), which is released by astrocytes in many brain regions, such as the nucleus accumbens and prefrontal cortex. Taurine is a partial agonist with an efficacy significantly lower than that of glycine. Allosteric modulators such as ethanol and isoflurane produce leftward shifts of glycine concentration-response curves but have no effects at saturating glycine concentrations. In contrast, in whole-cell electrophysiology studies these modulators increase the effects of saturating taurine concentrations. A number of possible mechanisms may explain these enhancing effects, including modulator effects on conductance, channel open times, or channel closed times. We used outside-out patch-clamp single channel electrophysiology to investigate the mechanism of action of 200 mM ethanol and 0.55 mM isoflurane in enhancing the effects of a saturating concentration of taurine. Neither modulator enhanced taurine-mediated conductance. Isoflurane increased the probability of channel opening. Isoflurane also increased the lifetimes of the two shortest open dwell times while both agents decreased the likelihood of occurrence of the longest-lived intracluster channel-closing events. The mechanism of enhancement of GlyR functioning by these modulators is dependent on the efficacy of the agonist activating the receptor and the concentration of agonist tested.


Asunto(s)
Etanol/administración & dosificación , Isoflurano/administración & dosificación , Receptores de Glicina/agonistas , Receptores de Glicina/fisiología , Taurina/administración & dosificación , Animales , Femenino , Humanos , Oocitos , Xenopus laevis
9.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30237241

RESUMEN

Unlike anoxia-intolerant mammals, painted turtles can survive extended periods without oxygen. This is partly accomplished by an anoxia-mediated increase in gamma-aminobutyric acid (GABA) release, which activates GABA receptors and mediates spike arrest in turtle neurons via shunting inhibition. Extracellular taurine levels also increase during anoxia; why this occurs is unknown but it is speculated that glycine and/or GABAA/B receptors are involved. Given the general importance of inhibitory neurotransmission in the anoxia-tolerant painted turtle brain, we investigated the function of taurine as an inhibitory neuromodulator in turtle pyramidal neurons. Using whole-cell patch-clamp electrophysiological methods to record from neurons within a cortical brain sheet, we found that taurine depolarized membrane potential by ∼8 mV, increased whole-cell conductance ∼2-fold, and induced an inward current that possessed characteristics similar to GABA- and glycine-evoked currents. These effects were mitigated following glycine receptor antagonism with strychnine and GABAA receptor antagonism with gabazine, bicuculine or picrotoxin, but were unchanged following GABAB or glutamatergic receptor inhibition. These data indicate that a high concentration of taurine in vitro mediates its effects through both glycine and GABAA receptors, and suggests that taurine, in addition to GABA, inhibits neuronal activity during anoxia in the turtle cortex.


Asunto(s)
Células Piramidales/fisiología , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Taurina/farmacología , Tortugas/fisiología , Potenciales de Acción/fisiología , Anaerobiosis , Animales , Técnicas de Placa-Clamp/veterinaria , Células Piramidales/efectos de los fármacos , Proteínas de Reptiles/fisiología
10.
J Physiol ; 595(15): 5285-5300, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28524260

RESUMEN

KEY POINTS: The nucleus accumbens (nAc) is involved in addiction-related behaviour caused by several drugs of abuse, including alcohol. Glycine receptors (GlyRs) are potentiated by ethanol and they have been implicated in the regulation of accumbal dopamine levels. We investigated the presence of GlyR subunits in nAc and their modulation by ethanol in medium spiny neurons (MSNs) of the mouse nAc. We found that the GlyR α1 subunit is preferentially expressed in nAc and is potentiated by ethanol. Our study shows that GlyR α1 in nAc is a new target for development of novel pharmacological tools for behavioural intervention in drug abuse. ABSTRACT: Alcohol abuse causes major social, economic and health-related problems worldwide. Alcohol, like other drugs of abuse, increases levels of dopamine in the nucleus accumbens (nAc), facilitating behavioural reinforcement and substance abuse. Previous studies suggested that glycine receptors (GlyRs) are involved in the regulation of accumbal dopamine levels. Here, we investigated the presence of GlyRs in accumbal dopamine receptor medium spiny neurons (MSNs) of C57BL/6J mice, analysing mRNA expression levels and immunoreactivity of GlyR subunits, as well as ethanol sensitivity. We found that GlyR α1 subunits are expressed at higher levels than α2, α3 and ß in the mouse nAc and were located preferentially in dopamine receptor 1 (DRD1)-positive MSNs. Interestingly, the glycine-evoked currents in dissociated DRD1-positive MSNs were potentiated by ethanol. Also, the potentiation of the GlyR-mediated tonic current by ethanol suggests that they modulate the excitability of DRD1-positive MSNs in nAc. This study should contribute to understanding the role of GlyR α1 in the reward system and might help to develop novel pharmacological therapies to treat alcoholism and other addiction-related and compulsive behaviours.


Asunto(s)
Etanol/farmacología , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Receptores de Glicina/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Glicina/farmacología , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Núcleo Accumbens/fisiología , Subunidades de Proteína/fisiología
11.
Curr Opin Clin Nutr Metab Care ; 20(4): 237-242, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28375879

RESUMEN

PURPOSE OF REVIEW: The review summarizes the recent literature on the role of glycine in skeletal muscle during times of stress. RECENT FINDINGS: Supplemental glycine protects muscle mass and function under pathological conditions. In addition, mitochondrial dysfunction in skeletal muscle leads to increased cellular serine and glycine production and activation of NADPH-generating pathways and glutathione metabolism. These studies highlight how glycine availability modulates cellular homeostasis and redox status. SUMMARY: Recent studies demonstrate that supplemental glycine effectively protects muscles in a variety of wasting models, including cancer cachexia, sepsis, and reduced caloric intake. The underlying mechanisms responsible for the effects of glycine remain unclear but likely involve receptor-mediated responses and modulation of intracellular metabolism. Future research to understand these mechanisms will provide insight into glycine's therapeutic potential. Our view is that glycine holds considerable promise for improving health by protecting muscles during different wasting conditions.


Asunto(s)
Glicina/metabolismo , Homeostasis/fisiología , Músculo Esquelético/metabolismo , Animales , Antiinflamatorios , Suplementos Dietéticos , Glicina/administración & dosificación , Humanos , Enfermedades Metabólicas/prevención & control , Ratones , Atrofia Muscular/metabolismo , Oxidación-Reducción , Receptores de Glicina/fisiología , Síndrome Debilitante/prevención & control
12.
Alcohol Clin Exp Res ; 41(11): 1816-1830, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28833225

RESUMEN

Identification of ethanol's (EtOH) primary molecular brain targets and determination of their functional role is an ongoing, important quest. Pentameric ligand-gated ion channels, that is, the nicotinic acetylcholine receptor, the γ-aminobutyric acid type A receptor, the 5-hydroxytryptamine3 , and the glycine receptor (GlyR), are such targets. Here, aspects of the structure and function of these receptors and EtOH's interaction with them are briefly reviewed, with special emphasis on the GlyR and the importance of this receptor and its ligands for EtOH pharmacology. It is suggested that GlyRs are involved in (i) the dopamine-activating effect of EtOH, (ii) regulating EtOH intake, and (iii) the relapse preventing effect of acamprosate. Exploration of the GlyR subtypes involved and efforts to develop subtype specific agonists or antagonists may offer new pharmacotherapies for alcohol use disorders.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Etanol/administración & dosificación , Etanol/metabolismo , Receptores de Glicina/fisiología , Acamprosato , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Animales , Dopamina/metabolismo , Humanos , Naltrexona/administración & dosificación , Naltrexona/metabolismo , Taurina/administración & dosificación , Taurina/análogos & derivados , Taurina/metabolismo
13.
J Physiol ; 594(13): 3827-40, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27098371

RESUMEN

KEY POINTS: Increased environmental risk factors in conjunction with genetic susceptibility have been proposed with respect to the remarkable variations in mortality in amyotrophic lateral sclerosis (ALS). In vitro models allow the investigation of the genetically modified counter-regulator of motoneuron toxicity and may help in addressing ALS therapy. Spinal organotypic slice cultures from a mutant form of human superoxide dismutase 1 (SOD1G93A) mouse model of ALS allow the detection of altered glycinergic inhibition in spinal microcircuits. This altered inhibition improved spinal cord excitability, affecting motor outputs in early SOD1(G93A) pathogenesis. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurological disease characterized by a progressive degeneration of motoneurons (MNs). In a previous study, we developed organotypic spinal cultures from an ALS mouse model expressing a mutant form of human superoxide dismutase 1 (SOD1(G93A) ). We reported the presence of a significant synaptic rearrangement expressed by these embryonic cultured networks, which may lead to the altered development of spinal synaptic signalling, which is potentially linked to the adult disease phenotype. Recent studies on the same ALS mouse model reported a selective loss of glycinergic innervation in cultured MNs, suggestive of a contribution of synaptic inhibition to MN dysfunction and degeneration. In the present study, we further exploit organotypic cultures from wild-type and SOD1(G93A) mice to investigate the development of glycine-receptor-mediated synaptic currents recorded from the interneurons of the premotor ventral circuits. We performed single cell electrophysiology, immunocytochemistry and confocal microscopy and suggest that GABA co-release may speed the decay of glycine responses altering both temporal precision and signal integration in SOD1(G93A) developing networks at the postsynaptic site. Our hypothesis is supported by the finding of an increased MN bursting activity in immature SOD1(G93A) spinal cords and by immunofluorescence microscopy detection of a longer persistence of GABA in SOD1(G93A) glycinergic terminals in cultured and ex vivo spinal slices.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Interneuronas/fisiología , Médula Espinal/fisiología , Superóxido Dismutasa-1/genética , Ácido gamma-Aminobutírico/fisiología , Animales , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Ratones Transgénicos , Receptores de Glicina/fisiología , Transmisión Sináptica
14.
J Physiol ; 594(13): 3589-607, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27028707

RESUMEN

KEY POINTS: Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission. Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem. A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs. These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact. Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. ABSTRACT: Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, ß-alanine and taurine by 9-, 6- and 3-fold respectively, and that of the competitive antagonist strychnine by 15-fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co-mutating N61, located on a neighbouring ß loop to N46, rescued the wild-type phenotype depending on the amino acid charge. Single-channel recording identified that burst length for the N46K mutant was reduced and fast agonist application revealed faster glycine deactivation times for the N46K mutant compared with the WT receptor. Overall, these data are consistent with N46 ensuring correct alignment of the α1 subunit interface by interaction with juxtaposed residues to preserve the structural integrity of the glycine binding site. This represents a new mechanism by which GlyR dysfunction induces startle disease.


Asunto(s)
Hiperekplexia/fisiopatología , Mutación Missense , Receptores de Glicina , Desoxicorticosterona/análogos & derivados , Desoxicorticosterona/farmacología , Glicina/farmacología , Células HEK293 , Humanos , Modelos Moleculares , Picrotoxina/farmacología , Pregnenolona/farmacología , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/fisiología , Zinc/farmacología
15.
J Biol Chem ; 290(9): 5621-34, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25572390

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate fast chemoelectrical transduction in the nervous system. The mechanism by which the energy of ligand binding leads to current-conducting receptors is poorly understood and may vary among family members. We addressed these questions by correlating the structural and energetic mechanisms by which a naturally occurring M1 domain mutation (α1(Q-26'E)) enhances receptor activation in homo- and heteromeric glycine receptors. We systematically altered the charge of spatially clustered residues at positions 19' and 24', in the M2 and M2-M3 linker domains, respectively, which are known to be critical to efficient receptor activation, on a background of α1(Q-26'E). Changes in the durations of single receptor activations (clusters) and conductance were used to determine interaction coupling energies, which we correlated with conformational displacements as measured in pLGIC crystal structures. Presence of the α1(Q-26'E) enhanced cluster durations and reduced channel conductance in homo- and heteromeric receptors. Strong coupling between α1(-26') and α1(19') across the subunit interface suggests an important role in receptor activation. A lack of coupling between α1(-26') and α1(24') implies that 24' mutations disrupt activation via other interactions. A similar lack of energetic coupling between α1(-26') and reciprocal mutations in the ß subunit suggests that this subunit remains relatively static during receptor activation. However, the channel effects of α1(Q-26'E) on α1ß receptors suggests at least one α1-α1 interface per pentamer. The coupling-energy change between α1(-26') and α1(19') correlates with a local structural rearrangement essential for pLGIC activation, implying it comprises a key energetic pathway in activating glycine receptors and other pLGICs.


Asunto(s)
Multimerización de Proteína , Estructura Cuaternaria de Proteína , Receptores de Glicina/química , Receptores de Glicina/fisiología , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión/genética , Transferencia de Energía , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de Glicina/genética , Homología de Secuencia de Aminoácido
16.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L570-80, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27402692

RESUMEN

Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies.


Asunto(s)
Tos/fisiopatología , Glicina/farmacología , Núcleo Solitario/fisiopatología , Animales , Bicuculina/farmacología , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Muscimol/farmacología , Conejos , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Reflejo , Núcleo Solitario/efectos de los fármacos , Estricnina/farmacología
17.
Chin J Physiol ; 59(1): 39-45, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26875561

RESUMEN

Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 µM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 µM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α2/α2ß subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.


Asunto(s)
Minerales/farmacología , Neuronas/efectos de los fármacos , Área Preóptica/efectos de los fármacos , Receptores de Glicina/efectos de los fármacos , Resinas de Plantas/farmacología , Estricnina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Neuronas/fisiología , Área Preóptica/fisiología , Receptores de Glicina/fisiología
18.
J Neurosci ; 34(30): 10003-9, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057202

RESUMEN

Although functional glycinergic synapses have not been identified in the hippocampus, neurons in this area express Cl(-) permeable extrasynaptic glycine receptors (GlyRs). In experiments on CA3 pyramidal neurons on postnatal day 0-6 rat hippocampal slices, we detected robust GlyR activity as a tonic current and as single-channel events. Glycine release was independent of neuronal activity or extracellular Ca(2+). The endogenous GlyR activity was strongly enhanced by inhibition of the glycine-transporter-1 (GlyT1). Blockade of GlyT1 also caused a profound increase in the baseline current induced by exogenous glycine. Inhibition of GlyT1 reduced the frequency of spontaneous network events known as field giant depolarizing potentials (fGDPs) and of the unit activity in the absence of synaptic transmission. This inhibitory action on fGDPs was mimicked by applying 2 µm glycine or 0.1 µm isoguvacine, a GABAA-receptor agonist. Furthermore, 2 µm glycine suppressed unit spiking in the absence of synaptic transmission. Hence, despite the well known depolarizing Cl(-) equilibrium potential of neonatal hippocampal neurons, physiologically relevant extracellular glycine concentrations can exert an inhibitory action. The present data show that, akin to GABA uptake, GlyT1 exerts a powerful modulatory action on network events in the newborn hippocampus.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Hipocampo/fisiología , Inhibición Neural/fisiología , Receptores de Glicina/fisiología , Animales , Animales Recién Nacidos , Femenino , Glicina/fisiología , Proteínas de Transporte de Glicina en la Membrana Plasmática/agonistas , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptores de Glicina/agonistas
19.
Biochem Biophys Res Commun ; 456(2): 666-9, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25511697

RESUMEN

Using whole-cell patch clamp recording on medial prefrontal cortical slices of rats aged 17-33 postnatal days, we demonstrated the glycine-induced strychnine-sensitive outward currents. The amplitude of the peak current increased with the concentrations of glycine with an EC50 of 74.7 µM. Application of 1µM strychnine alone to cells caused a slight inward current without blocking the sIPSCs, indicating that GlyRs in the mPFC are activated by an endogenous ligand that can be released tonically. Glycine reversibly depressed firing rate in cells from both layer 6 and layer 3, with significantly greater inhibition on the former than the latter (EC50 12.9 vs 85.6 µM). Glycine hyperpolarized membrane potential in cells of both layer 6 and layer 3 depending on its concentrations, with an IC50 of 99.1 and 207.2 µM, respectively. We propose that GlyRs participate in a novel inhibitory mechanism in mPFC, modulating neuronal activity. This finding further supports an important role of GlyR in cortical function and dysfunction.


Asunto(s)
Glicina/fisiología , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Receptores de Glicina/fisiología , Animales , Células Cultivadas , Glicina/farmacología , Potenciales de la Membrana , Técnicas de Placa-Clamp , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Ratas , Receptores de Glicina/antagonistas & inhibidores
20.
J Neurophysiol ; 112(12): 3125-37, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25231618

RESUMEN

In the central nervous system, inhibition shapes neuronal excitation. In spinal cord glycinergic inhibition predominates, whereas GABAergic inhibition predominates in the brain. The retina uses GABA and glycine in approximately equal proportions. Glycinergic crossover inhibition, initiated in the On retinal pathway, controls glutamate release from presynaptic OFF cone bipolar cells (CBCs) and directly shapes temporal response properties of OFF retinal ganglion cells (RGCs). In the retina, four glycine receptor (GlyR) α-subunit isoforms are expressed in different sublaminae and their synaptic currents differ in decay kinetics. GlyRα1, expressed in both On and Off sublaminae of the inner plexiform layer, could be the glycinergic isoform that mediates On-to-Off crossover inhibition. However, subunit-selective glycine contributions remain unknown because we lack selective antagonists or cell class-specific subunit knockouts. To examine the role of GlyRα1 in direct inhibition in mature RGCs, we used retrogradely transported adeno-associated virus (AAV) that performed RNAi and eliminated almost all glycinergic spontaneous and visually evoked responses in PV5 (OFFα(Transient)) RGCs. Comparisons of responses in PV5 RGCs infected with AAV-scrambled-short hairpin RNA (shRNA) or AAV-Glra1-shRNA confirm a role for GlyRα1 in crossover inhibition in cone-driven circuits. Our results also define a role for direct GlyRα1 inhibition in setting the resting membrane potential of PV5 RGCs. The absence of GlyRα1 input unmasked a serial and a direct feedforward GABA(A)ergic modulation in PV5 RGCs, reflecting a complex interaction between glycinergic and GABA(A)ergic inhibition.


Asunto(s)
Potenciales Evocados Visuales , Potenciales Postsinápticos Inhibidores , Receptores de Glicina/fisiología , Células Ganglionares de la Retina/fisiología , Potenciales de Acción , Animales , Dependovirus , Ratones , Modelos Neurológicos , Estimulación Luminosa , Subunidades de Proteína/antagonistas & inhibidores , Interferencia de ARN , Receptores de GABA-A/fisiología , Receptores de Glicina/antagonistas & inhibidores , Células Ganglionares de la Retina/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA